Optimistic Optimization of a Brownian Motion

Algorithms

Algorithm 1 OOB algorithm

1. **Input:** \(\varepsilon \)
2. **Init:** \(I \leftarrow \{[0,1]\}, t_1 = W(1) \)
3. for \(i = 2, 3, 4, \ldots \) do
4. \([a, b] \in \arg \max_{I \subseteq B} \{ \text{break ties arbitrarily} \} \)
5. if \(\eta_t(b-a) \leq \varepsilon \) then break
6. end if
7. \(t_i \leftarrow W\left(\frac{a+b}{2}\right) \)
8. \(I \leftarrow I \cup [a, \frac{a+b}{2}] \cup [\frac{a+b}{2}, b] \setminus \{a, b\} \)
9. end for
10. **Output:** location \(\tilde{t}_\varepsilon \leftarrow \arg \max_{t \in I} W(t) \) and its value \(W(\tilde{t}_\varepsilon) \)

Guarantees

THEOREM: For any \(\varepsilon < 1/2 \)

\[
\mathbb{P}[M - W(\tilde{t}_\varepsilon) > \varepsilon] \leq \varepsilon
\]

\[
\mathbb{E}[N_\varepsilon] \leq c \log^2(1/\varepsilon)
\]

Proof

- 1. Correctness: algorithm definition + the law of Brownian bridge
- 2. at OOB evaluates pretty much only near-optimal points
- Denisov (1984): rewrite the motion as two Brownian meanders
- By Durett et al. (1977) the expected number of near-optimal points is bounded as \(\mathbb{E}[X_n(o)] \leq 6n^{1/2} \) which is \(O(\log(1/\varepsilon)) \)

Open problem

- Munos (2011) classifies functions according to \((d, C)\) to:
 - easy, \(d = 0 \), exponentially fast optimization
 - difficult, \(d \geq 0 \), polynomially fast optimization
- Open questions for a Brownian process:
 - what is its dimension \(d \)
 - how fast can we optimize it

Challenge: Brownian motion is a stochastic process!

Our answers that solve the open problem:

- \(\forall x, \text{w.p.} 1-\varepsilon, W(t) = t \) }.Lipschitz + \(\exists C(t) \) s.t. \(\text{Brownian} \in (d, C(t)) \)
- there is no \((d, C)\) with \(C \leq \infty \) such that \(\text{Brownian} \in (d, C) \)
- we can optimize it with sample complexity of \(O(\log^2(1/\varepsilon)) \)