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SETTING
Goal: Local planning:

• Environment is stochastic.

• Planning is local: we only care about the best action for the state we are in rather than full
policy.

• Contruct look-ahead tree to compute the best action.

We assume A actions and S next states.

V[s]: rewards if you play optimally from s.

• MAX nodes: V[s] = max
s′ child of s

V[s′].

• AVG nodes: V[s] = r(s) + γ
∑

s′ child of s
p(s′|s)V[s′].

•We have access to a generative model:

average node s −→ rs reward sample s.t. Er = r(s)
ys next state sample ∼ p(·|s)

• Don’t access the full the transition or reward probability law.

•We want PAC guarantees.

For any δ > 0, ε > 0, we compute v(δ, ε) such that

P [|v(δ, ε)− V[s0]| < ε] > 1− δ

ALGORITHM: AVERAGE NODE
1: Input: m, ε
2: Initialization: {Only executed on first call}
3: SampledNodes← ∅,
4: r ← 0
5: Run:
6: if ε ≥ 1/(1− γ) then
7: Output: 0
8: end if
9: if |SampledNodes| > m then

10: ActiveNodes← SampledNodes(1 : m)
11: else
12: while |SampledNodes| < m do
13: τ ← {new sample of next state}
14: SampledNodes.append(τ)
15: r ← r+[new sample of reward]
16: end while
17: ActiveNodes← SampledNodes
18: end if {At this point, |ActiveNodes| = m}
19: for all unique nodes s ∈ ActiveNodes do
20: k ← #occurrences of s in ActiveNodes
21: ν ← call s with parameters (k, ε/γ)
22: µ← µ+ νk/m
23: end for
24: Output: γµ+ r/|SampledNodes|

ALGORITHM: MAXIMUM NODE
1: Input: m, ε
2: L ← all children of the node
3: `← 1
4: while |L| > 1 and U ≥ (1− η)ε do

5: U← 2
1−γ

√
log(K`/(δε))+γ/(η−γ)+λ+1

`

6: for b ∈ L do
7: µb ← call b with (`, Uη/(1− η))
8: end for
9: L ←

{
b :µb+

2U
1−η ≥ supj

[
µj− 2U

1−η

]}
10: `← `+ 1
11: end while
12: if |L| > 1 then
13: Output: µ← maxb∈L µb
14: else { L = {b?} }
15: b? ← arg maxb∈L µb
16: µ← call b? with (m, ηε)
17: Output: µ
18: end if

CONTRIBUTIONS
We provide an algorithm TrailBlazer with two Sample complexity bounds.

n(δ, ε): Sample complexity, the number of calls to the generative model.
S is the size of the MDP.

Theorem 1. There exists C > 0 such that for all ε > 0 and δ > 0, with probability 1 − δ, the sample-
complexity of TrailBlazer (the number of calls to the generative model before the algorithm terminates)
is

n(ε, δ) ≤ C(1/ε)max(2, log(Nκ)log(1/γ)
+o(1)) (log(1/δ) + log(1/ε))

α
,

where α = 5 when log(Nκ)/ log(1/γ) ≥ 2 and α = 3 otherwise.

• High probability sample complexity bound.

• The bound is polynomial in 1/ε.

• The quantity κ ∈ [1, A] is problem dependent. It measures the branching factor of the set
of important states.

• This is small improvement over StOP

• It should be compared to the S-dependent sample complexity of uniform planning:

O
(

(1/ε)2+
log(AS)
log(1/γ)

)

Theorem 2. If d is finite then there exists C > 0 such that for all ε > 0 and δ > 0 the expected sample
complexity of TrailBlazer satisfies

E [n(ε, δ)] ≤ C (log(1/δ) + log(1/ε))
3

ε2+d
·

• This bound is independent with the size of the MDP.

• It holds in expectation only.

• It should be compared to the S-independent sample complexity of uniform planning:

O
(

(1/ε)log(1/ε)/ log(1/γ)
)

• Like κ, the quantity d is problem dependent. Unlike κ, the quantity d may not exist.

• When d exists: first polynomial S independent bound.

EXAMPLE FOR D=0
• The gap of a node is the difference in value between the best and second best action.

• Low gap refer to hard problems.

• ∆(s) := s→ gap of s′ with probability p(s′|s).

• The following assumption measure the number of low gap nodes.

Assumption 1. ∃a, b > 0 s.t. for all average node s and t > 0

P
[
∆(s) < t

]
< at2+b

Theorem 3. Under Assumption 1, d = 0.

When d = 0, the Sample complexity is of order (1/ε)2 which is the same order as Monte
Carlo sampling.

KEY IDEAS
• Tree-based algorithm

• Delicate treatment of uncertainty

• Refining few paths

ANALYSIS
∆→s(s

′): The difference of the sum of discounted rewards stating from s′ between an agent
playing optimally and one playing first the action toward s and then optimally.

Definition 1 (near-optimality). We say that a node s of depth h is near-optimal, if for all h′ < h

∆→s(sh′) ≤ 12
γh−h

′

1− γ
or the action from sh′ to s is optimal

with sh′ the ancestor of s of depth h′. Let Nh be the set of all near-optimal nodes of depth h.

Definition 2. We define κ ∈ [1,K] as the smallest number such that

∃C ∀h, |Nh| ≤ C(Nκ)h.

• There are at most (AS)h nodes of depth h thus κ ≤ A.

• With probability 1− δ, TrailBlazer only explore near-optimal nodes.

Definition 3. We define d ≥ 0 as the smallest d such that there exists a > 0 for which for all hm > 0

sup
h≤hm

E

K−h h−1∏
h′=0

1

(
∆→Sh

(
Shh′

)
≤ γh−h′

/(1− γ)
)

max
(
∆→Sh

(
Shh′

)
, γhm−h′)2 +OPThh′

 ≤ aγ−dhm
With Sh: Random node of depth h chosen according to transition probabilities.

Shh′ : MAX-node parent of Sh of depth h′.
OPThh′ : 1 if the action at Shh′ to Sh is optimal else 0.
If no such d exists, we set d =∞.

• It also takes into account the difficulty to identify the near-optimal paths.

• d is higher when low gap nodes are concentrated.
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