DeepMind

ICML 2020 Paper 3655

MCTS as Regularized Policy Optimization

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou, Rémi Munos

Motivation

 \rightarrow Planning is thinking before acting.

→ Imaginating all future possible trajectories is too costly.

→ Instead Monte Carlo Tree Search (MCTS) selects few of them.

Motivation

Huge success of MCTS in board games (UCT, AlphaZero), with extensions to richer environments (MuZero)

AlphaZero uses learned **policy** and **value networks** to **select** which path to search during planning.

MCTS in AlphaZero

AlphaZero action selection formula:

$$\underset{\text{exploitation}}{\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{1 + n(a)}}$$

Handcrafted selection formula

Yet, generalised well to other games than Go.

MCTS in AlphaZero

AlphaZero action selection formula:

$$\underset{\text{exploitation}}{\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{1 + n(a)}}$$

Handcrafted selection formula

Yet, generalised well to other games than Go.

Regularized policy optimization

Simulation budget = 4

 $\arg\max_a q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Simulation budget = 4

 $\arg\max_a q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Simulation budget = 4

 $\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Simulation budget = 4

 $\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Simulation budget = 4

 $\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Simulation budget = 4

Action selection formula:

 $\operatorname{arg\,max}_{a} q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$

Visit distribution:

 $\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$

Simulation budget = 4

Action selection formula:

$$\arg\max_a q(a) + c\sqrt{N} \cdot \frac{\pi_{\theta}(a)}{n(a)}$$

Visit distribution:

Policy network is trained with visit distribution

The action is sampled according to the visit distribution

action $\sim \hat{\pi}$

AlphaZero:
$$\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$$

Regularized policy optimization:

$$\bar{\pi} = \arg \max_{\pi} \left(\mathbf{q}^T \pi - \lambda_N \mathrm{KL} \left[\pi_{\theta}, \pi \right] \right)$$

AlphaZero:
$$\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$$

Regularized policy optimization:

$$\bar{\pi} = \arg \max_{\pi} \left(\mathbf{q}^T \pi - \lambda_N \mathrm{KL} \left[\pi_{\theta}, \pi \right] \right)$$

 $\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$

Regularized policy optimization:

$$\bar{\pi} = \arg \max_{\pi} \left(\mathbf{q}^T \pi - \lambda_N \mathrm{KL}\left[\pi_{\theta}, \pi\right] \right)$$

 $\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$

Regularized policy optimization:

$$\bar{\pi} = \arg \max_{\pi} \left(\mathbf{q}^T \pi - \lambda_N \mathrm{KL}\left[\pi_{\theta}, \pi\right] \right)$$

Gradient ascent step from $\hat{\pi}$:

$$\hat{\pi} \leftarrow \hat{\pi} + \eta \cdot \frac{\partial}{\partial n} \left(\mathbf{q}^T \hat{\pi} - \lambda_N \mathrm{KL}\left[\pi_{\theta}, \hat{\pi} \right] \right)$$

 $\hat{\pi}(a) = \frac{n(a)}{\sum_{a'} n(a')}$

Regularized policy optimization:

$$\bar{\pi} = \arg \max_{\pi} \left(\mathbf{q}^T \pi - \lambda_N \mathrm{KL}\left[\pi_{\theta}, \pi\right] \right)$$

Gradient ascent step from $\hat{\pi}$:

$$\hat{\pi} \leftarrow \hat{\pi} + \eta \cdot \frac{\partial}{\partial n} \left(\mathbf{q}^T \hat{\pi} - \lambda_N \mathrm{KL}\left[\pi_{\theta}, \hat{\pi} \right] \right)$$

Corresponding action selection:

$$a^* = \arg \max_a \left[\frac{\partial}{\partial n} \left(\mathbf{q}^T \hat{\pi} - \lambda_N \mathrm{KL} \left[\pi_{\theta}, \hat{\pi} \right] \right) \right]$$

AlphaZero can be broken down into three main components:

AlphaZero can be broken down into three main components:

 \rightarrow

The learning becomes regularized policy optimization using search Q-values for its Q-values estimates

AlphaZero can be broken down into three main components:

\rightarrow	Act:	sample $\hat{\pi}$	$ ightarrow$ sample $ar{\pi}$
)	Learn:	train towards $\hat{\pi}$	$ ightarrow$ train towards $ar{\pi}$

Search: action selection \rightarrow sample $\overline{\pi}$

The learning becomes regularized policy optimization using search Q-values for its Q-values estimates

AlphaZero can be broken down into three main components:

>	Act:	sample $\hat{\pi}$	$ ightarrow$ sample $ar{\pi}$	
\rightarrow	Learn:	train towards $\hat{\pi}$	$ ightarrow$ train towards $ ar{\pi} $	
\rightarrow	Search:	action selection	$ ightarrow$ sample $ar{\pi}$	
Use $ar{\pi}$ instead		$ar{\pi}$ instead	Search becomes regularized policy optimization algorithm	
			on imaginary traject	ories

Results on Ms Pacman (Atari)

Results on Ms Pacman (Atari)

– MuZero – Policy Optimization

Ms Pacman, 8 seeds -- 8 GPU, 4096 CPU actors

Ablation study on Ms Pacman (Atari)

-MuZero -PO -Act -Learn -Search

Ms Pacman, 8 seeds -- 8 GPU, 4096 CPU actors

Application: DM Control Suite

Application: DM Control Suite

MuZero

What we showed:

AlphaZero approximates the solution to a regularized policy optimization problem.

What we showed:

- AlphaZero approximates the solution to a regularized policy optimization problem.
- Experimentally, using the exact solution provides improved performance without requiring additional parameter tuning.

What we showed:

- AlphaZero approximates the solution to a regularized policy optimization problem.
- Experimentally, using the exact solution provides improved performance without requiring additional parameter tuning.

