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Abstract

Smooth functions on graphs have wide applications in manifold and semi-supervised learn-
ing. In this work, we study a bandit problem where the payoffs of arms are smooth on a
graph. This framework is suitable for solving online learning problems that involve graphs,
such as content-based recommendation. In this problem, each item we can recommend is
a node of an undirected graph and its expected rating is similar to the one of its neigh-
bors. The goal is to recommend items that have high expected ratings. We aim for the
algorithms where the cumulative regret with respect to the optimal policy would not scale
poorly with the number of nodes. In particular, we introduce the notion of an effective di-
mension, which is small in real-world graphs, and propose three algorithms for solving our
problem that scale linearly and sublinearly in this dimension. Our experiments on content
recommendation problem show that a good estimator of user preferences for thousands of
items can be learned from just tens of node evaluations.

1. Introduction

A smooth graph function is a function on a graph that returns similar values on neighboring
nodes. This concept arises frequently in manifold and semi-supervised learning (Zhu, 2008;
Valko et al., 2010), and reflects the fact that the outcomes on the neighboring nodes tend to
be similar. It is well-known (Belkin et al., 2006, 2004) that a smooth graph function can be
expressed as a linear combination of the eigenvectors of the graph Laplacian with smallest
eigenvalues (see Figure 1 for an example). Therefore, the problem of learning such function
can be cast as a regression problem on these eigenvectors. The present work brings this
concept to bandits (Valko, 2016). In particular, we study a bandit problem where the arms
are the nodes of a graph and the expected payoff of pulling an arm is a smooth function on
this graph.
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We are motivated by a range of practical problems that involve graphs. One application
is targeted advertisement in social networks. Here, the graph is a social network and our
goal is to discover a part of the network that is interested in a given product. Interests
of people in a social network tend to change smoothly (McPherson et al., 2001), because
friends tend to have similar preferences. Therefore, we take advantage of this structure and
formulate this problem as learning a smooth preference function on a graph.
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Figure 1: Eigenvectors from the Flixster dataset corresponding to the smallest few eigenval-
ues projected onto the first principal component of the data; x-axis represents components
of the eigenvector sorted according to the projection onto the first principal component of
the data while y-axis represent the value of the corresponding component of the eigenvec-
tor. To produce the figure above, we performed the following steps. (1) Preprocessing: We
remove all the users that rated a small number of movies as well as the movies rated by
only a few users. This leaves us with a u×m matrix M where u is the number of users and
m is the number of movies and entry Mi, j of matrix M is the rating of movie j by user i,
provided it exists. Note that matrix M might be missing some of the entries. (2) Filling in
the missing entries: For this step, we use low-rank matrix factorization (Keshavan et al.,
2009) to obtain u × r matrix U and m × r matrix V, for some given rank r, such that
M ≈ UVT. (3) Constructing a similarity graph: We construct the graph by creating an
edge between movies i and j if the movie j is among 5 nearest neighbors of the movie i in
the latent space of movies V. (4) Visualization: Using the computed matrix V, the matrix
capturing the latent space of movies, we can find the direction of the highest variance of the
data using PCA on V. This gives us a way to visualize eigenvectors by projecting them on
the first principal component. The above visualization shows that the eigenvectors corre-
sponding to smaller eigenvalues tend to be smoother—the values corresponding to actions
with their projections close to each other are similar. On the other hand, the eigenvectors
corresponding to larger eigenvalues are more chaotic as values for nearby items can vary a
lot. This gives a small insight into why a function created as a linear combination of the
first few eigenvectors is a smooth reward function. We are more precise about the definition
of smoothness and the connection of smooth functions and eigenvectors later in Section 4.
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Another application of our work are recommender systems (Jannach et al., 2010). In
content-based recommendation (Chau et al., 2011), the user is recommended items that are
similar to the items that the user rated highly in the past. The assumption is that users
prefer similar items similarly. The similarity of the items is measured for instance by a
nearest-neighbor graph (Billsus et al., 2000), where each item is a node and its neighbors
are the most similar items.

We consider the following learning setting. The graph is known in advance and its
edges represent the similarity of the nodes. At round t, we choose a node and then observe
its payoff. In targeted advertisement, this may correspond to showing an ad and then
observing whether the person has clicked on it. In content-based recommendation, this
may correspond to recommending an item and then observing the assigned rating. Based
on the payoff, we update our model of the world and then the game proceeds into round
t + 1. In both applications described above, the learner (advertiser) has rarely the budget
(time horizon T ) to try all the options even once. Furthermore, imagine that the learner is
a movie recommender system and would ask the user to rate all the movies before it starts
producing relevant recommendations. Such a recommender system would be of little value.
Yet, many bandit algorithms start with pulling each arm once. This is something that we
cannot afford and therefore, contrary to standard bandits, we consider the case T � N ,
where the number of nodes N is huge. While we are mostly interested in the regime when
t < N , our results are beneficial also for t > N . This regime is especially challenging since
traditional multi-arm bandit algorithms need to try every arm.

If the smooth graph function is expressed as a linear combination of k eigenvectors
of the graph Laplacian and k is small and known, our learning problem can be solved
using ordinary linear bandits (Auer, 2002; Dani et al., 2008; Li et al., 2010; Agrawal and
Goyal, 2013b; Abeille and Lazaric, 2017). In practice, k is problem specific and unknown.
Moreover, the number of features k may approach the number of nodes N . Therefore,
proper regularization is necessary, so that the regret of the learning algorithm does not
scale with N . We are interested in the setting where the regret is independent of N and
this makes the problem we study non-trivial.

Early short versions of our work appeared at International Conference on Machine
Learning (Valko et al., 2014) and AAAI Conference on Artificial Intelligence (Kocák et al.,
2014b). Compared to those, we give a new and improved definition of the effective di-
mension that is smaller than the old one, provide a matching lower bound, improved the
regret bounds for two of our algorithm, and report a comprehensive empirical evaluation
on artificial datasets as well as on the Movielens and Flixster datasets.

2. Setting

In this section, we formally define the spectral bandit setting. Let G be the given graph
with the set of nodes V and denote N , |V| the number of nodes. Let W be the symmetric
N ×N matrix of similarities wij (edge weights) and D be the N ×N diagonal matrix with
entries dii ,

∑
j wij (node degrees). The graph Laplacian of G is defined as L , D −W.

Let {λLk ,qk}Nk=1 be the eigenvalues and eigenvectors of L ordered such that 0 = λL1 ≤ λL2 ≤
· · · ≤ λLN . Equivalently, let L , QΛLQ

T be an eigendecomposition of L, where Q is an
N ×N orthogonal matrix with eigenvectors in columns.
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The eigenvectors of the graph Laplacian form a basis. Therefore, we can represent the
reward function as a linear combination of the eigenvectors. For any set of weights α, let
fα : V → R be the function defined on nodes, linear in the basis of the eigenvectors of L,

fα(v) ,
N∑
k=1

αk(qk)v = xT
vα,

where xv is the v-th row of Q, i.e., (xv)i = (qi)v. If the weight coefficients of the true α are
such that the large coefficients correspond to the eigenvectors with the small eigenvalues and
vice versa, then fα would be a smooth function on G (Belkin et al., 2006). For more details,
see Section 4.1. Figure 1 displays the first few eigenvectors of the Laplacian constructed
from the data that we use in our experiments. In the extreme case, the true α may be of
the form [α1, α2, . . . , αk, 0, 0, 0]TN for some k � N . Had we known k in such case, the
known linear bandit algorithms would work with the performance scaling with k instead
of D = N . Unfortunately, first, we do not know k and second, we do not want to assume
such an extreme case (i.e., αi = 0 for i > k). Therefore, we opt for the more plausible
assumption that the coefficients with the high indexes are small. Consequently, we deliver
algorithms with the performance that scale with the smoothness with respect to the graph.

We now define the learning setting. In each round t ≤ T , the recommender chooses a
node at and obtains a noisy reward such that

rt , xT
atα + εt,

where the noise εt is assumed to be zero mean and conditionally independent R-sub-
Gaussian random variable for any t, that is, E [exp(sεt)] ≤ exp(R2s2/2), for all s ∈ R
and E [εt] = 0. In our setting, we have xv ∈ RD and ‖xv‖2 ≤ 1 for all xv. The goal of the
recommender is to minimize the cumulative regret with respect to the strategy that always
picks the best node w.r.t.α. Let at be the node picked (referred to as pulling an arm) by
an algorithm at round t. The cumulative (pseudo-) regret of an algorithm is defined as

RT , T max
v
fα(v)−

T∑
t=1

fα(at).

We call this bandit setting spectral since it is built on the spectral properties of a graph.
Compared to the linear and multi-arm bandits, the number of arms K is equal to the number
of nodes N and to the dimension of the basis D (the eigenvectors are of dimension N).
However, a regret that scales with N or D that can be obtained using those approaches is
not acceptable because the number of nodes can be large. While we are mostly interested
in the setting with K = N , our algorithms and analyses are valid for any finite K.

3. Related work

The most related settings to our work are that of the linear and contextual linear bandits.
For these settings, Auer (2002) proposed SupLinRel and showed that it obtains

√
DT

regret which matches the lower bound by Dani et al. (2008). However, the first practical
and empirically successful algorithm was LinUCB (Li et al., 2010). Later, Chu et al. (2011)
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analyzed SupLinUCB, which is a LinUCB equivalent of SupLinRel, to show that it also obtains√
DT regret. Abbasi-Yadkori et al. (2011) proposed OFUL for linear bandits which obtains

D
√
T regret. Using their analysis, it is possible to show that LinUCB obtains D

√
T regret

as well (Remark 25). Whether LinUCB matches the
√
DT lower bound for this setting is

still an open problem.

Apart from the above optimistic approaches, an older approach to the problem is
Thompson sampling (TS, Thompson, 1933). It solves the exploration-exploitation dilemma
by a simple and intuitive rule: when choosing the next action to play, choose it according to
the probability that it is the best one; that is the one that maximizes the expected payoff.
Chapelle and Li (2011) showed its practical relevance to the computational advertising.
This motivated the researchers to explain the success of TS (Agrawal and Goyal, 2012;
Kaufmann et al., 2012; May et al., 2012; Agrawal and Goyal, 2013a; Abeille and Lazaric,
2017). The most relevant results for our work are by Agrawal and Goyal (2013b), who bring
a new martingale technique, enabling us to analyze cases where the payoffs of the actions
are linear in some basis.

Abernethy et al. (2008) and Bubeck et al. (2012) studied a more difficult adversarial
setting of linear bandits where the reward function is time-dependent. It is an open problem
if this approaches would work in our setting and have an upper bound on the regret that
scales better than with D.

Kleinberg et al. (2008), Slivkins (2009), and Bubeck et al. (2011) use similarity informa-
tion between the context of arms, assuming a Lipschitz or more general properties. While
such settings are indeed more general, the regret bounds scale worse with the relevant di-
mensions. Srinivas et al. (2010) and Valko et al. (2013) also perform maximization over the
smooth functions that are either sampled from a Gaussian process prior or have a small
RKHS norm. Their setting is also more general than ours since it already generalizes linear
bandits. However, their regret bound in the linear case also scales with D. Moreover, the
regret of these algorithms also depends on a quantity for which data-independent bounds
exist only for some kernels, while our effective dimension is always computable given the
graph.

Another bandit graph setting called the gang of bandits was studied by Cesa-Bianchi
et al. (2013), where each node is a linear bandit with its own weight vector. These weight
vectors are assumed to be smooth on the graph. Gentile et al. (2014) take a different
approach to similarities in social networks by assuming that the actions are clustered into
several unknown clusters and the actions within one cluster have the same expected reward.
This approach can be applied also to the setting presented in our paper. The biggest ad-
vantage of the CLUB algorithm by Gentile et al. (2014) is that it constructs graph iteratively,
starting with complete graph and removing edges which are not likely to be presented in the
underlying clustering. Therefore, the algorithm does not need to know the similarity graph
unlike in our setting. However, theoretical improvement of CLUB compared to the basic ban-
dit algorithm comes from the small number of clusters. Therefore, if the number of clusters
is close to the number of actions the algorithm does not bring any improvement while the
algorithms in our setting still can leverage the similarity structure. Li et al. (2016) and
Gentile et al. (2017) later extended the approach to double-clustering where both the users
and the items are assumed to appear in clusters (with the underlying clustering unknown to
the learner) and Korda et al. (2016) considers a distributed extension. Yet another assump-
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tion of a special graph reward structure is exploited by unimodal bandits (Yu and Mannor,
2011; Combes and Proutière, 2014). One of the settings considered by Yu and Mannor
(2011) is a graph bandit setting where every path in the graph has unimodal rewards and
therefore also imposes a specific kind of smoothness with respect to the graph topology. In
networked bandits (Fang and Tao, 2014), the learner picks a node, but besides receiving
the reward from that node, its reward is the sum of the rewards of the picked node and
its neighborhood. The algorithm of Fang and Tao (2014), NetBandits, can also deal with
changing topology, however, this has to be always revealed to the learner before it makes
its decision.

Furthermore, bandits with side observations treat a different graph bandit setting where
the learner obtains not only the reward from the selected action but also the rewards from
the neighbors of the selected action. This setting was studied in both the stochastic case
(Caron et al., 2012; Buccapatnam et al., 2014) and the adversarial one (Mannor and Shamir,
2011; Alon et al., 2013; Kocák et al., 2014a; Alon et al., 2017, 2015; Kocák et al., 2016a,b).
For a comprehensive discussion, we refer to survey on graph bandits (Valko, 2016).

Spectral bandits with different objectives In the follow-up work on spectral ban-
dits, there have been algorithms optimizing other objective function than the cumulative
regret. First, in some sensor networks, sensing a node (pulling an arm) has an associated
cost (Narang et al., 2013). In a particular, cheap bandit setting (Hanawal et al., 2015), it
is cheaper to get an average of rewards of a set of nodes than a specific reward of a single
one. More precisely, the learner pays the cost for the action which depends on the spectral
properties of the graph while relying on the property that getting the average reward of
many nodes is less costly than getting a reward of a single node. For this setting, Hanawal
et al. (2015) proposed CheapUCB that reduces the cost of sampling by 1/4 as compared
to SpectralUCB, while maintaining Õ(d

√
T ) cumulative regret. Next, Gu and Han (2014)

study the online classification setting on graphs with bandit feedback, very similar to spec-
tral bandits; after predicting the class the oracle returns a single bit indicating whether the
prediction is correct or not. The analysis of their algorithm delivers essentially the same
bound on the regret, however, they need to know the number of relevant eigenvectors d.
Moreover, Ma et al. (2015) consider several variants of Σ-optimality that favors specific
exploration when selecting the nodes, for example, the learner is not allowed to play one
arm multiple times. The authors were able to show a regret bound which scales with the
effective dimension that we defined in our prior work (Valko et al., 2014).

4. Spectral bandits

In this section, we show how to leverage the smoothness of the rewards on a given graph. In
our setting, the features of the arms (contexts) form a basis and therefore are orthogonal to
each other. Thinking that the reward observed for an arm does not provide any information
for other arms would not be correct because of the assumption that under another basis,
the unknown parameter has a low norm. This provides an additional information across
the arms through the estimation of the parameter α.
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4.1 Smooth graph functions

There are several possible ways to define the smoothness of the function f with respect to
the undirected graph G. We are using the one which is standard in the spectral clustering
(von Luxburg, 2007) and semi-supervised learning (Belkin et al., 2006), defined as

SG(f) ,
1

2

∑
i, j∈[N ]

wi,j (f(i)− f(j))2.

Therefore, whenever the function values of the nodes connected by an edge with large weight
are close, the smoothness of the function with respect to the graph is small and the function
is smoother with respect to the graph. This definition has several useful properties. We are
mainly interested in the following one,

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
N∑
i=1

λiα
2
i ,

where f = (f(1), . . . , f(N))T is the vector of the function values, QΛQT is an eigendecom-
position of the graph laplacian L, and α = QTf is the representation of the vector f in the
eigenbasis. The assumption on the smoothness of the reward function with respect to the
underlying graph is reflected by the small value of SG(f) and therefore, the components
of α corresponding to the large eigenvalues should be small as well.

As a result, we can think of our setting as an N -arm bandit problem where N is pos-
sibly larger than the time horizon T and the mean reward f(k) for each arm k satisfies
the property that under a change of coordinates, the vector f of mean rewards has small
components, i.e., there exists a known orthogonal matrix U such that α = Uf has a low
norm. As a consequence, we can estimate α using penalization corresponding to the large
eigenvalues and to recover f . Given a vector of weights α, we define its Λ-norm as

‖α‖Λ ,

√√√√ N∑
i=1

λiα2
i =
√
αTΛα. (1)

This norm is closely related to the smoothness of the function and we use it later in our
algorithms by regularization which enforces small Λ-norm of α.

4.2 Effective dimension

In order to present and analyze our algorithms, we use a notion of effective dimension
denoted by (lower case) d. While we introduced a slightly different version of the effective
dimension for spectral bandits previously (Valko et al., 2014), we now present an improved
definition. This new definition of effective dimension enables us to prove tighter regret
bounds for our algorithms. In the rest of the paper, we refer to the old definition of the
effective dimension, introduced by Valko et al. (2014), as dold. We keep using capital D to
denote the ambient dimension (the number of features). Intuitively, the effective dimension
is a proxy for the number of relevant dimensions. We first provide a formal definition and
then discuss its properties, including d < dold � D.
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In general, we assume there exists a diagonal matrix Λ with the entries 0 < λ = λ1 ≤
λ2 ≤ · · · ≤ λN and a set of N vectors x1, . . . ,xN ∈ RN such that ‖xi‖2 ≤ 1 for all i.
Moreover, since Q is an orthonormal matrix, ‖xi‖2 = 1. Finally, since the first eigenvalue
of a graph Laplacian is always zero, λL1 = 0, we use Λ = ΛL + λI, in order to have
λ1 = λ > 0.

Definition 1 The effective dimension d is defined as

d ,


max log

∏N
i=1

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
,

where the maximum is taken over all possible non-negative real numbers {t1, . . . , tN}, such
that

∑N
i=1 ti = T and K is the number of zero eigenvalues of ΛL. K is also the number of

components of G.

Remark 2 Note that if we first upper bound every 1/λi in the numerator by 1/λ then the
maximum is acquired for ti equal to T/N . Therefore, the right-hand side of the definition
is bounded from above by D = N . This means that d is upper bounded by D. Later we show
that in many practical situations, d is much smaller than D.

For the comparison, we show the previous definition of the effective dimension (Valko et al.,
2014) and from now we call it old effective dimension denoted by dold.

Definition 3 (old effective dimension, Valko et al., 2014) Let the old effective di-
mension dold be the largest dold ∈ [N ] such that

(dold − 1)λdold ≤
T

log(1 + T/λ)
·

Remark 4 Note that from Lemma 5 and Lemma 6 by Valko et al. (2014), we see that the
relation between the old and new definition of the effective dimension is: d ≤ 2dold. As
we show later, the bounds using the effective dimension scale either with d or with 2dold.
Moreover, we show that d is usually much smaller than 2dold and therefore using the new
definition of the effective dimension brings an improvement to the bound.

The effective dimension d is small when the coefficients λi grow rapidly above T . This is
the case when the dimension of the space D is much larger than T , such as in graphs from
social networks with a very large number of nodes N . In contrast, when the coefficients λi
are all small (if the graph is sparse, all eigenvalues of Laplacian are small) then d may be
of the order of T . That would make the regret bounds useless.

The actual form of Definition 1 comes from Lemma 24 and becomes apparent in Sec-
tion 6. The dependence of the effective dimension on T comes from the fact that d is related
to the number of “non-negligible” dimensions characterizing the space where the solution
to the penalized least-squares may lie, since this solution is basically constrained to an
ellipsoid defined by the inverse of the eigenvalues. This ellipsoid is wide in the directions
corresponding to the small eigenvalues and narrow in the directions corresponding to the

8



Spectral bandits

large ones. After playing an action, the confidence ellipsoid shrinks in the directions of the
action. Therefore, exploring in a direction where the ellipsoid is wide can reduce the volume
of the ellipsoid much more than exploring in a direction where the ellipsoid is narrow. In
fact, for a small T , the axes of the ellipsoid corresponding to the large eigenvalues of L are
negligible. Consequently, d is related to the metric dimension of this ellipsoid. Therefore,
when T tends to infinity, then all directions matter, thus the solution can be anywhere in a
(bounded) space of dimension N . On the contrary, for a smaller T , the ellipsoid possesses
a smaller number of “non-negligible” dimensions.

4.2.1 The computation of the effective dimension

All of the algorithms that we propose need to know the value of the effective dimension
in order to leverage the structure of the problem. Therefore, it is necessary to compute it
beforehand. when computing the effective dimension, we proceed in two steps:

1. Finding an N -tuple (t1, . . . , tN ) which maximizes the expression from the definition
of the effective dimension.

2. Plugging the N -tuple to the definition of the effective dimension.

We now focus on the first step. The following lemma gives us an efficient way to determine
the N -tuple

Lemma 5 Let ω ∈ [N ] be the largest integer such that∑ω
i=1 λi
ω

+
T

ω
− λω > 0,

then t1, . . . , tN that maximize the expression in the definition of the effective dimension are
in the following form,

ti =

∑ω
i=1 λi
ω

+
T

ω
− λi for i = 1, . . . , ω,

ti = 0 for i = ω + 1, . . . , N.

Proof First of all, we use the fact that logarithm is an increasing function and that the
N -tuple which maximizes the expression is invariant to a multiplication of the expression
by a constant,

arg max log
N∏
i=1

(
1 +

ti
λi

)
= arg max

N∏
i=1

(
1 +

ti
λi

)
= arg max

N∏
i=1

(λi + ti) .

The last expression is easy to maximize since we know that for any ∆ ≥ δ ≥ 0 and for any
real number a we have

0 ≤ ∆2 − δ2

a2 −∆2 ≤ a2 − δ2

(a−∆)(a+ ∆) ≤ (a− δ)(a+ δ).
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Therefore, if we take any two terms (λi+ ti) and (λj + tj) from the expression which we are
maximizing, we can potentially increase their product simply by balancing them,

tnew
i ,

λi + λj + ti + tj
2

− λi

tnew
j ,

λi + λj + ti + tj
2

− λj .

However, we still have to take into consideration that every ti has to be positive. Therefore,
if, for example, tnew

j is negative, we can simply set

tnew
i , ti + tj

tnew
j , 0.

We apply this argument to the expression we are trying to maximize to obtain the statement
of the lemma.

The second part is straightforward. To avoid computational difficulties of multiplying N
numbers, we use properties of logarithm to get

d =


max log

∏N
i=1

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
 =


max

∑N
i=1 log

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
·

Knowing an N -tuple which maximizes the expression, we simply plug it in and obtain the
value of the effective dimension.

4.2.2 The old vs. new definition of the effective dimension

As we mentioned in Remark 4, our new effective dimension is always upperbounded by 2dold.
In this section, we show that the gap between d and 2dold can be significant. We demonstrate
on the graphs constructed for several real-world datasets and also on several random graphs.

Flixster dataset, N=972
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LastFM dataset, N=126
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Figure 2: Difference between d and 2dold for real world datasets. From left to right: Flixster
dataset with N = 972, Movielens dataset with N = 618, and LastFM dataset with N = 804.

Figures 2 and 3 show how d behaves compared to 2dold on the generated and the real
Flixster, Movielens, and LastFM network graphs.1 We use some of them for the experiments

1We set Λ to ΛL + λI with λ = 0.1, where ΛL is the graph Laplacian of the respective graph.
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Erdos-Renyi graph with parameter 0.03, N=1000
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Barabási-Albert graph with parameter 1, N=1000
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Barabási-Albert graph with parameter 10, N=1000
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Figure 3: Difference between d and 2dold for random graphs on N = 1000 nodes. From left
to right: Erdős-Renyi graph with the probability 0.03 of an edge, Barabási-Albert graph
with one edge per added node, Barabási-Albert graph with ten edges per added node.

in Section 7. The figures clearly demonstrate the gap between d and 2dold while both of
the quantities are much smaller then D. In fact, effective dimension d is much smaller
than D even for T > N (Figures 2 and 3). Therefore, spectral bandits can be used even
for T > N while maintaining the advantage of better regret bounds compared to the linear
bandit algorithms.

4.3 Lower bound

In this section, we show a lower bound for the spectral setting. More precisely, for each
possible value of effective dimension d and time horizon T , we show the existence of a “hard”
problem with a lower bound of Ω(

√
dT ). We prove the theorem by reducing a carefully

selected problem to a multi-arm bandit problem with d arms and using the following lower
bound for it.

Theorem 6 (Auer et al., 2002) For any number of actions K ≥ 2 and for any time
horizon T , there exists a distribution over the assignment of Bernoulli rewards such that
the expected regret of any algorithm (where the expectation is taken with respect to both the
randomization over rewards and the algorithms internal randomization) is at least

RT ≥
1

20
min

{√
KT, T

}
.

Theorem 6 can also be proved without the randomization device. The constant 1/20 in
the lower bound above can be improved into 1/8 (Cesa-Bianchi and Lugosi, 2006, Theo-
rem 6.11). We now state a lower bound for spectral bandits, featuring the effective dimen-
sion d.

Theorem 7 For any T and d, there exists a problem with effective dimension d and time
horizon T such that the expected regret of any algorithm is of Ω(

√
dT ).

Proof We define a problem with the set of actions consisting of K = d blocks. Each
block is a complete graph KMT

on MT vertices. Moreover, all weights of the edges inside
a component are equal to one. We define MT as a T -dependent constant such that the
effective dimension of the problem d is exactly K. We specify the precise value of MT later.

11
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On top of the structure described above, we choose a reward function with smoothness 0,
i.e., a constant on each of the components of the graph. In fact, even knowing that the
reward function is constant on individual components, this problem is as difficult as the
multi-arm bandit problem with K arms. Therefore, the lower bound of Ω(

√
KT ) of the

K-arm bandit problem applies to our setting too. Consequently, we have the lower bound
of Ω(

√
dT ), since d = K.

The last part of the proof is to show that d = K and therefore, we have to specify value
of MT . The graph consists of K blocks consisting MT vertices each. Therefore, the graph
Laplacian is the following matrix

L =

0

0
(MT − 1) −1 . . . −1

−1

.

.

.

.

.

. −1

−1 . . . −1 (MT − 1)

.
.
.

(MT − 1) −1 . . . −1

−1

.

.

.

.

.

. −1

−1 . . . −1 (MT − 1)





.

Now we compute eigenvalues of L to obtain

L
eigenvalues−−−−−−−→

K︷ ︸︸ ︷
0, . . . , 0,

(MT−1)K︷ ︸︸ ︷
MT , . . . , MT .

We plug the above eigenvalues to the definition of the effective dimension and to set the
value of MT to obtain

d =


max log

∏K
i=1

(
1 + ti

λ

)∏KMT
i=K+1

(
1 + ti

λ+MT

)
log
(
1 + T

Kλ

)
·

By setting MT ≥ T/K, we have that the maximum in the definition is obtained for t1 =
· · · = tK = T/K and tK+1 = · · · = tKMT

= 0. Therefore,

d =

⌈
log
∏K
i=1

(
1 + T

Kλ

)
log
(
1 + T

Kλ

) ⌉
=

⌈∑K
i=1 log

(
1 + T

Kλ

)
log
(
1 + T

Kλ

) ⌉
= K.

This means that our problem is at least as difficult as the multi-arm bandit problem with
K = d arms and therefore, the lower bound for K-arm bandits (Theorem 6) applies.

5. Algorithms

In this section, we introduce the algorithms for spectral bandits: SpectralUCB, SpectralTS,
and SpectralEliminator. For each algorithm, we state the regret bound and later we

12
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Algorithm 1 SpectralUCB

1: Input:
2: N : number of actions
3: T : number of rounds
4: {ΛL,Q}: spectral basis of a graph Laplacian L
5: λ, δ: regularization and confidence parameters
6: R, C: upper bounds on the noise and ‖α‖Λ
7: Initialization:
8: V1 ← Λ← ΛL + λI
9: α̂1 ← 0N

10: d← d(max log
∏N
i=1(1 + ti/λi))/ log(1 + T/(Kλ))e (Definition 1)

11: c← R
√

2d log(1 + T/(Kλ)) + 8 log(1/δ) + C
12: Run:
13: for t = 1 to T do
14: Choose the node at (at-th row of Q): at ← arg maxa

(
xT
aα̂t + c‖xa‖V−1

t

)
15: Observe a noisy reward rt ← xT

atα + εt
16: Update the basis coefficients α̂:
17: Vt+1 ← Vt + xatx

T
at

18: α̂t+1 ← V−1
t+1

∑t
s=1 xasrs

19: end for

discuss the computational advantages and compare the theoretical regret bounds of the
algorithms with the lower bound provided in the previous section. Full proofs are given in
Section 6.

5.1 SpectralUCB

We first present SpectralUCB (Algorithm 1) which is based on LinUCB (Li et al., 2010) and
uses the spectral penalty (1) in its least-square estimate. Here, we consider a regularized
least-squares estimate α̂t of the form

α̂t , arg min
w∈RN

(
t∑

s=1

[
xT
asw − ras

]2
+ ‖w‖2Λ

)
.

A key part of the algorithm is to define the ct‖x‖V−1
t

confidence widths for the prediction of

the rewards and consequently the upper confidence bounds (UCBs). We take advantage of
our analysis (Section 6.3) to define ct based on the effective dimension d which is tailored to
our setting. This way we also avoid the computation of the determinant (see Section 6). The
following theorem characterizes the performance of SpectralUCB and bounds the regret as
a function of effective dimension d.

Theorem 8 Let d be the effective dimension and λ be the minimum eigenvalue of Λ.
If ‖α‖Λ ≤ C and for all xa, xT

aα ∈ [−1, 1], then the cumulative regret of SpectralUCB

13
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is with probability at least 1− δ bounded as

RT ≤

(
2R

√
2d log

(
1 +

T

Kλ

)
+ 8 log

(
1

δ

)
+ 2C + 2

)√
2dT log

(
1 +

T

Kλ

)
≤ Õ

(
d
√
T
)
.

Remark 9 The constant C needs to be such that ‖α‖Λ ≤ C. If we set C too small, the
true α will lie outside of the region and far from α̂t, causing the algorithm to underperform.
Alternatively, C can be time-dependent, e.g., Ct , log t. In such case, we do not need to
know an upper bound on ‖α‖Λ in advance, but our regret bound would only hold after some t,
in particular when Ct ≥ ‖α‖Λ.

We provide the proof of Theorem 8 in Section 6 and examine the performance of our
SpectralUCB experimentally in Section 7. The d

√
T result of Theorem 8 is to be compared

with the standard linear bandits, where LinUCB is the algorithm often used in practice (Li
et al., 2010), achieving D

√
T cumulative regret. As mentioned above and demonstrated in

Figures 2 and 3, in the T < N regime we can expect d� D = N and obtain an improved
performance.

5.2 SpectralTS

The second algorithm presented in this paper is SpectralTS which is based on LinearTS,
analyzed by Agrawal and Goyal (2013b), and uses Thompson sampling to decide which arm
to play. Specifically, we represent our current knowledge about α as a normal distribution
N (α̂t, v

2V−1
t ), where α̂t is our actual approximation of the unknown vector α and v2V−1

t

reflects our uncertainty about it. As mentioned before, we assume that the reward function
is a linear combination of eigenvectors of graph Laplacian L with large coefficients corre-
sponding to the eigenvectors with small eigenvalues. We encode this assumption into our
initial confidence ellipsoid by setting V1 , Λ , ΛL + λI, where λ is again a regularization
parameter.

In every round t, we generate a sample α̃t from the distribution N (α̂t, v
2V−1

t ), choose an
arm at which maximizes xT

i α̃t, and receive a reward. Afterwards, we update our estimate
of α and the confidence of it, i.e., we compute α̂t+1 and Vt+1,

Vt+1 = Vt + xatx
T
at and α̂t+1 = V−1

t+1

(
t∑

s=1

xasrs

)
.

Remark 10 Since TS is a Bayesian approach, it requires a prior to run and we choose
it here to be a Gaussian. However, this does not pose any assumption whatsoever about
the actual data both for the algorithm and the analysis. The only assumptions we make
about the data are: (a) that the mean payoff is linear in the features, (b) that the noise is
sub-Gaussian, and (c) that we know a bound on the Laplacian norm of the mean reward
function. We provide a frequentist bound on the regret (and not an average over the
prior) which is a much stronger worst-case result.
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Algorithm 2 SpectralTS

1: Input:
2: N : number of actions
3: T : number of rounds
4: {ΛL,Q}: spectral basis of a graph Laplacian L
5: λ, δ: regularization and confidence parameters
6: R, C: upper bounds on the noise and ‖α‖Λ
7: Initialization:
8: V1 ← Λ← ΛL + λIN
9: α̂1 ← 0N

10: d← d(max log
∏N
i=1(1 + ti/λi))/ log(1 + T/(Kλ))e (Definition 1)

11: v ← R
√

3d log(1/δ + T/(δλK)) + C
12: Run:
13: for t = 1 to T do
14: Sample α̃t ∼ N (α̂t, v

2V−1
t )

15: Choose the node at (at-th row of Q): at ← arg maxa xT
aα̃

16: Observe a noisy reward rt ← xT
atα + εt

17: Update the basis coefficients α̂:
18: Vt+1 ← Vt + xatx

T
at

19: α̂t+1 ← V−1
t+1

∑t
s=1 xasrs

20: end for

The following theorem upperbounds the cumulative regret of SpectralTS in terms of the
effective dimension.

Theorem 11 Let d be the effective dimension and λ be the minimum eigenvalue of Λ.
If ‖α‖Λ ≤ C and for all xa, xT

aα ∈ [−1, 1], then the cumulative regret of SpectralTS is
with probability at least 1− δ bounded as

RT ≤
11g

p

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
+

1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

(
2

δ

)
,

where p = 1/(4e
√
π) and

g =
√

4 log(TN)

(
R

√
3d log

(
1

δ
+

T

δλK

)
+ C

)
+R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C.

Remark 12 Substituting g and p, we see that the regret bound scales as d
√
T logN . Note

that N =D could be exponential in d and therefore we need to consider factor
√

logN in
our bound. On the other hand, if N is indeed exponential in d, then our algorithm scales
with logD

√
T logD = log(D)3/2

√
T which is even better.

5.3 SpectralEliminator
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Algorithm 3 SpectralEliminator

1: Input:
2: N : number of nodes
3: T : number of pulls
4: {ΛL,Q}: spectral basis of a graph Laplacian L
5: λ: regularization parameter
6: β, {tj}Jj : parameters of the elimination and phases where J = blog2 T c+ 1
7: A1 ← {x1, . . . ,xK}
8: for j = 1 to J do
9: Vtj ← ΛL + λI

10: for t = tj to min(tj+1 − 1, T ) do
11: Play available arm at (xat ∈ Aj) with the largest width and observe rt:
12: at ← arg maxa|xa∈Aj

‖xa‖V−1
t

13: Vt+1 ← Vt + xatx
T
at

14: end for
15: Eliminate the arms that are not promising:
16: α̂j+1 ← V−1

t+1[xtj , . . . ,xt][rtj , . . . , rt]
T

17: Aj+1 ←
{

x ∈ Aj , 〈α̂j+1,x〉+ ‖x‖V−1
t+1
β ≥ maxx∈Aj

[
〈α̂j+1,x〉 − ‖x‖V−1

t+1
β
]}

18: end for

It is known that the available upper bound for LinUCB, LinearTS, or OFUL is not tight
for linear bandits with a finite number of arms in terms of dimension D. On the other
hand, the algorithms SupLinRel or SupLinUCB achieve the optimal

√
DT regret. In the

following, we similarly provide an algorithm that also scales better with d and achieves
a
√
dT regret. The algorithm is called SpectralEliminator (Algorithm 3) and works in

phases, eliminating the arms that are not promising. The phases are defined by the time
indexes t1 = 1 ≤ t2 ≤ . . . and depend on some parameter β. The algorithm is in a spirit
similar to ImprovedUCB by Auer and Ortner (2010). As a special case and as a side result
of independent interest, we give also the LinearEliminator algorithm. LinearEliminator
achieves the optimal

√
DT regret and uses adaptive confidence intervals, unlike SupLinRel

or SupLinUCB, that use data-agnostic confidence intervals of the form 2−u for u ∈ N0.

In the following theorem, we characterize the performance of SpectralEliminator and
show that the upper bound on its regret has a

√
d improvement over SpectralUCB and

SpectralTS.

Theorem 13 Choose the phases’ starts as tj , 2j−1. Assume all rewards are in [0, 1]
and ‖α‖Λ ≤ C. For any δ > 0, with probability at least 1 − δ, the cumulative regret of
SpectralEliminator run with parameter β , R

√
log(2K(1 + log2 T )/δ)+C is bounded as

RT ≤ 2 + 8

(
R

√
2 log

(
2K(1 + log2 T )

δ

)
+ C +

1

2

)√
2dT log2(T ) log

(
1 +

T

λK

)
·
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5.4 Scalability and computational complexity

There are three main computational issues to address in order to make proposed algorithms
scalable: the computation of N UCBs (applies to SpectralUCB), the matrix inversion, and
obtaining the eigenbasis which serves as an input to any of the algorithms. First, to speed
up the computation of N UCBs (that in general takes N3 time) in each round, we use
lazy updates (Desautels et al., 2012) which maintains a sorted queue of UCBs and using
the fact that the UCB for every arm can only decrease after the update. Therefore, the
algorithm does not need to update all UCBs in each round. In practice, lazy updates lead to
light-speed gains. This issue does not apply to SpectralTS since we only need to sample α̃
which can be done in N2 time and find a maximum of xT

i α̃ which can be also done in N2

time. In general, the computational complexity of sampling in SpectralTS is better than
the complexity of computing the N UCBs in SpectralUCB. However, using lazy updates
can significantly speed up SpectralUCB up to the point that SpectralUCB is comparable
to SpectralTS.

Second, all of the proposed algorithms need to compute inverse if N × N matrix in
each round which is costly. However, we can use Sherman-Morrison formula to invert the
matrix iteratively and thus speed up the inversion since the matrix changes only by adding
a rank-one matrix from one round to the next one.

Finally, while an eigendecomposition of a general matrix is computationally difficult,
Laplacians are symmetric diagonally dominant (SDD). This enables us to use fast SDD
solvers as CMG by Koutis et al. (2011). Furthermore, using CMG we can find good ap-
proximations to the first L eigenvectors in O(Lm logm) time, where m is the number of
edges in the graph (e.g., m = 10N for Flixter data, Section 7.5). CMG can easily work
with N in millions. In general, we have L = N but from our experience, a smooth reward
function can be often approximated by dozens of eigenvectors. In fact, L can be consid-
ered as an upper bound on the number of eigenvectors we actually need. Furthermore, by
choosing small L we not only reduce the complexity of an eigendecomposition but also the
complexity of the least-square problem that is solved in each round.

Choosing a small L can significantly reduce the computation but it is important to
choose L large enough so that still less than L eigenvectors are enough. This way, the
problem that we solve remains relevant and our analysis applies. In short, the problem
cannot be solved trivially by choosing first k relevant eigenvectors because k is unknown.
Therefore, in practice, we choose the largest L such that our method is able to run. In
Section 7.3, we demonstrate that we can obtain good results with relatively small L.

6. Analysis

We are now ready to prove regret bounds for all algorithms. First, we show some general
preliminary results (Section 6.1). Then, we present several auxiliary lemmas concerning
confidence ellipsoid of the estimate (Section 6.2) and effective dimension (Section 6.3).
Using these results we upperbound the regrets of SpectralUCB (Section 6.4), SpectralTS
(Section 6.5), and SpectralEliminator (Section 6.6).
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6.1 Preliminaries

The first lemma is a standard anti-concentration inequality for a Gaussian random variable.

Lemma 14 For a Gaussian distributed random variable Z with mean m and variance σ2,
for any z ≥ 1,

1

2
√
πz
e−

z2

2 ≤ P (|Z −m| > σz) ≤ 1√
πz
e−

z2

2 .

Multiple applications of Sylvester’s determinant theorem gives our second preliminary lemma.

Lemma 15 Let Vt = Λ +
∑t−1

s=1 xsx
T
s, then

log
|Vt|
|Λ|

=
t−1∑
s=1

log
(

1 + ‖xs‖2V−1
s

)
.

Third lemma says that adding a rank-one matrix to a symmetric positive semi-definite
matrix implies the following Löwner ordering for their inverses.

Lemma 16 For any symmetric, positive semi-definite matrix X, and any vectors u and y,

yT(X + uuT)−1y ≤ yTX−1y.

Proof Using Sherman-Morrison formula and the fact that inverse of a symmetric matrix
is again symmetric, we have

−
(
uTX−1y

)T (
uTX−1y

)
1 + uTX−1u

≤ 0

yT

(
X−1 − X−1uuTX−1

1 + uTX−1u

)
y ≤ yTX−1y

yT (X + uuT)
−1

y ≤ yTX−1y.

Corollary 17 Let Vt , Λ +
∑t−1

s=1 xsx
T
s. Then for any vector x and for any positive

integers t1 and t2 satisfying t1 ≤ t2,

||x||V−1
t1

≥ ||x||V−1
t2

.

6.2 Confidence ellipsoid

We restate the two lemmas by Abbasi-Yadkori et al. (2011) for convenience.

Lemma 18 (Abbasi-Yadkori et al., 2011, Lemma 9) Let Vt , Λ +
∑t−1

s=1 xsx
T
s and

define ξt ,
∑t−1

s=1 εsxs. With probability at least 1− δ, ∀t ≥ 1,

‖ξt‖2V−1
t
≤ 2R2 log

(
|Vt|1/2

δ|Λ|1/2

)
·
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Lemma 19 (Abbasi-Yadkori et al., 2011, Lemma 11) For any round t, let us define
Vt , Λ +

∑t−1
s=1 xsx

T
s. Then,

t∑
s=1

min
(

1, ‖xs‖2V−1
s

)
≤ 2 log

|Vt+1|
|Λ|

·

The next lemma is a generalization of Theorem 2 by Abbasi-Yadkori et al. (2011) to the
regularization with Λ.

Lemma 20 Let Vt , Λ +
∑t−1

s=1 xsx
T
s and ‖α‖Λ ≤ C. With probability at least 1 − δ, for

any x and t ≥ 1,

|xTα̂t − xTα| ≤ ‖x‖V−1
t

(
R

√
2 log

(
|Vt|1/2
δ|Λ|1/2

)
+ C

)
.

Proof We have that

|xTα̂t − xTα| = |xT(−V−1
t Λα + V−1

t ξt)| ≤ |xTV−1
t Λα|+ |xTV−1

t ξt|

≤ |xTV
− 1

2
t V

− 1
2

t Λα|+ |xTV
− 1

2
t V

− 1
2

t ξt| ≤ ‖x‖V−1
t

(
‖ξt‖V−1

t
+ ‖Λα‖V−1

t

)
,

where we use Cauchy-Schwarz inequality in the last step. Now, we bound ‖ξt‖V−1
t

by

Lemma 18 and using Corollary 17 we bound ||Λα||V −1
t

as

‖Λα‖V−1
t
≤ ‖Λα‖V−1

1
= ‖Λα‖Λ−1 = ‖α‖Λ ≤ C.

6.3 Effective dimension

In Section 6.2, we show that several quantities scale with log(|Vt|/|Λ|), which can be of
the order of D. Therefore, in this part, we present the key ingredient of our analysis,
based on the geometrical properties of determinants (Lemmas 22 and 23), to upperbound
log(|Vt|/|Λ|) by a term that scales with d (Lemma 24). Not only this allows us to show
that the regret bound scales with d, but it also helps us to avoid the computation of the
determinants in Algorithm 1.

Lemma 21 For any real positive-definite matrix A with only simple eigenvalue multiplic-
ities and any vector x such that ‖x‖2 ≤ 1, we have that the determinant |A + xxT| is
maximized by a vector x which is aligned with an eigenvector of A.

Proof Using Sylvester’s determinant theorem, we have that

|A + xxT| = |A||I + A−1xxT| = |A|(1 + xTA−1x).
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From the spectral theorem, there exists an orthonormal matrix U, the columns of which
are the eigenvectors of A, such that A = UDUT with D being a diagonal matrix with the
positive eigenvalues of A on the diagonal. Thus,

max
‖x‖2≤1

xTA−1x = max
‖x‖2≤1

xTUD−1UTx = max
‖y‖2≤1

yTD−1y,

since U is a bijection from {x, ‖x‖2 ≤ 1} to itself.

As there are no multiplicities, it is easy to see that the quadratic mapping y 7→ yTD−1y
is maximized (under the constraint ‖y‖2 ≤ 1) by a canonical vector eI corresponding to
the lowest diagonal entry I of D. Thus the maximum of x 7→ xTA−1x is reached for UeI ,
which is the eigenvector of A corresponding to its lowest eigenvalue.

Lemma 22 Let Λ , diag(λ1, . . . , λN ) be any diagonal matrix with strictly positive entries.
For any vectors (xs)1≤s<t such that ‖xs‖2 ≤ 1 for all 1 ≤ s < t, we have that the determinant
|Vt| of Vt , Λ +

∑t−1
s=1 xsx

T
s is maximized when all xs are aligned with the axes.

Proof Let us write d(x1, . . . ,xt−1) , |Vt| the determinant of Vt. We want to characterize

max
x1,...,xt−1:‖xs‖2≤1,∀1≤s<t

d (x1, . . . ,xt−1).

For any 1 ≤ i < t, let us define

V−i , Λ +
t−1∑
s=1
s 6=i

xsx
T
s .

We have that Vt = V−i+xix
T
i . Consider the case with only simple eigenvalue multiplicities.

In this case, Lemma 21 implies that xi 7→ d(x1, . . . ,xi, . . . ,xt−1) is maximized when xi is
aligned with an eigenvector of V−i. Thus all xs, for 1 ≤ s < t, are aligned with an eigen-
vector of V−i and therefore also with an eigenvector of Vt. Consequently, the eigenvectors
of
∑t−1

s=1 xsx
T
s are also aligned with Vt. Since Λ = Vt −

∑t−1
s=1 xsx

T
s and Λ is diagonal, we

conclude that Vt is diagonal and all xs are aligned with the canonical axes.

Now in the case of eigenvalue multiplicities, the maximum of |Vt| may be reached by
several sets of vectors {(xms )1≤s<t}m but for some m?, the set (xm

?

s )1≤s<t will be aligned
with the axes. In order to see that, consider a perturbed matrix Vε

−i by a random perturba-
tion of amplitude at most ε, i.e. such that Vε

−i → V−i when ε→ 0. Since the perturbation
is random, then the probability that Λε, as well as all other Vε

−i possess an eigenvalue of
multiplicity bigger than 1 is zero. Since the mapping ε 7→ Vε

−i is continuous, we deduce
that any adherent point xi of the sequence (xεi )ε (there exists at least one since the sequence
is bounded in `2-norm) is aligned with the limit V−i and we apply the previous reasoning.
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Lemma 23 For any t, let Vt ,
∑t−1

s=1 xsx
T
s + Λ. Then,

log
|Vt|
|Λ|
≤ max

N∑
i=1

log

(
1 +

ti
λi

)
,

where the maximum is taken over all possible positive real numbers {t1, . . . , tN}, such that∑N
i=1 ti = t− 1.

Proof We want to bound the determinant |Vt| under the coordinate constraints ‖xs‖2 ≤ 1.
Let

M(x1, . . . ,xt−1) ,

∣∣∣∣∣Λ +

t−1∑
s=1

xsx
T
s

∣∣∣∣∣.
From Lemma 22, we deduce that the maximum of M is reached when all xt are aligned
with the axes,

M = max
x1,...,xt−1;xs∈{e1,...,eN}

∣∣∣∣∣Λ +

t−1∑
s=1

xsx
T
s

∣∣∣∣∣
= max

t1,...,tN positive integers,
∑N

i=1 ti=t−1
|diag (λi + ti)|

≤ max
t1,...,tN positive reals,

∑N
i=1 ti=t−1

N∏
i=1

(λi + ti),

from which we obtain the result.

Lemma 24 Let d be the effective dimension and t ≤ T + 1. Then,

log
|Vt|
|Λ|
≤ d log

(
1 +

T

Kλ

)
·

Proof Using Lemma 23 and Definition 1 we have

log
|Vt|
|Λ|
≤ max

N∑
i=1

log
(

1 +
ti
λi

)

=
max

∑N
i=1 log

(
1 + ti

λi

)
log(1 + T/(Kλ))

log

(
1 +

T

Kλ

)

≤


max

∑N
i=1 log

(
1 + ti

λi

)
log(1 + T/(Kλ))

 log

(
1 +

T

Kλ

)

= d log

(
1 +

T

Kλ

)
·
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6.4 Regret bound of SpectralUCB

The analysis of SpectralUCB has two main ingredients. The first one is the derivation of the
confidence ellipsoid for α̂, which is a straightforward update of the analysis of OFUL (Abbasi-
Yadkori et al., 2011) using the self-normalized martingale inequality from Section 6.2. The
second part is crucial for showing that the final regret bound scales only with the effective
dimension d and not with the ambient dimension D. We achieve this by considering the
geometrical properties of the determinant that hold in our setting (Section 6.3).
Proof [Theorem 8] Let x? , arg maxxv

xT
vα and let RT (t) denote the instantaneous regret

at round t. With probability at least 1− δ, for all t:

RT (t) = xT
?α− xT

atα

≤ xT
atα̂t + c‖xat‖V−1

t
− xT

atα (2)

≤ xT
atα̂t + c‖xat‖V−1

t
− xT

atα̂t + c‖xat‖V−1
t

(3)

= 2c‖xat‖V−1
t
,

where (2) is by algorithm design and reflects the optimistic principle of SpectralUCB.
Specifically, xTα̂t + c‖x?‖V−1

t
≤ xT

atα̂t + c‖xat‖V−1
t
, from which

xT
?α ≤ xT

?α̂t + c‖x?‖V−1
t
≤ xT

atα̂t + c‖xat‖V−1
t
.

In (3), we apply Lemma 20, xT
atα̂t ≤ xT

atα + c‖xat‖V−1
t
. Now, by Lemmas 19 and 24,

RT =
T∑
t=1

RT (t) ≤
T∑
t=1

min
(

2, 2c‖xat‖V−1
t

)
≤ (2 + 2c)

T∑
t=1

min
(

1, ‖xat‖V−1
t

)

≤ (2 + 2c)

√√√√T
T∑
t=1

min
(

1, ‖xat‖2V−1
t

)
≤ (2 + 2c)

√
2T log

|VT+1|
|Λ|

≤ (2 + 2c)

√
2dT log

(
1 +

T

Kλ

)
·

By plugging c, we get that the theorem holds with probability at least 1− δ.

Remark 25 Notice that if we set Λ , I in Algorithm 1, we recover the LinUCB algorithm.
Since log(|VT+1|/|Λ|)is upperbounded by D log T (Abbasi-Yadkori et al., 2011), we obtain
Õ(D

√
T ) upper bound of regret of LinUCB as a corollary of Theorem 8. The known Õ(

√
DT )

upper bound of Chu et al. (2011) applies to a related but different SupLinUCB, which is not
efficient.

6.5 Regret bound of SpectralTS

The regret bound of SpectralTS is based on the proof technique of Agrawal and Goyal
(2013b). Before applying the technique, we first give an intuitive explanation. Each round
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an arm is played, our algorithm improves the confidence about our actual estimate of α via
an update of Vt and thus the update of the confidence ellipsoid. However, when we play
a suboptimal arm, the regret we obtain can be much higher than the improvement of our
knowledge. To overcome this difficulty, the arms are divided into two groups of saturated
and unsaturated arms, based on whether the standard deviation for an arm is smaller than
the standard deviation of the optimal arm (Definition 27) or not. Consequently, the optimal
arm is in the group of unsaturated arms. The idea is to bound the regret of playing an
unsaturated arm in terms of standard deviation and to show that the probability that the
saturated arm is played is small enough. This way, we overcome the difficulty of high regret
and small knowledge obtained by playing an arm.

Definition 26 We define Eα̂(t) as the event when for all i,

|xT
i α̂t − xT

iα| ≤ `‖xi‖V−1
t
,

where

` , R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C,

and Eα̃(t) as the event when for all i,

|xT
i α̃t − xT

i α̂t| ≤ v‖xi‖V−1
t

√
4 ln(TN),

where

v , R

√
3d log

(
1

δ
+

T

δλK

)
+ C.

Definition 27 Let ∆i , xT
a?α − xT

iα. We say that an arm i is saturated at round t if
∆i > g‖xi‖V−1

t
and unsaturated otherwise, including the optimal arm a?. Let C(t) denote

the set of saturated arms at round t.

Definition 28 We define the filtration Ft−1 as the union of the history until round t − 1
and features,

Ft−1 , {Ht−1} ∪ {xi, i = 1, . . . , N}.
By definition, F1 ⊆ F2 ⊆ · · · ⊆ FT−1.

Lemma 29 For all t, 0 < δ < 1, P(Eα̂(t)) ≥ 1− δ/T 2, and for all possible filtrations Ft−1,

P
(
Eα̃(t) | Ft−1

)
≥ 1− 1

T 2
·

Proof Bounding the probability of event Eα̂(t): Using Lemma 20, where C is such
that ‖α‖Λ ≤ C, for all i with probability at least 1− δ′ we have that

|xT
i (α̂t −α)| ≤ ‖xi‖V−1

t

(
R

√
2 log

(
|Vt|1/2
δ′|Λ|1/2

)
+ C

)

= ‖xi‖V−1
t

(
R

√
log
|Vt|
|Λ|

+ 2 log

(
1

δ′

)
+ C

)
.
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Therefore, using Lemma 24 and substituting δ′ = δ/T 2, we get that with probability at
least 1− δ/T 2, for all i,

|xT
i (α̂t −α)| ≤ ‖xi‖V−1

t

(
R

√
d log

(
1 +

T

Kλ

)
+ d log

(
T 2

δ

)
+ C

)

= ‖xi‖V−1
t

(
R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C

)
= `‖xi‖V−1

t
.

Bounding the probability of event Eα̃(t): The probability of each individual term
|xT
i (α̃t − α̂t)| <

√
4 log(TN) can be bounded using Lemma 14 to get

P
(
|xT
i (α̃t − α̂t)| ≥ v‖xi‖V−1

t

√
4 log(TN)

)
≤ e−2 log TN√

π4 log(TN)
≤ 1

T 2N
·

We complete the proof by taking a union bound over all N vectors xi. Notice that we
took a different approach than Agrawal and Goyal (2013b) to avoid the dependence on the
ambient dimension D.

Lemma 30 For any filtration Ft−1 such that Eα̂(t) is true,

P
(
xT
a?α̃t > xT

a?α | Ft−1

)
≥ 1

4e
√
π
·

Proof Since xT
a?α̃t is a Gaussian random variable with the mean xT

a?α̂t and the standard
deviation v‖xa?‖V−1

t
, we can use the anti-concentration inequality from Lemma 14,

P
(
xT
a?α̃t ≥ xT

a?α | Ft−1

)
= P

(
xT
a?α̃t − xT

a?α̂t

v‖xa?‖V−1
t

≥
xT
a?α− xT

a?α̂t

v‖xa?‖V−1
t

| Ft−1

)
≥ 1

4
√
πZt

e−Z
2
t ,

where

|Zt| ,

∣∣∣∣∣xT
a?α− xT

a?α̂t

v‖xa?‖V−1
t

∣∣∣∣∣.
Since we consider filtration Ft−1 such that Eα̂(t) is true, we can upperbound the numerator
to get

|Zt| ≤
`‖xa?‖V−1

t

v‖xa?‖V−1
t

=
`

v
≤ 1.

Finally,

P
(
xT
a?α̃t > xT

a?α | Ft−1

)
≥ 1

4e
√
π
·
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Lemma 31 For any filtration Ft−1 such that Eα̂(t) is true,

P (at 6∈ C(t) | Ft−1) ≥ 1

4e
√
π
− 1

T 2
·

Proof The algorithm chooses the arm with the highest value of xT
i α̃t to be played at round t.

Therefore, if xT
a?α̃t is greater than xT

j α̃t for all saturated arms, i.e., xT
a?α̃t > xT

j α̃t, ∀j ∈ C(t),
then one of the unsaturated arms (that include the optimal arm and other suboptimal
unsaturated arms) must be played. Therefore,

P (at 6∈ C(t) | Ft−1) ≥ P
(
xT
a?α̃t > xT

j α̃t, ∀j ∈ C(t) | Ft−1

)
.

By definition, for all saturated arms j ∈ C(t), ∆j > g‖xj‖V−1
t

. Now if both of the events

Eα̂(t) and Eα̃(t) are true, then, by definition of these events, for all j ∈ C(t), xT
j α̃t ≤

xT
jαt + g‖xj‖V−1

t
. Therefore, given filtration Ft−1, such that Eα̂(t) is true, either Eα̃(t) is

false, otherwise for all j ∈ C(t),

xT
j α̃t ≤ xT

jα + g‖xj‖V−1
t
≤ xT

a?α.

Hence, for any Ft−1 such that Eα̂(t) is true,

P
(
xT
a?α̃t > xT

j α̃t, ∀j ∈ C(t) | Ft−1

)
≥ P

(
xT
a?α̃t > xT

a?α | Ft−1

)
− P

(
Eα̂(t) | Ft−1

)
≥ 1

4e
√
π
− 1

T 2
,

where in the last inequality we used Lemma 29 and Lemma 30.

Lemma 32 For any filtration Ft−1 such that Eα̂(t) is true,

E [∆at | Ft−1] ≤ 11g

p
E
[
‖xat‖V−1

t
| Ft−1

]
+

1

T 2
·

Proof Let at denote the unsaturated arm with the smallest norm ‖xi‖V−1
t

,

at , arg min
i 6∈C(t)

‖xi‖V−1
t
.

Notice that since C(t) and ‖xi‖V−1
t

for all i are fixed on fixing Ft−1, so is at. Now, using

Lemma 31, for any Ft−1 such that Eα̂(t) is true,

E
[
‖xat‖V−1

t
| Ft−1

]
≥ E

[
‖xat‖V−1

t
| Ft−1, at 6∈ C(t)

]
P (at 6∈ C(t) | Ft−1)

≥ ‖xat‖V−1
t

(
1

4e
√
π
− 1

T 2

)
·
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Now, if events Eα̂(t) and Eα̃(t) are true, then for all i, by definition, xT
i α̃t ≤ xT

iα+g‖xi‖V−1
t

.

Using this observation along with xT
atα̃t ≥ xT

i α̃t for all i,

∆at = ∆at + (xT
atα− xT

atα)

≤∆at + (xT
atα̃t − xT

atα̃t) + g‖xat‖V−1
t

+ g‖xat‖V−1
t

≤∆at + g‖xat‖V−1
t

+ g‖xat‖V−1
t

≤ g‖xat‖V−1
t

+ g‖xat‖V−1
t

+ g‖xat‖V−1
t
.

Therefore, for any Ft−1 such that Eα̂(t) is true, either ∆at ≤ 2g‖xat‖V−1
t

+ g‖xat‖V−1
t

, or

Eα̃(t) is false. We can deduce that

E [∆at | Ft−1] ≤ E
[
2g‖xat‖V−1

t
+ g‖xat‖V−1

t
| Ft−1

]
+ P

(
Eα̃(t)

)
≤ 2g

p− 1
T 2

E
[
‖xat‖V−1

t
| Ft−1

]
+ gE

[
‖xat‖V−1

t
| Ft−1

]
+

1

T 2

≤ 11g

p
E
[
‖xat‖V−1

t
| Ft−1

]
+

1

T 2
,

where in the last inequality we used that 1/(p − 1/T 2) ≤ 5/p, which holds trivially for
T ≤ 4. For T ≥ 5, we know that p = 1/(4e

√
π) and therefore T 2 ≥ 5e

√
π, from which we

get that 1/(p− 1/T 2) ≤ 5/p as well.

Definition 33 We define R′T (t) , RT (t) · I
(
Eα̂(t)

)
.

Definition 34 A sequence of random variables (Yt; t ≥ 0) is called a super-martingale
corresponding to a filtration Ft, if for all t, Yt is Ft-measurable, and for t ≥ 1,

E [Yt − Yt−1 | Ft−1] ≤ 0.

Next, following Agrawal and Goyal (2013b), we establish a super-martingale process that
forms the basis of our proof of the high-probability regret bound.

Definition 35 Let

Xt , R′T (t)− 11g

p
‖xat‖V−1

t
− 1

T 2
and

Yt ,
t∑

w=1

Xw.

Lemma 36 (Yt; t = 0, . . . , T ) is a super-martingale process with respect to filtration Ft.

Proof We need to prove that for all t ∈ {1, . . . , T} and any possible filtration Ft−1,
E[Yt − Yt−1 | Ft−1] ≤ 0, i.e.,

E
[
R′T (t) | Ft−1

]
≤ 11g

p
‖xat‖V−1

t
+

1

T 2
·
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Note that whether Eα̂(t) is true or not, is completely determined by Ft−1. If Ft−1 is such
that Eα̂(t) is not true, then R′T (t) = RT (t) · I

(
Eα̂(t)

)
= 0, and the above inequality holds

trivially. Moreover, for Ft−1 such that Eα̂(t) holds, the inequality follows from Lemma 32.

Note that unlike Agrawal and Goyal (2013b) and Abbasi-Yadkori et al. (2011), we do
not want to require λ ≥ 1. Therefore, we provide the following lemma that features the
dependence of ‖xat‖2V−1

t

on λ.

Lemma 37 For all t,

‖xat‖2V−1
t
≤
(

2 +
2

λ

)
log
(

1 + ‖xat‖2V−1
t

)
.

Proof Note, that ‖xat‖V−1
t
≤ (1/

√
λ)‖xat‖ ≤ (1/

√
λ) and for all 0 ≤ x ≤ 1, we have

x ≤ 2 log(1 + x). (4)

We now consider two cases depending on λ. If λ ≥ 1, we know that 0 ≤ ‖xat‖V−1
t
≤ 1 and

therefore by (4),

‖xat‖2V−1
t
≤ 2 log

(
1 + ‖xat‖2V−1

t

)
.

Similarly, if λ < 1, then 0 ≤ λ‖xat‖2V−1
t

≤ 1 and we get

‖xat‖2V−1
t
≤ 2

λ
log
(

1 + λ‖xat‖2V−1
t

)
≤ 2

λ
log
(

1 + ‖xat‖2V−1
t

)
.

Combining the two, we get that for all λ ≥ 0,

‖xat‖2V−1
t
≤ max

(
2,

2

λ

)
log
(

1 + ‖xat‖2V−1
t

)
≤
(

2 +
2

λ

)
log
(

1 + ‖xat‖2V−1
t

)
.

Proof [Theorem 11] First, notice that Xt is bounded as

|Xt| ≤ 1 +
11g

p
√
λ

+
1

T 2
≤ g

p

(
11√
λ

+ 2

)
·

Thus, we can apply the Azuma-Hoeffding inequality to obtain that with probability at least
1− δ/2,

T∑
t=1

R′T (t) ≤
T∑
t=1

11g

p
‖xat‖V−1

t
+

T∑
t=1

1

T 2
+

√√√√2

(
T∑
t=1

g2

p2

(
11√
λ

+ 2

)2
)

log

(
2

δ

)
·

Since p and g are constants, then with probability 1− δ/2,

T∑
t=1

R′T (t) ≤11g

p

T∑
t=1

‖xat‖V−1
t

+
1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

(
2

δ

)
·
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The last step is to upperbound
∑T

t=1 ‖xat‖V−1
t

. For this purpose, Agrawal and Goyal

(2013b) rely on the analysis of Auer (2002) and the assumption that λ ≥ 1. We provide an
alternative approach using Cauchy-Schwartz inequality, Lemma 15, and Lemma 37 to get

T∑
t=1

‖xat)‖V−1
t
≤

√√√√T
T∑
t=1

‖xat‖2V−1
t

≤

√
T

(
2 +

2

λ

)
log
|VT |
|Λ|

≤

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
·

Finally, we know that Eα̂(t) holds for all t with probability at least 1 − δ/2 and R′T (t) =
RT (t) for all t with probability at least 1− δ/2. Hence, with probability 1− δ,

RT ≤
11g

p

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
+

1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

(
2

δ

)
·

6.6 Regret bound of SpectralEliminator

The probability space induced by the rewards r1, r2, . . . can be decomposed as a product of
independent probability spaces induces by rewards in each phase [tj , tj+1−1]. Denote by F ′j
the σ-algebra generated by the rewards r1, . . . , rtj+1−1, i.e., received before and during the

phase j. We have the following two lemmas for any phase j. Let Vj , Λ +
∑tj−1

s=tj−1
xasx

T
as

and let α̂j stand for α̂tj for simplicity.

Lemma 38 For any fixed x ∈ RN , any δ > 0, and β(δ) , R
√

2 log(2/δ) + ‖α‖Λ, we have
for all j,

P
(
|xT(α̂j −α)| ≤ ‖x‖

V
−1
j
β(δ)

)
≥ 1− δ.

Proof Defining ξj ,
∑tj−1

s=tj−1
xasεs, we have

|xT(α̂j −α)| = |xT(−V
−1
j Λα + V

−1
j ξj)| ≤ |xTV

−1
j Λα|+ |xTV

−1
j ξj |. (5)

The first term in the right hand side of (5) is bounded as

|xTV
−1
j Λα| ≤ ‖xTV

−1
j Λ1/2‖‖Λ1/2α‖

= ‖α‖Λ
√

xTV
−1
j ΛV

−1
j x

≤ ‖α‖Λ
√

xTV
−1
j x = ‖α‖Λ‖x‖V−1

j
.

Now, consider the second term in the right hand side of (5). We have

∣∣∣xTV
−1
j ξj

∣∣∣ =

∣∣∣∣∣∣
tj−1∑
s=tj−1

(xTV
−1
j xas)εs

∣∣∣∣∣∣ .
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Let us notice that the context vectors (xas) selected by the algorithm during phase j − 1
only depend on their width ‖x‖V−1

s
, which does not depend on the rewards received during

the phase j − 1. Thus, given F ′j−2, the values xTV
−1
j xas are deterministic for all rounds

tj−1 ≤ s < tj . Consequently, we can use a variant of Hoeffding bound for scaled sub-

Gaussians (Wainwright, 2015), in particular for xTV
−1
j ξj =

∑tj−1
s=tj−1

xTV
−1
j xasεs, to get

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R
√√√√√2 log

(
2

δ

) tj−1∑
s=tj−1

(
xTV

−1
j xas

)2

 ≥ 1− δ,

where εs is R-sub-Gaussian and xTV
−1
j xas is deterministic given F ′j−2. We further deduce

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R
√√√√√2 log

(
2

δ

) tj−1∑
s=tj−1

(
xTV

−1
j xasx

T
asV

−1
j x

) ≥ 1− δ

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R
√√√√√2 log

(
2

δ

)
xTV

−1
j

 tj−1∑
s=tj−1

xasx
T
as

V
−1
j x

 ≥ 1− δ

P

(∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R√2 log

(
2

δ

)
xTV

−1
j x

)
≥ 1− δ,

since V
−1
j is symmetric and

∑tj−1
s=tj−1

xsx
T
s ≺ Vj (Lemma 16). We conclude that

P

(∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R‖x‖
V
−1
j

√
2 log

(
2

δ

))
≥ 1− δ.

Lemma 39 For all x ∈ Aj, j > 1, we have that

min
(

1, ‖x‖
V
−1
j

)
≤ 1

tj − tj−1

tj−1∑
s=tj−1

min
(

1, ‖xas‖V−1
s

)
.
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Proof Using Lemma 16, we have that

(tj − tj−1) min
(

1, ‖x‖
V
−1
j

)
≤ max

x∈Aj

tj−1∑
s=tj−1

min
(

1, ‖x‖V−1
s

)

≤ max
x∈Aj−1

tj−1∑
s=tj−1

min
(

1, ‖x‖V−1
s

)

≤
tj−1∑
s=tj−1

min

(
1, max

x∈Aj−1

‖x‖V−1
s

)

=

tj−1∑
s=tj−1

min
(

1, ‖xas‖V−1
s

)
,

since the algorithm selects (during phase j − 1) the arms with the largest width.

We now are ready to upperbound the cumulative regret of SpectralEliminator.

Proof [Theorem 13] Let J , blog2 T c+ 1 and tj , 2j−1. We have that

RT =
T∑
t=1

xT
a?α− xT

atα ≤ 2 +
J∑
j=2

tj+1−1∑
t=tj

min(2, xT
a?α− xT

atα)

≤ 2 +
J∑
j=2

tj+1−1∑
t=tj

min
(

2, xT
a?α̂j − xT

atα̂j +
(
‖x?‖V−1

j
+ ‖xt‖V−1

j

)
β(δ′)

)
,

in an event ω of probability 1−δ, where we used Lemma 38 and the union bound in the last
inequality for δ′ , δ/(KJ). By definition of the action subset Aj at phase j > 1, under ω,
we have that

xT
a?α̂j − xatα̂j ≤

(
‖xa?‖V−1

j
+ ‖xat‖V−1

j

)
β(δ′),

since xa? ∈ Aj for all j ≤ J . By previous two lemmas and the Cauchy-Schwarz inequality,
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RT ≤ 2 +

J∑
j=2

tj+1−1∑
t=tj

min
(

2, 4β(δ′)‖xat‖V−1
j

)

≤ 2 + (4β(δ′) + 2)
J∑
j=2

tj+1−1∑
t=tj

min
(

1, ‖xat‖V−1
t

)

≤ 2 + (4β(δ′) + 2)
J∑
j=2

tj+1 − tj
tj − tj−1

tj−1∑
t=tj−1

min
(

1, ‖xat‖V−1
t

)

≤ 2 + (8β(δ′) + 4)
J∑
j=2

tj−1∑
t=tj−1

min
(

1, ‖xat‖V−1
t

)

≤ 2 + (8β(δ′) + 4)

√√√√√T

J∑
j=2

tj−1∑
t=tj−1

min
(

1, ‖xat‖2V−1
t

)

≤ 2 + (8β(δ′) + 4)

√√√√T
J∑
j=2

2 log
|Vj |
|Λ|

≤ 2 + (8β(δ′) + 4)

√
2dT log2(T ) log

(
1 +

T

Kλ

)
·

Finally, using J = 1 + blog2 T c, δ′ = δ/(KJ), and β(δ′) ≤ β(δ/(K(1 + log2 T ))), we obtain
the result of Theorem 13.

Remark 40 If we set Λ = I in Algorithm 3 as in Remark 25, we get a new algorithm,
LinearEliminator, which is a competitor to SupLinRel (Auer, 2002) and SupLinUCB (Chu
et al., 2011) and as a corollary to Theorem 13 also enjoys an Õ(

√
DT ) upper bound on

the cumulative regret. Compared to SupLinRel and SupLinUCB, LinearEliminator and
its analysis are significantly simpler and more elegant. Furthermore, LinearEliminator
is more data-adaptive since it uses self-normalized concentration bounds rather than data-
agnostic confidence intervals of the form 2−u for u ∈ N0, which are used in SupLinRel and
SupLinUCB. Therefore, LinearEliminator narrows the gap between the practical algorithms
and the algorithms with the optimal cumulative regret of Õ(

√
DT ).

7. Experiments

In this section, we evaluate the empirical regret as well the empirical computational com-
plexity of SpectralTS, SpectralUCB, LinearTS, and LinUCB on artificial datasets with
different types of underlying graph structure as well as on MovieLens and Flixster datasets.
We do not include SpectralEliminator in our experiments due to its impracticality for
small time horizons.2 We study the sensitivity of the algorithms to the important parame-

2since the algorithm updates confidence ellipsoid only at the end of the phase
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Figure 4: The dependence of cumulative regret on confidence and regularization parameters.

ters and comment on practical issues. Moreover, we study the effects of different speed-up
techniques. In particular, we show the effect of the reduced basis on both the computa-
tional complexity and performance of the algorithms and the effect of Sherman-Morrison
(the computation of matrix inversions) together with lazy updates (the computation of
UCBs) on the running time. In all experiments, we set both the confidence parameter δ,
use the uniformly distributed noise satisfying R ≤ 0.05, and average over 5 runs. We per-
formed but do not include the results for different values of δ and R since the results of the
experiments are not sensitive to the values of these parameters and follow the same trend.

7.1 Artificial datasets

To demonstrate the benefit of spectral algorithms, we perform exhaustive experiments on
artificial datasets with various underlying graphs. More precisely, we focus on problems
where underlying graphs form a lattice or they are sampled either from the Barabási-Albert
(BA) or Erdős-Rényi (ER) graph model. For all experiments on artificial datasets, we
set the number of arms N to 500 and the time horizon T to 100. We sample a random
vector α such that reward function f , Qα is smooth on the graph. We do it by settings
only the first 20 elements of α to be nonzero. For a more useful empirical comparison, we
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set the regularization parameter λ and confidence ellipsoid parameters v (TS) and c (UCB)
respectively to the best empirical value over a grid search. We run the algorithms with
several different values and select the values which minimized average cumulative regret after
a few runs of algorithms. Figure 4 shows the dependence of cumulative regret on parameters
with strong indication that SpectralTS and SpectralUCB can leverage smoothness of the
reward function and outperform LinearTS and LinUCB.

7.1.1 Erdős-Rényi graphs

For this experiment, we construct the underlying graph as an Erdős-Rényi graph on 500
nodes with parameter 0.005 (the probability of edge appearance). The values of the pa-
rameters used for the experiment are listed in Table 1, which are the values where the
algorithms perform the best.

Figure 5a shows the cumulative regrets of the algorithms with selected parameters. The
regret of spectral algorithms tends to be sublinear while regret of linear algorithms appears
to be linear for small T . Moreover, spectral algorithms reach much smaller empirical regrets
than their linear counterparts.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.1 v = 0.1 λ = 1 c = 1 λ = 1 v = 0.1 λ = 0.1 c = 0.1

Table 1: The best-performing empirical parameters for the Erdős-Rényi graph model.

7.1.2 Lattice graphs

For lattices, we arrange 500 nodes to form a lattice and connect every pair of nodes by
an edge if they are neighbors in the lattice. As for the other experiments, we empirically
select the best set of parameters (Table 2) and use them to plot the cumulative regret of
algorithms (Figure 5b). Even in this case, spectral algorithms perform well compared to
the linear ones.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.01 v = 0.1 λ = 0.1 c = 1 λ = 1 v = 0.1 λ = 0.1 c = 0.1

Table 2: The best-performing empirical parameters for lattices.

7.1.3 Barabási-Albert graphs

We construct the BA graph for our experiments in the following way. We start with k nodes
(k = 3 in our case) without any connections between them. Then, we sequentially add one
node at a time. Each new node is connected to m ≤ k previously added nodes and we
sampled the connections according to the degrees of existing nodes: the higher the degree,
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Figure 5: Cumulative regret comparison of algorithms for different underlying graphs.
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Figure 6: Cumulative regret of SpectralTS and SpectralUCB for reward functions with
different smoothness.
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the bigger the chance of the connection. Table 3 summarizes the best empirical values of
the parameters for the algorithms and

Figure 5c shows the performance of algorithms for the parameters in Table 3. Here
we can clearly see that the spectral algorithms outperform the linear ones after just a few
rounds. Note that the empirically optimal parameters can sometimes be too aggressive and
force an algorithm to exploit more than it should. This is likely the case of SpectralUCB in
Figure 5c since the curve of the cumulative regret of SpectralUCB appears to be linear for
the time horizon used in our experiment. Therefore, we include Figure 5d, where we plot
the cumulative regret of SpectralUCB for an empirically suboptimal value of c = 1 (close
to the best theoretical value of c) to demonstrate the sublinear trend of the regret.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.001 v = 0.1 λ = 0.001 c = 0.01 λ = 0.01 v = 0.01 λ = 0.1 c = 0.1

Table 3: The best-performing empirical parameters for the Barabási-Albert graph model.

7.2 The effect of smoothness on the regret

In this section, we study the effect of the smoothness of the reward function on the perfor-
mance of spectral algorithms. We use a BA graph on 500 nodes for the experiment with
time horizon 100 and the parameters of the algorithms are set according to table 3. The
value of effective dimension is close to 8. We controll the smoothness by explicitly setting
the number of eigenvectors used for constructing the reward function by letting 5, 25, 100,
or 500 elements of α to be nonzero. Note that the value of the effective dimension is the
same for every reward function we used, since the definition of the effective dimension is
independent of the reward function. Table 4 shows how the smoothness changes with the
number of nonzero elements of α and Figures 6a and 6b confirm that the spectral algo-
rithms are able to leverage spectral properties of underlying graph better when the reward
function is smoother. This is also supported by our analysis, since in our experiment, the
smoothness of the reward function decreases with a smaller number of eigenvectors and the
regret bounds of the spectral algorithms are decreasing with smoothness as well.

Number of nonzero components 5 25 100 500

Smoothness of the rewards (αTΛα) 1.56 11.16 58.12 216.89

Regret of SpectralTS 7.99 32.80 94.10 123.79

Regret of SpectralUCB 3.05 22.84 108.19 130.54

Table 4: The effect of smoothness on the cumulative regret for T = 100.
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Figure 7: The impact of lazy updates and Sherman-Morrison formula on running time.

7.3 Computational complexity improvements

In general, the computation of N UCBs is computationally more expensive than sampling
in TS. In Section 5.4, we discuss several possibilities to speed up algorithms. The impact
of lazy updates for computing UCBs and effect of Sherman-Morrison formula on matrix
inversion is demonstrated in Figure 7. The plot clearly shows that the lazy updates can
improve the computation of UCBs to the point where the running time of SpectralUCB is
comparable and in some cases even better than the running time of SpectralTS.

Another possible computational-time improvement, discussed in Section 5.4, can be made
by extracting only the first L � N eigenvectors of the graph Laplacian. First, the com-
putational complexity of such operation is O(Lm logm) where m is the number of edges.
Second, the least-squares problem that we have to do in each round of the algorithm is only
L-dimensional. In Figure 8 (right), we plot the cumulative regret and the total running
time in seconds (log scale) of SpectralUCB for a single user from the MovieLens dataset.
We vary L as 20, 200, and 2000 which corresponds to about 1%, 10%, and 100% of basis
functions (N = 2019). The total running time also includes the computational savings from
lazy updates and iterative matrix inversion. We see that with 10% of the eigenvectors, we
achieve a similar performance as for the full set in the fraction of the running time.

7.4 MovieLens experiments

In this experiment, we take user preferences and the similarity graph over movies from
the MovieLens dataset (Lam and Herlocker, 2012), a dataset of 6k users who rated one
million movies. First, we extract a subset of 400 users and 618 movies with at least 500
ratings. Then we divide the dataset into three parts. The first is used to build our model
of users, the rating that user i assigns to movie j. We factor the user-item matrix using
low-rank matrix factorization (Keshavan et al., 2009) as M ≈ UV′, a standard approach
to collaborative filtering. The rating that the user i assigns to movie j is estimated as
r̂i,j = 〈ui,vj〉, where ui is the i-th row of U and vj is the j-th row of V. The rating r̂i,j is
the payoff of pulling arm j when recommending to user i.
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Figure 8: Cumulative regret and running time of SpectralUCB with reduced basis.

The second part of the dataset is used for parameter estimation. Similarly as for the
first part, we complete ratings using low-rank factorization. The reason for using a different
part of the dataset is to avoid dependencies.

The last part of the dataset is used to build our similarity graph over movies. We factor
the dataset in the same way as the first two parts of the dataset. The graph contains an
edge between movies i and i′ if the movie i′ is among 5 nearest neighbors of the movie i
in the latent space of items V. The weights on all edges are set to one. Notice that if
two items are close in the item space, then their expected rating is expected to be similar.
However, the opposite is not true. If two items have a similar expected rating, they do not
have to be close in the item space. In other words, we take advantage of ratings but do not
hardwire the two similarly-rated items to be similar.

Table 5 summarizes the best parameters learned on training part of the dataset. We
use the parameters to run the algorithms on test part. Figure 9a shows 20 random users
sampled from the testing part of the MovieLens dataset. We evaluate the regret of all four
algorithms for T = 500 and compared the running time. We make few observations. First,
spectral algorithms are consistently outperforming linear algorithms. Second, as we mention
in Section 5.4, we use lazy updates for UCB algorithms which can improve the running
time significantly. We see that in our experiment, the running time of UCB algorithms is
better than the running time of TS algorithms even though in general, TS algorithms are
computationally more efficient than UCB algorithms without lazy updates.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.001 v = 0.1 λ = 0.1 c = 1 λ = 100 v = 1 λ = 0.001 c = 0.001

Table 5: The best-performing empirical parameters for Movielens.
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Figure 9: Comparison of spectral and linear bandit algorithms for a subset of users.

7.5 Flixster experiments

We also perform experiments on users preferences from the movie recommendation website
Flixster. The social network of the users was crawled by Jamali and Ester (2010) and
then clustered by Graclus (2013) to obtain a strongly connected subgraph. Similarly as
for Movielens, we extract a subset of users and movies, where each movie has at least 500
ratings. This results in a dataset of 972 movies and 1070 users. As with MovieLens, we
complete the missing ratings by a low-rank matrix factorization and used it to construct a
5-NN similarity graph. For Figure 9b, we sample 20 random users and evaluate the regret
of all four algorithms for T = 50. Similarly as for MovieLens, we set parameter λ to 0.01
while setting the parameter v of SpectralTS to be ten times smaller than the theoretical
value.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.01 v = 0.1 λ = 0.01 c = 0.11 λ = 1 v = 0.1 λ = 1 c = 1

Table 6: The best-performing empirical parameters for Flixster.

7.6 Additional observations for improving the empirical performance

We give additional indications on how to improve the performance of the algorithms. This
can be useful for the deployment of spectral bandits in practice.

• Adjusting the number of edges in the graph. Typically, the real-world datasets
do not come with a graph structure. Therefore, we construct a nearest-neighbor graph
which connects only the most similar actions. By reducing the number of neighbors,
we are increasing the effective dimension (worsening the regret bound) and decreasing
smoothness of the function (improving the regret bound). Finding a good trade-off

38



Spectral bandits

Time

C
um

ul
at

iv
e 

re
gr

et

 

 

0 100 200 300 400 500
0

20

40

60

80

100

120
SpectralTS
SpectralUCB
LinearTS
LinUCB

(a) Movielens dataset, cumulative regret for
one random user

Time

C
um

ul
at

iv
e 

re
gr

et

 

 

0 20 40 60 80 100
0

5

10

15

20

25
SpectralTS
SpectralUCB
LinearTS
LinUCB

(b) Flixster dataset, cumulative regret for one
random user

Figure 10: Comparison of spectral and linear bandit algorithms.

and adjusting the number of the edges can improve the performance of the algorithms
significantly.

• Scaling the confidence ellipsoid, i.e., parameter c in SpectralUCB and parameter v
in SpectralTS . Typically, the algorithms are too conservative and the bounds are
too loose in order to include the worst-case case. Therefore, reducing the size of the
confidence ellipsoid can sometimes improve the empirical performance of the algorithm
at the price that some bounds might not hold anymore. In our experiments, we used
the values for which the algorithms had good empirical performance.

• The magnitude of regularization parameter λ. By setting λ to a large value, all
regularized eigenvalues become similar and therefore the algorithms take the graph
structure into account less. On the other hand, if the regularization parameter λ is
small, the algorithms depend on the graph structure more. Therefore, in order to
leverage the graphs’ structure, we have to find a good compromise while setting λ.
In our experiments, we found that setting λ well was important and we tried several
values of λ to pick the value with the best empirical performance.

• Scaling the graph weights. By scaling all the weights of the graph by some constant
we scale the gap between the eigenvalues and therefore change the value of the effective
dimension. Moreover, by scaling the weights we are also changing the smoothness of
the reward function. Therefore, by simply scaling the weights we can make the graphs
more useful for spectral bandits.

8. Conclusion

We presented spectral bandits inspired mostly by the applications in recommender systems
and targeted advertisement in social networks. In this setting, we are asked to repeatedly
maximize an unknown graph function, assumed to be smooth on a given similarity graph.

39



Kocák, Munos, Kveton, Agrawal, Valko

While standard linear bandits can be applied but their regret scales with the ambient
dimension D, either linearly or as a square root, which can be very large.

Therefore, we introduced three algorithms, SpectralUCB, SpectralTS, and theoretically
interesting SpectralEliminator. For all three algorithms, the regret bound only scales with
the effective dimension d which is typically much smaller than D for real-world graphs. We
also performed experiments and showed that spectral algorithms are able to leverage the
structure of the problem when the reward function is smooth on the graph much better
than their linear counterparts.

As two side results of independent interest, we provide the regret analysis of LinUCB with
the upper bound of Õ(D

√
T ) and define LinearEliminator for which we prove minimax-

optimal regret bound of Õ(
√
DT ). With adaptive confidence bounds and simpler analysis,

LinearEliminator becomes a state-of-the-art algorithm among the ones with Õ(
√
DT )

regret.
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Nathan Korda, Balázs Szörényi, and Shuai Li. Distributed clustering of linear bandits in
peer to peer networks. In International Conference on Machine Learning, 2016.

Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing. Computer Vision
and Image Understanding, 115(12):1638–1646, 2011.

Shyong Lam and Jon Herlocker. http://www.grouplens.org/node/12. MovieLens 1M
dataset, 2012.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach
to personalized news article recommendation. International World Wide Web Conference,
2010.

Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In
Conference on Research and Development in Information Retrieval, 2016.

Yifei Ma, Tzu-Kuo Huang, and Jeff Schneider. Active search and bandits on graphs using
sigma-optimality. In Uncertainty in Artificial Intelligence, 2015.

Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-observations.
In Neural Information Processing Systems, 2011.

Benedict C. May, Nathaniel Korda, Anthony Lee, and David S. Leslie. Optimistic Bayesian
sampling in contextual-bandit problems. Journal of Machine Learning Research, 13(1):
2069–2106, 2012.

Miller McPherson, Lynn Smith-Lovin, and James Cook. Birds of a feather: Homophily in
social networks. Annual Review of Sociology, 27:415–444, 2001.

43

https://arxiv.org/pdf/0901.3150.pdf
https://arxiv.org/pdf/0901.3150.pdf
https://arxiv.org/pdf/0809.4882.pdf
https://arxiv.org/pdf/0809.4882.pdf
https://papers.nips.cc/paper/5462-efficient-learning-by-implicit-exploration-in-bandit-problems-with-side-observations.pdf
https://papers.nips.cc/paper/5462-efficient-learning-by-implicit-exploration-in-bandit-problems-with-side-observations.pdf
https://hal.inria.fr/hal-00981575v2/document
https://hal.inria.fr/hal-00981575v2/document
http://proceedings.mlr.press/v51/kocak16-supp.pdf
https://hal.inria.fr/hal-01320588/document
https://hal.inria.fr/hal-01320588/document
http://proceedings.mlr.press/v48/korda16.pdf
http://proceedings.mlr.press/v48/korda16.pdf
http://www.cs.cmu.edu/{~}./jkoutis/papers/cviu{_}preprint.pdf
http://www.cs.cmu.edu/{~}./jkoutis/papers/cviu{_}preprint.pdf
http://www.grouplens.org/node/12
http://rob.schapire.net/papers/www10.pdf
http://rob.schapire.net/papers/www10.pdf
https://arxiv.org/pdf/1502.03473.pdf
https://pdfs.semanticscholar.org/f72b/71c747d2f487e8c0ade09f4d31e4ad2c0185.pdf
https://pdfs.semanticscholar.org/f72b/71c747d2f487e8c0ade09f4d31e4ad2c0185.pdf
https://papers.nips.cc/paper/4366-from-bandits-to-experts-on-the-value-of-side-observations.pdf
http://www.jmlr.org/papers/volume13/may12a/may12a.pdf
http://www.jmlr.org/papers/volume13/may12a/may12a.pdf
http://aris.ss.uci.edu/{~}lin/52.pdf
http://aris.ss.uci.edu/{~}lin/52.pdf


Kocák, Munos, Kveton, Agrawal, Valko

Sunil K. Narang, Akshay Gadde, and Antonio Ortega. Signal processing techniques for
interpolation in graph structured data. In International Conference on Acoustics, Speech
and Signal Processing, 2013.

Aleksandrs Slivkins. Contextual bandits with similarity information. In Conference on
Learning Theory, 2009.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. International
Conference on Machine Learning, 2010.

William R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25:285–294, 1933.

Michal Valko. Bandits on graphs and structures. habilitation, École normale supérieure de
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