

Online Combinatorial Optimization with Stochastic Decision Sets and Adversarial Losses

Gergely Neu gergely.neu@gmail.com Michal Valko michal.valko@inria.fr SequeL team INRIA Lille – Nord Europe France

The learning problem

For each time step t = 1, 2, ..., T

- Environment chooses decision set $S_t \subseteq S$
- Learner chooses action $V_t \in S \subseteq \{0,1\}^d$
- Environment chooses loss vector $\ell_t \in [0,1]^d$
- Learner suffers loss $V_t^{\mathsf{T}} \ell_t$
- Learner observes feedback based on V_t and ℓ_t

Feedback assumptions

• Full: ℓ_t

Regret definition

Usual goal: minimize regret against *S*

Comparator might not be available!

Loss estimation by Counting Asleep-Times (CAT)

Restricted feedback

Define

• $A_{t,i} = \mathbf{1}_{\{\text{component } i \text{ is available in round } t\}}$ • $a_i = \mathbf{E}_t[A_{t,i}]$, and

Estimating $1/a_i$

Kanade, McMahan & Bryan (2009):

- devote first *K* steps for exploration!
- use samples to construct \hat{a}_i s.t. $\mathbf{E}[\hat{a}_i] = a_i!$

The magic trick: Counting Asleep-Times

A sensible comparator class:

The set of policies $\Pi = {\pi: 2^S \to S}$ s.t. $\pi(\bar{S}) \in \bar{S} \subseteq S$

Our goal: minimize regret against Π

Algorithm: SleepingCAT (FPL)

Parameter: learning rate $\eta > 0$, $\hat{L}_0 = 0$ For each time step t = 1, 2, ..., T• Draw perturbation vector Z_t with $Z_{t,i} \sim \text{Exp}(\eta)$ i.i.d. for all $i \in \{1, 2, ..., d\}$ • Play

... but how do we compute a_i ?

Define $q_{t,i}^* = \mathbf{E}_t[V_{t,i}]$ and $\hat{\ell}_{t,i}^* = \frac{\ell_{t,i}}{q_{t,i}^*}V_{t,i}$

... but this requires perfect knowledge of P! Another idea: define $q_{t,i} = \mathbf{E}_t [V_{t,i} | S_t]$ and

... but that needs a_i again.

 $V_{t} = \underset{v \in S_{t}}{\operatorname{argmin}} v^{\top} (\widehat{L}_{t-1} - Z_{t})$ • Compute $\widehat{\ell}_{t}$ and let $\widehat{L}_{t} = \widehat{L}_{t-1} + \widehat{\ell}_{t}$

Efficient whenever the optimization $\min_{v \in D} v^{\top} \ell$ can be solved efficiently for all $D \in S$

Computing $K_{t,i}$:

- use Geometric Resampling (Neu & Bartók, 2013)
- requires *d* calls to oracle on average

Experiments

Setup follows Kanade et al. (2009):

- 5 arms, available independently of each other w.p. p
- Losses are symmetric random walks truncated to [0,1]

Results			
	Full info	Restricted info	Semi-bandit
Kanade et al. 2009 ($m = 1$ only)	$\sqrt{T \log d}$??? ($T^{3/4}$ conjectured)	$(dT)^{4/5}\log T$
SleepingCAT		$m_{1}/dT \log d$	$(mdT)^{2/3}(\log d)^{1/3}$

