Online Combinatorial Optimization

 with Stochastic Decision Sets and Adversarial LossesGergely Neu
Michal Valko
michal.valko@inria.fr

SequeL team
INRIA Lille - Nord Europe
France

The learning problem

Loss estimation by Counting Asleep-Times (CAT)

Restricted feedback

Define

- $A_{t, i}=\mathbf{1}_{\text {\{component } i \text { is available in round } t \text { \} }}$
- $a_{i}=\mathbf{E}_{t}\left[A_{t, i}\right]$, and

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{a_{i}} A_{t, i}
$$

... but how do we compute a_{i} ?
Semi-bandit feedback
Define $q_{t, i}^{*}=\mathbf{E}_{t}\left[V_{t, i}\right]$ and

$$
\hat{\ell}_{t, i}^{*}=\frac{\ell_{t, i}}{q_{t, i}^{*}} V_{t, i}
$$

... but this requires perfect knowledge of P ! Another idea: define $q_{t, i}=\mathbf{E}_{t}\left[V_{t, i} \mid S_{t}\right]$ and

$$
\hat{\ell}_{t, i}=\frac{\ell_{t, i}}{a_{i} q_{t, i}} A_{t, i}
$$

... but that needs a_{i} again.

Estimating $1 / a_{i}$
Kanade, McMahan \& Bryan (2009):

- devote first K steps for exploration!
- use samples to construct \hat{a}_{i} s.t. $\mathbf{E}\left[\hat{a}_{i}\right]=a_{i}$!

$$
\begin{gathered}
\text { Restricted } \\
\hat{\ell}_{t, i}=\ell_{t, i} A_{t, i} N_{t, i}
\end{gathered}
$$

Regret definition

Usual goal: minimize regret against S

Comparator might not be available!
A sensible comparator class:
The set of policies $\Pi=\left\{\pi\right.$: $\left.2^{S} \rightarrow S\right\}$ s.t. $\pi(\bar{S}) \in \bar{S} \subseteq S$

Our goal: minimize regret against Π
$R_{T}=\max _{\pi \in \Pi} \mathbf{E}\left[\sum_{t=1}^{T}\left(\boldsymbol{V}_{t}-\pi\left(S_{t}\right)\right)^{\top} \ell_{t}\right]$

Algorithm: SleepingCAT (FPL)

Parameter: learning rate $\eta>0, \hat{L}_{0}=0$
For each time step $t=1,2, \ldots, T$

- Draw perturbation vector \boldsymbol{Z}_{t} with $Z_{t, i} \sim \operatorname{Exp}(\eta)$ i.i.d. for all $i \in$ $\{1,2, \ldots, d\}$
- Play
$V_{t}=\operatorname{argmin} v^{\top}\left(\hat{L}_{t-1}-Z_{t}\right)$
Compute $\hat{\ell}_{t}$ and let $\hat{L}_{t}=\hat{L}_{t-1}+\hat{\ell}_{t}$

Efficient whenever the optimization
$\min _{\substack{v \in D \\ v^{\top} \ell}}^{\text {can be solved efficiently for all } D \in S}$
Computing $K_{t, i}$:

- use Geometric Resampling (Neu \& Bartók, 2013)
- requires d calls to oracle on average

Results

	Full info	Restricted info	Semi-bandit
Kanade et al. 2009 $(m=1$ only $)$	$\sqrt{T \log d}$??? $\left(T^{3 / 4}\right.$ conjectured $)$	$(d T)^{4 / 5} \log T$
SleepingCAT general bound		$m \sqrt{d T \log d}$	$(m d T)^{2 / 3}(\log d)^{1 / 3}$
SleepingCAT when $a_{i} \geq \beta$	$m^{3 / 2} \sqrt{L_{T}^{*} \log d}$		

Analysis idea

- Define independent copies $\tilde{S} \sim P$ and $\widetilde{\boldsymbol{Z}} \sim \boldsymbol{Z}_{1}$
- Define hypothetical forecaster

$$
\widetilde{\boldsymbol{V}}_{t}=\underset{v \in \tilde{S}}{\operatorname{argmin}} v^{\top}\left(\widehat{\boldsymbol{L}}_{t}-\widetilde{\boldsymbol{Z}}\right)
$$

so $\widetilde{\boldsymbol{V}}_{t} \sim \boldsymbol{V}_{t+1}$ given history up to round t

- Then

$$
\begin{aligned}
\mathbf{E}_{t}\left[\tilde{\boldsymbol{V}}_{t-1}^{\top} \hat{e}_{t}\right] & =\mathbf{E}_{t}\left[\boldsymbol{V}_{t}^{\top} \ell_{t}\right] \\
\mathbf{E}_{t}\left[\pi(\tilde{S})^{\top} \hat{e}_{t}\right] & =\mathbf{E}_{t}\left[\pi\left(S_{t}\right)^{\top} \ell_{t}\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { Lemma 2: for any } \hat{\ell}_{t} \geqslant 0, \\
\mathbf{E}_{t}\left[\left(\widetilde{V}_{t-1}-\widetilde{V}_{t}\right)^{\top} \hat{\ell}_{t}\right] \leq \mathbf{E}_{t}\left[\left(\widetilde{V}_{t-1}^{\top} \hat{\ell}_{t}\right)^{2}\right]
\end{gathered}
$$

Experiments

Setup follows Kanade et al. (2009):

- 5 arms, available independently of each other w.p. p
- Losses are symmetric random walks truncated to $[0,1]$

Scaling with grid size in a shortest-path problem:

10×10

