The Multi-Armed Bandit Problem

- **K arms**, each characterized by a distribution \(\mu_i \) of mean \(\mu_i \) and variance \(\sigma^2_i \).
- Given an arbitrary sequence of \(n \) arms, \(X_n = (I_1, I_2, \ldots, I_n) \) with \(I_i \sim \text{i.i.d.} \) and \(I_i \in [1, K] \).
- Given a weight parameter \(w \in (0, 1) \), \(f(w; \lambda) = w \lambda - (1 - w) \).

The Forcing Balance Algorithm

Intuition
- **Forcing** = accurate \(\hat{\mu} \) and \(\hat{\lambda} \).
- **Tracking** = accurate \(\lambda \).
- Vanishing forcing \(\sqrt{\text{Rescaled regret}} \) when \(\lambda \to \lambda^* \).

Theoretical Guarantees

Lemma 3.
For any allocation \(\lambda \in D_K \) and any \(c \in [K] \), \(|\lambda - \lambda^*| \leq \frac{\sqrt{2}}{n} \sum_{i=1}^{K} \lambda_i \max_i \lambda_i \).

Lemma 4.
For any allocation \(\lambda \in D_K \), \(|f(\lambda^*) - f(\lambda)| \leq \frac{\sqrt{2}}{n} \sum_{i=1}^{K} \lambda_i \max_i \lambda_i \).

Lemma 5.
Let \(\hat{\lambda} \) be such that \(|\hat{\lambda} - \lambda| \leq \frac{\epsilon}{2 \lambda^*} \). Then for any allocation \(\lambda \in D_K \), \(f(\lambda^*) - f(\hat{\lambda}) \leq \frac{\sqrt{2}}{n} \lambda^* \).

Assumption 1.
Let \(\lambda_{\text{min}} = \min_i \lambda_i \). We assume that \(\lambda_{\text{min}} \geq \lambda_{\text{min}}^* \) (i.e., \(\lambda^* \in D_K \)).

Theorem.
Under Assumptions 1, Forcing Balance with a parameter \(\eta \leq 21 \) and a simplex \(\Delta_K \) restricted to \(\hat{\lambda} \) succeeds. Alerts to \(R_n(\hat{\lambda}) \) with

Educational Experiment

The setting.
- \(K = 61 \) arms, \(w = 0.9 \) (i.e., favor rewards over errors).
- Parameter \(q = 1, \lambda_{\text{min}} = 0 \). Arm 4 has the largest variance and it should be pulled the most to minimize \(c \).
- Arm 5 has the largest reward and it should be pulled the most to maximize \(\mu \).
- The optimal allocation \(\lambda^* \) is unbalanced towards arm 5 and a bit on arm 6.

The results.
- Varying \(w \) from 0.01 to 0.09.
- For \(w = 0 \), the minimization of \(c \) induces an optimal allocation with \(\lambda_{\text{min}} = 0.12 \) and \(\lambda_{\text{max}} = 0.20 \).
- For \(w = 0.95 \), the maximization of \(\mu \) induces an optimal allocation with \(\lambda_{\text{min}}^* = 0.0848 \) and \(\lambda_{\text{max}}^* = 0.9268 \).
- **Forcing Balance** is more effective in approaching the performance of \(\lambda^* \) for small values of \(w \). For \(w = 0 \), \(\lambda_{\text{min}} = 0.097 \), while for \(w = 0.95 \), \(\lambda_{\text{min}}^* = 0.004 \).

References

Notes
- **Problem**.
- **Control-theoretic analysis**.
- **Optimal allocation with**.