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EXAMPLE FOR D=0

e The gap of a node is the difference in value between the best and second best action.

ALGORITHM: MAXIMUM NODE

Input: m,

L « all children of the node
(1

while |[£| > 1and U > (1 — ) do

_2 \/log(Kﬁ/(5€))+v/(n—v>+/\+1
L—~ ¢

forb € L do
uy < call b with (¢,Un/(1 —n))
end for
L+ {bZ,LLb—FlQ_—Un > sup, {Nj_i_Un} }
V0l +1
. end while
. if |£]| > 1 then
Output: 1 < maxyer
14: else { L = {b*}}
15:  D* <= argmax; . [
16: < call b* with (m, ne)
17: Output:
18: end if

SETTING

Goal: Local planning:

e Environment is stochastic. e Low gap refer to hard problems.

e Planning is local: we only care about the best action for the state we are in rather than full e A(s) :=s — gap of s’ with probability p(s'[s).
policy.

e Contruct look-ahead tree to compute the best action.

e The following assumption measure the number of low gap nodes.

Assumption 1. da,b > 0 s.t. for all average node s and t > 0

1:
2:
3:
4.
5:
6:
7:
8:
9:

P [A(s) < t] < at®*?
We assume A actions and S next states.
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Theorem 3. Under Assumption 1, d = 0.
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When d = 0, the Sample complexity is of order (1/¢)? which is the same order as Monte
Carlo sampling.
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KEY IDEAS

e Tree-based algorithm

V|s]: rewards if you play optimally from s. e Delicate treatment of uncertainty

e MAX nodes: V|s|] = max V[s']. CONTRIBUTIONS e Refining few paths
' child of s We provide an algorithm TrailBlazer with two Sample complexity bounds.
* AVGnodes: Vis| =r(s) + 7 » Ch% o Sp (s'ls)VIs']: n(o0,c): Sample complexity, the number of calls to the generative model. ANALYSIS
S is the size of the MDP.
A_,4(s"): The difference of the sum of discounted rewards stating from s’ between an agent
e We have access to a generative model: playing optimally and one playing first the action toward s and then optimally.
rs reward sample s.t. Er = r(s) Theorem 1. There exists C > 0 such that for all ¢ > 0 and 6 > 0, with probability 1 — 0, the sample- Definition 1 —ontimalitv). W, that d deoth h i optimal i I < h
average node s — ys next state sample ~ p(:|s) (;omplexity of TrailBlazer (the number of calls to the generative model before the algorithm terminates) efinition 1 (near-optimality). We say that a node s of depth h is near-optimal, if for 4
is h—h'
e Don’t access the full the transition or reward probability law. n(e,0) < C(l/g)maX(Q’ osciz o) (log(1/0) + log(1/£))”, A_s(sn) < 12? — or the action from sy to s is optimal
h — 5 when log(Nk)/log(1/v) > 2 and o = 3 otherwise.

e We want PAC guarantees. where a =5 when log(Nk)/log(1/7) 2 2 and a = 3 otherwise with sy the ancestor of s of depth h'. Let Ny, be the set of all near-optimal nodes of depth h.
For any 0 > 0,¢ > 0, we compute v(0, €) such that e High probability sample complexity bound. Definition 2. We define € |1, K| as the smallest number such that

e The bound is polynomial in 1/«.

Pllu(5,e) — V[so]| <&] > 1 -6 3CVh, [Nyl < C(Nk)".

e The quantity x € [1, A] is problem dependent. It measures the branching factor of the set

of important states. e There are at most (AS)" nodes of depth h thus x < A.

ALGORITHM: AVERAGE NODE

o This is small improvement over StOP e With probability 1 — 0, TrailBlazer only explore near-optimal nodes.
1. Input: m, ¢
2: Initialization: {Only executed on first call} e It should be compared to the S-dependent sample complexity of uniform planning: Definition 3. We define d > 0 as the smallest d such that there exists a > 0 for which for all h,, > 0
3: SampledNodes « ),
4 17+ 0 O ((1/:)2 10557 i h=1 (1 (A gn (SP) <A /(1 —7) _
5. Run: (( / ) ) sup E K—h H ( ~ - — ) i OPT;?/ S cw_dhm
6: ifc > 1/(1 — ) then h<ho | g\ max (Aogn (Sp) o) _
7. Output: 0
8: end if e . With S": Random node of depth h chosen according to transition probabilities.
o: if [SampledNodes| > m then Theolrem 2. Ifd is finite then t.he.re exists C > 0 such that for all ¢ > 0 and 6 > 0 the expected sample Sh,: MAX-niode parent of S™ of depth h'.
10:  ActiveNodes <— SampledNodes(1 : m) complexity of TrailBlazer satisfies OPT}: 1 if the action at S}, to S™ is optimal else 0.
11: else 3 If no such d exists, we set d = oo.
122 while |SampledNodes| < m do E[n(e, )] < C(log(l/é) jljg(l/g)) .
13- T < {new sample of next state} gat e [t also takes into account the difficulty to identify the near-optimal paths.
14: SampledNodes.append(7) e This bound is independent with the size of the MDP. e d is higher when low gap nodes are concentrated.
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r < r+[new sample of reward]
end while e [t holds in expectation only.
ActiveNodes <+ SampledNodes
end if {At this point, |ActiveNodes| = m}
: for all unique nodes s € ActiveNodes do log(1/2)/ log(1/~)
k < #occurrences of s in ActiveNodes O ((1/ ) )
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e It should be compared to the S-independent sample complexity of uniform planning:

N N — =
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v < call s with parameters (k,c/7) Thomas ] Walsh, Sergiu Goschin, and Michael L Littman. Integrating sample-based planning and
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: end for

Output: v + r/|SampledNodes|
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