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Motivation

= Planning is thinking before acting.

= Imaginating all future possible trajectories is too costly.

= Instead Monte Carlo Tree Search (MCTS) selects few of them.
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Motivation

Huge success of MCTS in board games (UCT, AlphaZero), with
extensions to richer environments (MuZero)

AlphaZero uses learned policy and
value networks to select which
path to search during planning.




MCTS in AlphaZero mo(a) q(a)

AlphaZero action selection formula: L ‘;. =
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arg max, q(a) + ¢V N - Tn(a

exploitation exploratlon

Handcrafted selection formula

Yet, generalised well to other games than Go.
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MCTS in AlphaZero

AlphaZero action selection formula:
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AlphaZero search procedure

Simulation budget = 4
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Action selection formula:
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AlphaZero search procedure

Simulation budget = 4

Action selection formula:
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AlphaZero search procedure
Action selection formula:

Simulation budget = 4 mo(a)

arg max, q(a) + ¢V N -
n(a)
Visit distribution:
n(a)
> n(a)

Policy network is trained with visit distribution

Ty —> T

The action is sampled according to the visit distribution

action ~ 7 &




Main result: AlphaZero as policy optimization
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Regularized policy optimization:

AlphaZero: 7T (a) —

T = arg maX, (qTﬂ — ANvKL |7y, 7T])
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Main result: AlphaZero as policy optimization
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Regularized policy optimization:

AlphaZero: 7/% (a,) —

T = argmaXgy (qT7r — ANvKL |7, W])
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Regularized policy optimization:
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Main result: AlphaZero as policy optimization
Regularized policy optimization:

T = arg maX, (qTﬂ — ANvKL |7y, 7T])

Gradient ascent step from 7

T @t gy (@' F - AvKL [m, 7))

Corresponding action selection:

*

a* = arg max, [(% (a’* — ANKL [mg, 7]) |
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How to use 7T in AlphaZero

AlphaZero can be broken down into three main components:

- Act: sample 7
- Learn: train towards 7T
- Search: action selection
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The learning becomes regularized

How to use ’ﬁ- in AlphaZerO policy optimization using search

Q-values for its Q-values estimates

AlphaZero can be broken down into three main components:

- Act: sample 7 — sample T
- Learn: train towards 7 — train towards T
- Search: action selection — sample T

Use 7T instead
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How to use 7T in AlphaZero

The learning becomes regularized
policy optimization using search
Q-values for its Q-values estimates

AlphaZero can be broken down into three main components:

- Act: sample 7 — sample T
- Learn: train towards 7 — train towards T
- Search: action selection — sample T

Use 7T instead

N

Search becomes regularized
policy optimization algorithm

on imaginary trajectories b"



Results on Ms Pacman (Atari)




Episode return

Results on Ms Pacman (Atari)
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Ms Pacman, 8 seeds -- 8 GPU, 4096 CPU actors



Ablation study on Ms Pacman (Atari)
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Application: DM Control Suite




Application: DM Control Suite
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Summary

What we showed:

= AlphaZero approximates the solution to a regularized policy
optimization problem.
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> Experimentally, using the exact solution provides improved
performance without requiring additional parameter tuning.
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= AlphaZero approximates the solution to a regularized policy
optimization problem.

> Experimentally, using the exact solution provides improved
performance without requiring additional parameter tuning.

AlphaZero <{mm——) Regularized policy

Improvements optimization
and ideas
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