
Sample-efficient Monte-Carlo planning

J. Grill, M. Valko, R. Munos

December 6, 2016

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 1 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 2 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 3 / 18



Planning in Markov Decision Processes

• We can perform actions to impact the environment.

• We receive a reward and an observation of the environment change.

• The environment modifications and the rewards are stochastic.

• We have a generative model.

• We are only interested in the policy for our current environment
configuration.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 4 / 18



Planning in Markov Decision Processes

• We can perform actions to impact the environment.

• We receive a reward and an observation of the environment change.

• The environment modifications and the rewards are stochastic.

• We have a generative model.

• We are only interested in the policy for our current environment
configuration.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 4 / 18



Planning in Markov Decision Processes

• We can perform actions to impact the environment.

• We receive a reward and an observation of the environment change.

• The environment modifications and the rewards are stochastic.

• We have a generative model.

• We are only interested in the policy for our current environment
configuration.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 4 / 18



Planning in Markov Decision Processes

• We can perform actions to impact the environment.

• We receive a reward and an observation of the environment change.

• The environment modifications and the rewards are stochastic.

• We have a generative model.

• We are only interested in the policy for our current environment
configuration.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 4 / 18



Planning in Markov Decision Processes

• We can perform actions to impact the environment.

• We receive a reward and an observation of the environment change.

• The environment modifications and the rewards are stochastic.

• We have a generative model.

• We are only interested in the policy for our current environment
configuration.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 4 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Planning in Markov Decision Processes

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 5 / 18



Tree representation

A node s: Description of the environment
V[s]: discounted sum of rewards you get if you play optimally from s.

Maximum nodes (agent): V[s] = max
s′ child of s

V[s ′].

Average nodes (environment): V[s] = r(s) + γ
∑

s′ child of s
p(s ′|s)V[s ′].

Goal: Compute the value of the root V[s0].

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 6 / 18



Tree representation

A node s: Description of the environment
V[s]: discounted sum of rewards you get if you play optimally from s.

Maximum nodes (agent): V[s] = max
s′ child of s

V[s ′].

Average nodes (environment): V[s] = r(s) + γ
∑

s′ child of s
p(s ′|s)V[s ′].

Goal: Compute the value of the root V[s0].

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 6 / 18



Tree representation

A node s: Description of the environment
V[s]: discounted sum of rewards you get if you play optimally from s.

Maximum nodes (agent): V[s] = max
s′ child of s

V[s ′].

Average nodes (environment): V[s] = r(s) + γ
∑

s′ child of s
p(s ′|s)V[s ′].

Goal: Compute the value of the root V[s0].

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 6 / 18



Tree representation

A node s: Description of the environment
V[s]: discounted sum of rewards you get if you play optimally from s.

Maximum nodes (agent): V[s] = max
s′ child of s

V[s ′].

Average nodes (environment): V[s] = r(s) + γ
∑

s′ child of s
p(s ′|s)V[s ′].

Goal: Compute the value of the root V[s0].

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 6 / 18



Tree representation

A node s: Description of the environment
V[s]: discounted sum of rewards you get if you play optimally from s.

Maximum nodes (agent): V[s] = max
s′ child of s

V[s ′].

Average nodes (environment): V[s] = r(s) + γ
∑

s′ child of s
p(s ′|s)V[s ′].

Goal: Compute the value of the root V[s0].
J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 6 / 18



Hypothesis

We assume the access to a generative model:

average node s −→ rs reward sample s.t. Er = r(s)
ys next state sample ∼ p(·|s)

We do not assume to know the transition or reward probability law.

PAC (Probably Approximately Correct)
For any δ > 0, ε > 0, we compute v(δ, ε) such that

P [|v(δ, ε)− V[s0]| < ε] > 1− δ

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 7 / 18



Hypothesis

We assume the access to a generative model:

average node s −→ rs reward sample s.t. Er = r(s)
ys next state sample ∼ p(·|s)

We do not assume to know the transition or reward probability law.

PAC (Probably Approximately Correct)
For any δ > 0, ε > 0, we compute v(δ, ε) such that

P [|v(δ, ε)− V[s0]| < ε] > 1− δ

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 7 / 18



Hypothesis

We assume the access to a generative model:

average node s −→ rs reward sample s.t. Er = r(s)
ys next state sample ∼ p(·|s)

We do not assume to know the transition or reward probability law.

PAC (Probably Approximately Correct)
For any δ > 0, ε > 0, we compute v(δ, ε) such that

P [|v(δ, ε)− V[s0]| < ε] > 1− δ

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 7 / 18



Adaptive Algorithm

Sample complexity: the number of calls to the generative model.

The number of nodes of depth h: (AS)h.

Design adaptive algorithms that doesn’t explore uniformly the whole tree.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 8 / 18



Adaptive Algorithm

Sample complexity: the number of calls to the generative model.

The number of nodes of depth h: (AS)h.

Design adaptive algorithms that doesn’t explore uniformly the whole tree.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 8 / 18



Adaptive Algorithm

Sample complexity: the number of calls to the generative model.

The number of nodes of depth h: (AS)h.

Design adaptive algorithms that doesn’t explore uniformly the whole tree.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 8 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.
Query its children for their value.

Queries are performed with a precision as argument: ε and n.
The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.
Query its children for their value.

Queries are performed with a precision as argument: ε and n.
The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.

Query its children for their value.

Queries are performed with a precision as argument: ε and n.
The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.
Query its children for their value.

Queries are performed with a precision as argument: ε and n.
The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.
Query its children for their value.

Queries are performed with a precision as argument: ε and n.

The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Each node is a persistent object with its own memory.

It can be queried for an estimation of its node.

To compute this estimation it can:
Perform call to the generative model.
Query its children for their value.

Queries are performed with a precision as argument: ε and n.
The bias of the estimator is of order ε
The variance of the estimator of order 1/n.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 9 / 18



The Algorithm: TrailBlazer

Average node:
Sample n transitions and n rewards.
Query the sampled children with bias ε/γ.

Maximum node:
Run best arm identification sub-routine.
Query the best arm with a high a variance query.

The algorithm TrailBlazer

behaves like Monte-Carlo sampling when there are no max node.
is computationally efficient and easy to implement.
is adaptive.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 10 / 18



The Algorithm: TrailBlazer

Average node:
Sample n transitions and n rewards.
Query the sampled children with bias ε/γ.

Maximum node:
Run best arm identification sub-routine.
Query the best arm with a high a variance query.

The algorithm TrailBlazer

behaves like Monte-Carlo sampling when there are no max node.
is computationally efficient and easy to implement.
is adaptive.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 10 / 18



The Algorithm: TrailBlazer

Average node:
Sample n transitions and n rewards.
Query the sampled children with bias ε/γ.

Maximum node:
Run best arm identification sub-routine.
Query the best arm with a high a variance query.

The algorithm TrailBlazer

behaves like Monte-Carlo sampling when there are no max node.

is computationally efficient and easy to implement.
is adaptive.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 10 / 18



The Algorithm: TrailBlazer

Average node:
Sample n transitions and n rewards.
Query the sampled children with bias ε/γ.

Maximum node:
Run best arm identification sub-routine.
Query the best arm with a high a variance query.

The algorithm TrailBlazer

behaves like Monte-Carlo sampling when there are no max node.
is computationally efficient and easy to implement.

is adaptive.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 10 / 18



The Algorithm: TrailBlazer

Average node:
Sample n transitions and n rewards.
Query the sampled children with bias ε/γ.

Maximum node:
Run best arm identification sub-routine.
Query the best arm with a high a variance query.

The algorithm TrailBlazer

behaves like Monte-Carlo sampling when there are no max node.
is computationally efficient and easy to implement.
is adaptive.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 10 / 18



Sample complexity in the finite S case

UCT: [L. Kocsis and C. Szepesvári, 2006]

Asymptotic analysis but no finite time guarantees.

StoP: [B. Szörényi et al, 2014]

Explore (κS)h nodes instead of (AS)h.

The quantity κ ∈ [1,A] is problem dependent.
It measures the branching factor of the set of “important” states.

Problem: algorithm consider the set of all policies which grows
exponentially with the number of states.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 11 / 18



Sample complexity in the finite S case

UCT: [L. Kocsis and C. Szepesvári, 2006]

Asymptotic analysis but no finite time guarantees.

StoP: [B. Szörényi et al, 2014]

Explore (κS)h nodes instead of (AS)h.

The quantity κ ∈ [1,A] is problem dependent.
It measures the branching factor of the set of “important” states.

Problem: algorithm consider the set of all policies which grows
exponentially with the number of states.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 11 / 18



Sample complexity in the finite S case

UCT: [L. Kocsis and C. Szepesvári, 2006]

Asymptotic analysis but no finite time guarantees.

StoP: [B. Szörényi et al, 2014]

Explore (κS)h nodes instead of (AS)h.

The quantity κ ∈ [1,A] is problem dependent.
It measures the branching factor of the set of “important” states.

Problem: algorithm consider the set of all policies which grows
exponentially with the number of states.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 11 / 18



Sample complexity in the finite S case

UCT: [L. Kocsis and C. Szepesvári, 2006]

Asymptotic analysis but no finite time guarantees.

StoP: [B. Szörényi et al, 2014]

Explore (κS)h nodes instead of (AS)h.

The quantity κ ∈ [1,A] is problem dependent.
It measures the branching factor of the set of “important” states.

Problem: algorithm consider the set of all policies which grows
exponentially with the number of states.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 11 / 18



Sample complexity in the finite S case
Sample complexity bound of StoP:

O
(

(1/ε)2+
log(κS)
log(1/γ)

)

Complexity of uniform planning:

O
(

(1/ε)2+
log(AS)
log(1/γ)

)

Sample complexity bound of TrailBlazer

O
(

(1/ε)max
(
2, log(κS)

log(1/γ)

))

From + to max.
Computationally efficient.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 12 / 18



Sample complexity in the finite S case
Sample complexity bound of StoP:

O
(

(1/ε)2+
log(κS)
log(1/γ)

)

Complexity of uniform planning:

O
(

(1/ε)2+
log(AS)
log(1/γ)

)

Sample complexity bound of TrailBlazer

O
(

(1/ε)max
(
2, log(κS)

log(1/γ)

))

From + to max.
Computationally efficient.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 12 / 18



Sample complexity in the finite S case
Sample complexity bound of StoP:

O
(

(1/ε)2+
log(κS)
log(1/γ)

)

Complexity of uniform planning:

O
(

(1/ε)2+
log(AS)
log(1/γ)

)

Sample complexity bound of TrailBlazer

O
(

(1/ε)max
(
2, log(κS)

log(1/γ)

))

From + to max.
Computationally efficient.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 12 / 18



Planning with unbounded number of states

What if the MDP has a large state space (S is large or even infinite) ?

Uniform planning: [Kearns et al, 1999]

Sample complexity bound:

(1/ε)log(1/ε)/ log(1/γ)

Adaptive planning: [Walsh et al, 2010]

Still no polynomial bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 13 / 18



Planning with unbounded number of states

What if the MDP has a large state space (S is large or even infinite) ?

Uniform planning: [Kearns et al, 1999]

Sample complexity bound:

(1/ε)log(1/ε)/ log(1/γ)

Adaptive planning: [Walsh et al, 2010]

Still no polynomial bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 13 / 18



Planning with unbounded number of states

What if the MDP has a large state space (S is large or even infinite) ?

Uniform planning: [Kearns et al, 1999]

Sample complexity bound:

(1/ε)log(1/ε)/ log(1/γ)

Adaptive planning: [Walsh et al, 2010]

Still no polynomial bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 13 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.
Like κ, the quantity d is problem dependent.
Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.

Like κ, the quantity d is problem dependent.
Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.
Like κ, the quantity d is problem dependent.

Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.
Like κ, the quantity d is problem dependent.
Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.
Like κ, the quantity d is problem dependent.
Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



S-independent sample complexity bound

The sample complexity of the same algorithm TrailBlazer is bounded by:

O
(

(1/ε)2+d
)

The bound is independent of S.
Like κ, the quantity d is problem dependent.
Unlike κ, the quantity d may be infinite.

Worst case: uniform planning using sparse sampling

(1/ε)log(1/ε)/ log(1/γ)

When d is finite: polynomial S-independent bound.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 14 / 18



Example of d = 0

Definition: Gap
The gap of a max node: difference between the best and the second best
children values.
Low gap → difficult problems.

∆(s) := average node s → the gap of s ′ with probability p(s ′|s).

Assumption
∃a, b > 0 s.t. for all average node s and t > 0

P [∆(s) < t] < at2+b

Small number of low gap nodes =⇒ d = 0.

Sample complexity of order (1/ε)2, same as Monte Carlo sampling.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 15 / 18



Example of d = 0

Definition: Gap
The gap of a max node: difference between the best and the second best
children values.
Low gap → difficult problems.

∆(s) := average node s → the gap of s ′ with probability p(s ′|s).

Assumption
∃a, b > 0 s.t. for all average node s and t > 0

P [∆(s) < t] < at2+b

Small number of low gap nodes =⇒ d = 0.

Sample complexity of order (1/ε)2, same as Monte Carlo sampling.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 15 / 18



Example of d = 0

Definition: Gap
The gap of a max node: difference between the best and the second best
children values.
Low gap → difficult problems.

∆(s) := average node s → the gap of s ′ with probability p(s ′|s).

Assumption
∃a, b > 0 s.t. for all average node s and t > 0

P [∆(s) < t] < at2+b

Small number of low gap nodes =⇒ d = 0.

Sample complexity of order (1/ε)2, same as Monte Carlo sampling.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 15 / 18



Example of d = 0

Definition: Gap
The gap of a max node: difference between the best and the second best
children values.
Low gap → difficult problems.

∆(s) := average node s → the gap of s ′ with probability p(s ′|s).

Assumption
∃a, b > 0 s.t. for all average node s and t > 0

P [∆(s) < t] < at2+b

Small number of low gap nodes =⇒ d = 0.

Sample complexity of order (1/ε)2, same as Monte Carlo sampling.
J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 15 / 18



Future work

We exhibit a class of problem for which the sample complexity of
TrailBlazer is polynomial.
To our knowledge this is the first polynomial bound for planning in the S
infinite case.

Gap between the lower and upper bound for the worst case sample
complexity of planning.

Upper bound: non-polynomial
Lower bound: polynomial

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 16 / 18



Future work

We exhibit a class of problem for which the sample complexity of
TrailBlazer is polynomial.
To our knowledge this is the first polynomial bound for planning in the S
infinite case.

Gap between the lower and upper bound for the worst case sample
complexity of planning.

Upper bound: non-polynomial
Lower bound: polynomial

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 16 / 18



Future work

We exhibit a class of problem for which the sample complexity of
TrailBlazer is polynomial.
To our knowledge this is the first polynomial bound for planning in the S
infinite case.

Gap between the lower and upper bound for the worst case sample
complexity of planning.

Upper bound: non-polynomial

Lower bound: polynomial

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 16 / 18



Future work

We exhibit a class of problem for which the sample complexity of
TrailBlazer is polynomial.
To our knowledge this is the first polynomial bound for planning in the S
infinite case.

Gap between the lower and upper bound for the worst case sample
complexity of planning.

Upper bound: non-polynomial
Lower bound: polynomial

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 16 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Conclusion

We introduce TrailBlazer a planning algorithm using sampling.

• TrailBlazer is easy to implement and computationally efficient.

• In the worst case TrailBlazer performs the same as uniform planning
with sparse sampling.

• Finite S case: we improve over previous bounds.

• Infinite S case: we highlight a class of problems for which TrailBlazer
has polynomial complexity.

TrailBlazer can be seen as a natural extension of Monte Carlo
Sampling to control problems.

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 17 / 18



Thank You !
Poster number: 193

J. Grill, M. Valko, R. Munos Sample-efficient Monte-Carlo planning December 6, 2016 18 / 18


