

A very robust online optimisation method

Victor Gabillon, Rasul Tutunov, Michal Valko, Haitham Bou Ammar

AISTATS 2020

Problem setting: black-box optimisation

In budgeted online optimisation, a learner optimises $f : \mathcal{X} \to \mathbb{R}$. We consider a general case where f is decomposable as,

$$f=\frac{1}{n}\sum_{t=1}^n f_t.$$

At each round $t \in \{1, ..., n\}$, the learner chooses an element $x_t \in \mathcal{X}$ and observes a real number y_t , where $y_t = f_t(x_t)$. no gradient, zero-order optimisation

Objective: Study the optimisation problem under different assumption on the f_1, \ldots, f_n

Problem setting: black-box optimisation

In budgeted online optimisation, a learner optimises $f : \mathcal{X} \to \mathbb{R}$. We consider a general case where f is decomposable as,

$$f=\frac{1}{n}\sum_{t=1}^n f_t.$$

At each round $t \in \{1, ..., n\}$, the learner chooses an element $x_t \in \mathcal{X}$ and observes a real number y_t , where $y_t = f_t(x_t)$. **no gradient, zero-order optimisation**

Objective: Study the optimisation problem under different assumption on the f_1, \ldots, f_n

Problem setting: black-box optimisation

In budgeted online optimisation, a learner optimises $f : \mathcal{X} \to \mathbb{R}$. We consider a general case where f is decomposable as,

$$f = \frac{1}{n} \sum_{t=1}^{n} f_t$$

At each round $t \in \{1, \ldots, n\}$,

the learner chooses an element $x_t \in \mathcal{X}$ and observes a real number y_t , where $y_t = f_t(x_t)$. **no gradient, zero-order optimisation**

Objective: Study the optimisation problem under different assumption on the f_1, \ldots, f_n

Assumptions: Two regimes

Stochastic feedback : At any round, we have $f_t = \overline{f} + \varepsilon_t$ with ε_t distributed (i.i.d.) over rounds.

$$\mathbb{E}[\varepsilon_t] = 0 \quad \text{and} \quad |\varepsilon_t| \le b. \tag{1}$$

Non-stochastic feedback we minimally assume:

$$|f_{t'}(x) - f_t(x)| \le b$$
 for all t, t' and $x \in \mathcal{X}$. (2)

Actually we will sometimes rephrase this condition as the equivalent condition $|f_t(x)| \leq f_{max}$ for all $x \in \mathcal{X}$ and $t \in [n]$.

The regret

The learner recommends after round n, the element x(n) and minimises the **simple regret** r_n .

Stochastic case: Expected regret

$$\mathbb{E}_{f}[r_{n}] \triangleq \mathbb{E}_{f_{1},...,f_{n}}\left[\sup_{x \in \mathcal{X}} f(x) - \mathbb{E}_{x(n)}[f(x(n))]\right]$$
$$= \sup_{x \in \mathcal{X}} \overline{f}(x) - \mathbb{E}_{x(n)}[\overline{f}(x(n))].$$

Non-stochastic setting: A regret for any sequence f_1, \ldots, f_n

$$r_n \triangleq \sup_{x \in \mathcal{X}} f(x) - \mathbb{E}_{x(n)}[f(x(n))]$$

Introducing the tools and the minimal assumptions

Partitioning

- For any **depth** h, \mathcal{X} is partitioned in K^h cells $(\mathcal{P}_{h,i})_{0 \le K^h 1}$.
- *K*-ary tree \mathcal{T} where depth h = 0 is the whole \mathcal{X} .

An example of partitioning in one dimension with K = 3.

The assumption and the smoothness

Assumption (on the local smoothness around x^*)

For any global optimum x^* , there exists $\nu > 0$ and $\rho \in (0,1)$, (ν, ρ) depend on x^* , such that $\forall h \in \mathbb{N}$, $\forall x \in \mathcal{P}_{h,i_h^*}$,

$$f(x) \geq f(x^*) - \frac{\nu \rho^h}{\nu \rho^h}.$$

- The smoothness is local, around a x^* .
- This guaranties that the algorithm will not under-estimate by more than νρ^h the value of optimal cell P_{h,i^{*}_h} if it observes f(x) with x ∈ P_{h,i^{*}_h}.
- Now for the opposite question: How much none optimal cells have values $\nu \rho^h$ -close to optimal and therefore indiscernible from it? Let us **count** them!

Definition

 $\mathcal{N}_h(3\nu\rho^h) \leq$

Definition

 $\mathcal{N}_h(3\nu\rho^h) \leq$

The smoothness and the near-optimal dimension

Lets us bound $\mathcal{N}_h(3\nu\rho^h)$ as a function of the depth *h*.

Definition

$$\mathcal{N}_h(3\nu\rho^h) \leq C\rho^{-d'h}$$

The smoothness and the near-optimal dimension

Lets us bound $\mathcal{N}_h(3\nu\rho^h)$ as a function of the depth *h*.

- $\rho^{-d'h}$ controls how $\mathcal{N}_h(3\nu\rho^h)$ explodes with h if d' > 0.
- $\mathcal{N}_h(3\nu\rho^h)$ is simply bounded, $\forall h$, by a constant C if d'=0.

Definition

$$\mathcal{N}_h(3\nu\rho^h) \leq C\rho^{-d'h}$$

The smoothness and the near-optimal dimension

Lets us bound $\mathcal{N}_h(3\nu\rho^h)$ as a function of the depth *h*.

- $\rho^{-d'h}$ controls how $\mathcal{N}_h(3\nu\rho^h)$ explodes with h if d' > 0.
- $\mathcal{N}_h(3\nu\rho^h)$ is simply bounded, $\forall h$, by a constant C if d'=0.

Definition

For any $\nu > 0$, C > 1, and $\rho \in (0, 1)$, the **near-optimality dimension** $d(\nu, C, \rho)$ of f with respect to the partitioning \mathcal{P} , is

$$oldsymbol{d}(
u, \mathcal{C},
ho) riangleq \inf \left\{ d' \in \mathbb{R}^+ : orall h \geq 0, \; \mathcal{N}_h(3
u
ho^h) \leq \mathcal{C}
ho^{-d'h}
ight\},$$

Previous work

Previous approaches under similar assumptions with **unknown** smoothness (ν, ρ) :

	<i>b</i> = 0	stochastic $(b > 0)$
Stroqu00L	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	$\left(\frac{1}{n}\right)^{\frac{1}{d+2}}$
SequOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	×
Uniform(s)	$\frac{1}{n} \frac{\log \frac{1}{\rho}}{\log K}$	$1/n^{\frac{1}{\log \kappa}+2}$

- We characterise the rates of the uniform strategy under non-stochastic setting.
- We will introduce VROOM.

Previous work

Previous approaches under similar assumptions with **unknown** smoothness (ν, ρ) :

	<i>b</i> = 0	stochastic $(b > 0)$	non-stochastic
Stroqu00L	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	$\left(\frac{1}{n}\right)^{\frac{1}{d+2}}$	×
SequOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	×	×
Uniform(s)	$\frac{1}{n} \frac{\log \frac{1}{\rho}}{\log K}$	$1/n^{\frac{1}{\log K}+2}$?
VROOM	?	?	?

- We characterise the rates of the uniform strategy under non-stochastic setting.
- We will introduce VROOM.

Challenges

- The confidence interval of estimate $\sum_{t=1}^{n} \tilde{f}_{h,i}(t)$, varies with h (number of pulls & variance).

Cross validation techniques as in StroquOOL, are biased against an adversary.

Challenge II: How to recommend an optimum x(n) capable of operating successfully in both feedback settings?

Now: The Algorithms

Robust Uniform strategies

• VROOM, best of both worlds?

Robust uniform strategies

Parameters:
$$\mathcal{P} = \{\mathcal{P}_{h,i}\}, b, n, f_{\max}$$
. Set $\delta = \frac{4b}{f_{\max}\sqrt{n}}$.
For $t = 1, ..., n$
Evaluate a point x_t sampled from $U_{\mathcal{P}}(\mathcal{P}_{0,1})$.
Output $x(n) \sim \mathcal{U}(\mathcal{P}_{h(n),i(n)})$
where $(h(n), i(n)) \leftarrow \underset{h,i}{\operatorname{arg max}} \widetilde{F}_{h,i}(n) - B_h^{adv}(n)$

Figure: The ROBUNI algorithm

- The algorithm uses a lower confidence bound estimator: $\widetilde{F}_{h,i}(n) B_h^{adv}(n)$ where
- $\widetilde{F}_{h,i}(n)$ is an unbiased estimates
- $B_h^{adv}(n)$ is the width of the confidence interval of that estimate

Robust uniform strategies

Theorem (Upper bounds for ROBUNI)

Any f_1, \ldots, f_n such that $|f_t(x)| \le f_{max}$ for all $x \in \mathcal{X}$ and $t \in [n]$. Let $f = \frac{1}{n} \sum_{t=1}^n f_t$, with associated (ν, ρ) .

$$\mathbb{E}[r_n] = \mathcal{O}\left(\log(n/\delta)\left(\frac{K}{n\rho^2}\right)^{\frac{1}{\log K}}\right)$$

	b = 0	stochastic $(b > 0)$	non-stochastic
StroquOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	$\left(\frac{1}{n}\right)^{\frac{1}{d+2}}$	×
SequOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	×	×
Uniform(s)	$\frac{1}{n} \frac{\log \frac{1}{\rho}}{\log K}$	$1/n^{rac{1}{\log K}+2}$?
VROOM	?	?	?

	<i>b</i> = 0	stochastic $(b > 0)$	non-stochastic
StroquOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	$\left(\frac{1}{n}\right)^{\frac{1}{d+2}}$	×
SequOOL	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	×	×
Uniform(s)	$\frac{1}{n} \frac{\log \frac{1}{\rho}}{\log K}$	$1/n^{\frac{1}{\log K}}$	
VROOM	?	?	?

- The rates of Uniform extends to the non-stochastic case!
- Best of both worlds?: Can we obtain the rates in the stochastic setting. and in the non-stochastic setting.

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Noisy case

- need to pull more each x to limit uncertainty
- **tradeoff:** the more you pull each *x* the shallower you can explore

Noisy case: StroquOOL (Bartlett et al. 2019)

At depth *h*:

- order the cells by decreasing value and
- open the *i*-th best cell with $m = \frac{n}{hi}$ estimations

VROOM

Parameters:
$$\mathcal{P} = \{\mathcal{P}_{h,i}\}, b, n, f_{\max}.$$
 Set $\delta = \frac{4b}{f_{\max}\sqrt{n}}.$
For $t = 1, ..., n$ \blacktriangleleft Exploration \blacktriangleright
For each depth $h \in [\lfloor \log_{K}(n) \rfloor]$, rank the cells by decreasing
order of $\widehat{f}_{h,i}^{-}(t-1)$: Rank cell $\mathcal{P}_{h,i}$ as $\langle i \rangle_{h,t}.$
 $x_{t} \sim \mathcal{U}_{\mathcal{P}}(\mathcal{P}_{h_{t},i_{t}})$ where
 $p_{h,i,t} \triangleq \mathbb{P}(\mathcal{P}_{h_{t},i_{t}} = \mathcal{P}_{h,i}) \triangleq \frac{1}{h\langle i \rangle_{h,t} \log_{K}(n)}$
Output $x(n) \sim \mathcal{U}_{\mathcal{P}}(\mathcal{P}_{h(n),i(n)})$
where $(h(n), i(n)) \leftarrow \underset{(h,i)}{\operatorname{arg\,max}} \widetilde{F}_{h,i}(n) - \mathcal{B}_{h,i}(n)$

Theorem Upper bounds for VROOM

In the non-stochastic setting,:

$$\mathbb{E}[r_n] = \widetilde{\mathcal{O}}\left(1/n^{\frac{1}{\log K}}\right)$$

Moreover in the stochastic setting, we have,

$$\mathbb{E}[r_n] = \widetilde{\mathcal{O}}\left(\frac{1}{n}\right)^{\max\left(\frac{1}{d+3}, \frac{1}{\log K}\right)}$$

Discussion

• Is the rate
$$\frac{1}{d+3}$$
 optimal? Lowerbound?

• Contrary to StroquOOL, VROOM requires the knowledge of *b*. Can we get rid of this assumption.

 Can we obtain results for the deterministic setting (b=0)? (without knowledge b=0)

Thank you!