Pliable Rejection Sampling

Akram Erraqabi
Michal Valko
Alexandra Carpentier
Odalric-Ambrym Maillard

Montréal Institute of Learning Algorithms, Canada
Inria Lille - Nord Europe, France
Institut für Mathematik - U. of Potsdam, Germany
Inria Saclay - Île-de-France, France
Short Review
Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)

Tool: Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$

Sampling Algo:

1. Sample x from g
2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$
Short Review

Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)

Tool: Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$

Sampling Algo:

1. Sample x from g
2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$
Goal: Sample from a target density f (not easy to sample from)

Tool: Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$

Sampling Algo:
1. Sample x from g
2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$

Acceptance rate $= \frac{A}{A+R} = \frac{1}{M}$
Short Review
Rejection Sampling

Goal: Sample from a target density f (not easy to sample from)

Tool: Use a proposal density g (from which sampling is quite easy)

M verifies $f \leq Mg$

Sampling Algo:

1. Sample x from g
2. Accept x as a sample from f with probability $\frac{f(x)}{Mg(x)}$

Question: Can we increase the acceptance rate?

acceptance rate $= \frac{A}{A+R} = \frac{1}{M}$
Let $d \geq 1$ and let f be a density on \mathbb{R}^d.

Goal:

Given a number n of requests to f, what is the number T of samples Y_1, \ldots, Y_T that we can generate such that they are i.i.d. and sampled according to f?

acceptance rate $= \frac{T}{n}$
Can we increase the acceptance rate?

Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]

- The target f is assumed to be *log-concave* (unimodal)
- The envelope is made of tangents at a set of points S
- At each rejection, the sample is added to S

![Graph showing log(f) vs. probability]
Can we increase the acceptance rate?

Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]

- The target f is assumed to be \textit{log-concave} (unimodal)
- The envelope is made of tangents at a set of points S
- At each rejection, the sample is added to S
Can we increase the acceptance rate?
Adaptive Rejection Sampling

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]
- The target f is assumed to be *log-concave* (unimodal)
- The envelope is made of tangents at a set of points S
- At each rejection, the sample is added to S

Very strong assumption!
Can we increase the acceptance rate?

Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]
- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample.
- At each rejection, the sample is added to S.

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]
- Decomposes the target as convex + concave.
- Builds piecewise linear upper bounds (tangents, secant lines).
- At each rejection, the sample is added to S.
Can we increase the acceptance rate?

Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]
- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample.
- At each rejection, the sample is added to S.

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]
- Decomposes the target as convex + concave.
- Builds piecewise linear upper bounds (tangents, secant lines).
- At each rejection, the sample is added to S.

Correlated samples!
Can we increase the acceptance rate?
Improved ARS versions

Adaptive Rejection Metropolis Sampling (ARMS) [Gilks, Best and Tan 1995]
- Can deal with non-log-concave densities.
- Performs a Metropolis-Hastings control for each accepted sample.
- At each rejection, the sample is added to S.

Convex-Concave Adaptive Rejection Sampling [Gorur and Tuh 2011]
- Decomposes the target as convex + concave.
- Builds piecewise linear upper bounds (tangents, secant lines).
- At each rejection, the sample is added to S.

Correlated samples!
Convexity assumption!
A Pliable Solution

Folding the envelope

\[
\text{acceptance rate} = \frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}
\]
A Pliable Solution

Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

acceptance rate $= \frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}$
A Pliable Solution
Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

acceptance rate $= \frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}$
Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

For this purpose:
- Build an estimate \hat{f}

$$\text{acceptance rate} = \frac{A}{A + \mathcal{R}} = \frac{1}{M}$$
A Pliable Solution

Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

For this purpose:

- Build an estimate \hat{f}
- Translate it uniformly

Acceptance rate $= \frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}$
A Pliable Solution

Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

For this purpose:
- Build an estimate \hat{f}
- Translate it uniformly

Acceptance rate $= \frac{\mathcal{A}}{\mathcal{A} + \mathcal{R}} = \frac{1}{M}$
A Pliable Solution
Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

For this purpose:
- Build an estimate \hat{f}
- Translate it uniformly

⚠️ It should be easy to sample from \hat{g} ...

acceptance rate $= \frac{\mathcal{A}}{\mathcal{A}+\mathcal{R}} = \frac{1}{M}$
A Pliable Solution

Folding the envelope

Better proposal means smaller rejection area \mathcal{R}

Smaller \mathcal{R} means g should have a similar “shape” to f

For this purpose:

- Build an estimate \hat{f}
- Translate it uniformly

⚠️ It should be easy to sample from \hat{g} ... and \hat{f}!
Visualizing a 2D example
Multimodal case

\[f(x, y) \propto \left(1 + \sin \left(4\pi x - \frac{\pi}{2}\right)\right) \left(1 + \sin \left(4\pi y - \frac{\pi}{2}\right)\right) \]

Figure: 2D target density (orange) and the pliable proposal (blue)
Pliable Rejection Sampling

Step 1: Estimating f

- f is defined on $[0, A]^d$, bounded and smooth.
- K is a positive kernel on \mathbb{R}^d (product kernel).
- Let $X_1, \ldots, X_N \sim U_{[0,A]^d}$. The (modified) kernel regression estimate is

$$
\hat{f}(x) = \frac{A^d}{Nh^d} \sum_{k=1}^{N} f(X_i) K \left(\frac{X_i - x}{h} \right)
$$

For an unbounded support density, some extra information is needed to construct a kernel-based estimate.
Pliable Rejection Sampling

Step 1: Estimating f

- f is defined on $[0, A]^d$, bounded and smooth.
- K is a positive kernel on \mathbb{R}^d (product kernel).
- Let $X_1, \ldots, X_N \sim \mathcal{U}_{[0, A]^d}$. The (modified) kernel regression estimate is

$$\hat{f}(x) = \frac{A^d}{Nh^d} \sum_{k=1}^{N} f(X_i)K\left(\frac{X_i - x}{h}\right)$$

Cost: N requests to f out of n.

For an unbounded support density, some extra information is needed to construct a kernel-based estimate.
The Pliable Rejection Sampling algorithm (PRS) is designed to approximate a function f over a given domain $[0, A]^d$. The goal is to estimate f such that the gap between the estimate f and the true function f is bounded with high probability.

Theorem 1

The estimate \hat{f} is such that with probability larger than $1 - \delta$, for any point $x \in [0, A]^d$,

$$\left|\hat{f}(x) - f(x)\right| \leq H_0 \left(\left(\frac{\log(NAd/\delta)}{N} \right)^{\frac{s^2}{s^2+d}} \right)$$

where H_0 is a constant that depends on the problem parameters.

s is the degree to which f can be expanded as a Taylor expression.
The estimate \hat{f} is such that with probability larger than $1 - \delta$, for any point $x \in [0, A]^d$,

$$\left| \hat{f}(x) - f(x) \right| \leq H_0 \left(\left(\frac{\log(NAd/\delta)}{N} \right)^{\frac{s}{2s+d}} \right)$$

where H_0 is a constant that depends on the problem parameters.

s is the degree to which f can be expanded as a Taylor expression.

Remaing Budget: $n - N$.
Pliable Rejection Sampling

Step 2: Generating Samples

- Remaining requests to f: $n - N$
- Let $r_N = A^d H_C \left(\frac{\log(N Ad/\delta)}{N} \right)^{2s+d}$
- Construct the *pliable* proposal \hat{g} out of \hat{f}:
 \[\hat{g} = \frac{\hat{f} + r_N U_{[0,A]^d}}{\frac{1}{N} \sum_{i=1}^{N} f(X_i) + r_N} \]
- Perform rejection sampling using \hat{g} and the empirical rejection sampling constant
 \[\hat{M} = \frac{\frac{1}{N} \sum_{i} f(X_i) + r_N}{\frac{1}{N} \sum_{i} f(X_i) - 5r_N} \]
The algorithm

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C

Output: \hat{n} accepted samples
The algorithm

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C

Initial Sampling
Draw uniformly at random N samples on $[0, A]^d$

Generating the samples
Sample $n - N$ samples from the pliable proposal \hat{g} and perform Rejection Sampling using \hat{M} as the envelope constant

Output: \hat{n} accepted samples
The algorithm

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C

Initial Sampling

- Draw uniformly at random N samples on $[0,A]^d$

Estimation of f

- Estimate f using these N samples by kernel regression

Output: \hat{n} accepted samples
The algorithm

Algorithm: Pliable Rejection Sampling (PRS)

Input: s, n, δ, H_C

Initial Sampling
Draw uniformly at random N samples on $[0, A]^d$

Estimation of f
Estimate f using these N samples by kernel regression

Generating the samples
Sample $n - N$ samples from the pliable proposal \hat{g} and perform Rejection Sampling using \hat{M} as the envelope constant

Output: \hat{n} accepted samples
A bound on the acceptance rate

The asymptotic performance

Theorem 2

Under Theorem 1’s assumptions and if $H_0 < H_C$,

$8r_N \leq \int_{[0,A]^d} f(x)dx$. Then, for n large enough, we have with probability larger than $1 - \delta$ that

$$\hat{n} \geq n \left[1 - \mathcal{O}\left(\frac{\log (nAd/\delta)}{n}\right)^{\frac{s}{3s+d}}\right].$$

where \hat{n} *is the number of i.i.d. samples generated by PRS.*
A bound on the acceptance rate

The asymptotic performance

Theorem 2

Under Theorem 1’s assumptions and if $H_0 < H_C$, $8r_N \leq \int_{[0, A]^d} f(x)dx$. Then, for n large enough, we have with probability larger than $1 - \delta$ that

$$\hat{n} \geq n \left[1 - O \left(\frac{\log (nAd/\delta)}{n} \right)^{\frac{s}{3s+d}} \right].$$

where \hat{n} is the number of i.i.d. samples generated by PRS.
Experiments
Scaling with peakiness

\[f \propto \frac{e^{-x}}{(1+x)^a} \], \(a \) defines the peakiness level

Figure: Acceptance rate vs. peakiness

\(n = 10^4 \) (b) \(n = 10^5 \)
Experiements
Two dimensional example

\begin{table}
\centering
\begin{tabular}{l|cc}
\hline
\textbf{ } & \textbf{acceptance rate} & \textbf{standard deviation} \\
\hline
PRS & 66.4\% & 0.45\% \\
A* sampling & 76.1\% & 0.80\% \\
SRS & 25.0\% & 0.01\% \\
\hline
\end{tabular}
\caption{2D example: Acceptance rates averaged over 10 trials}
\end{table}
Experiments
The Clutter problem

<table>
<thead>
<tr>
<th>$n = 10^5$, 1D</th>
<th>acceptance rate</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS</td>
<td>79.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>A* sampling</td>
<td>89.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>SRS</td>
<td>17.6%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n = 10^5$, 2D</th>
<th>acceptance rate</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS</td>
<td>51.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>A* sampling</td>
<td>56.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>SRS</td>
<td>2.10^{-3}%</td>
<td>10^{-5}%</td>
</tr>
</tbody>
</table>

Table: Clutter problem: Acceptance rates averaged over 10 trials
Conclusion

+ **PRS** deals with a wide class of functions
+ **PRS** has guarantees: asymptotically we accept everything (whp)
+ **PRS** is a **perfect** sampler
 + (whp) the samples are iid (unlike MCMC)
+ **PRS**’s empirical performance is comparable to state of the art
+ We have an extension to densities with unbounded support

− **PRS** works only for small and moderate dimensions
 + in favorable cases, it can scale to high dimensions as well
− It does not work well for peaky distributions (posteriors)

Possible extension: Iterative **PRS** by re-estimating f several times
(use the gathered samples to increase its precision)
Thank you!

Questions? feel free to come for a little chat!

Akram Erraqabi
erraqabi@gmail.com
sequel.lille.inria.fr