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SIMPLE REJECTION SAMPLING
Goal: Sample from a target density f (not easy to sample from)
Tool: Use a proposal density g (from which sampling is quite easy)
Property: SmallerR =⇒ fewer rejections (good!)
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M verifies f ≤Mg. The sampling algorithm:
• Sample x from g

• Accept x as a sample from f with probability f(x)
Mg(x)

SETTING

Let d ≥ 1 and let f be a density on Rd.

Question: Given a number n of requests to f , what is
the number T of samples Y1, . . . , YT that one can gen-
erate such that they are i.i.d. according to f?

acceptance rate = T
n

Can we increase the acceptance rate?

Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992]
• The target f is assumed to be log-concave (unimodal)
• The enveloppe is made of tangents at a set of points S
• At each rejection, the sample is added to S

log(f)

Adaptive Rejection Metropolis Sampling (ARMS)
[Gilks, Best and Tan 1995]
• Performs a Metropolis-Hastings step for each accepted sample

(which correlates the samples)

Convex-Concave Adaptive Rejection Sampling
[Gorur and Tuh 2011]
• Decomposes the target as convex + concave
• Builds piecewise linear upper bounds (tangents, secant lines)

PLIABLE REJECTIOM SAMPLING
Better proposal means smaller rejection areaR
SmallerRmeans g should have a similar “shape" to f
For this purpose:
• Build an estimate f̂ • Translate it uniformly
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4! It should be easy to sample from ĝ ... and f̂ !

CHOICE OF THE ESTIMATE
Assumption 1 (on the density).
• f defined on [0, A]d and bounded.
• It admits a Taylor expansion in any point up to some degree 0 < s ≤ 2.

Assumption 2 (on the kernel).
• Let K =

∏d
i=1K0

• K0 is a a density kernel : defined on R, uniformly bounded, normalized
and non-negative
• K0 is ε-Hölder for some ε > 0 • K0 is of degree 2, i.e:∫

R
xK0(x)dx = 0 and

∫
R
x2K0(x)dx <∞

Let X1, . . . , XN ∼ U[0,A]d . The (modified) kernel regression esti-
mate is

f̂(x) =
Ad

Nhd

N∑
k=1

f(Xi)K

(
Xi − x
h

)
(1)

K0 Gaussian kernel⇒ f̂ is a Gaussian mixture!

BOUNDING THE GAP

Theorem 1. The estimate f̂ is such that with probability larger than
1− δ, for any point x ∈ [0, A]d,

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ H0

((
log(NAd/δ)

N

) s
2s+d

)

where H0 is a constant that depends on the problem parameters.

THE PLIABLE PROPOSAL
• Remaining requests to f : n−N

• Let rN = AdHC

(
log(NAd/δ)

N

) s
2s+d

• Construct the pliable proposal ĝ out of f̂ :

ĝ =
f̂ + rN U[0,A]d

1
N

∑N
i=1 f(Xi) + rN

• Perform rejection sampling using ĝ and the empirical rejec-
tion sampling constant

M̂ =
1
N

∑
i f(Xi) + rN

1
N

∑
i f(Xi)− 5rN

ALGORITHM: PRS
Parameters: s, n, δ, HC

Initial sampling
Draw uniformly at random N samples on [0, A]d

and evaluate f on them
Estimation of f

Estimate f by f̂ on these N samples (Equation 1)
Generating the samples

Sample n−N samples from
the compact pliable proposal ĝ?

Perform rejection sampling on these samples
using M̂ as a rejection constant to get n̂ samples

Output: Return the n̂ samples

NUMBER OF ACCEPTED SAMPLES
Theorem 2. Under Theorem 1’s assumptions and if:

• H0 < HC • 8rN ≤
∫
[0,A]d

f(x)dx

For n large enough, we have with probability larger than 1− δ that

n̂ ≥ n

[
1−O

(
log (nAd/δ)

n

) s
3s+d

]
.

Convergence Rate ↑with smoothness

Convergence Rate ↓with dimensionality

PRS PROPERTIES
• PRS deals with a wider class of functions and not necessarily

normalized

• PRS has guarantees: asymptotically we accept everything
(whp).

• PRS is a perfect sampler (whp) the samples are iid (unlike
MCMC)

• PRS empirical performance is comparable to state of the art

– PRS deals better with peakiness than A? sampling

– in general PRS does not scale to high dimensions

• An extension to densities with unbounded support is pro-
vided

Some notes on (very) high dimensionality

Let the γ-support of f be

Suppf,γ = Λf,γ where Λf,γ
def= {x ∈ D : f(x) > γ}

• In general, localizing the 0-support of f may require an expo-
nential cost in d

• Suppf,γ is localizable with a less than exponential cost, if:

– f|Suppcf,γ the restriction of f on the complementary of
Suppf,γ is convex

– One can evalute f and its gradient pointwise

Suppf,γ−ε localization costO(d2/ε2)

The trick: find a point x0 in Suppcf,γ and use standard gradient
based optimization to find a maximum on ∂Suppf,γ .

EXPERIMENTS - SCALING WITH PEAKINESS

f ∝ e−x

(1+x)a , parameter a defines the peakiness level
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EXPERIMENTS - MULTIMODAL EXAMPLES
A 2D example

f(x, y) ∝
(

1 + sin
(

4πx− π

2

))(
1 + sin

(
4πy − π

2

))
.
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n = 106 acceptance rate standard deviation
PRS 66.4% 0.45%

A? sampling 76.1% 0.80%
SRS 25.0% 0.01%

The Clutter Problem [Thomas P. Minka, UAI ’01]

• Consider K data points (Xi)
K
i=1 with half within [-5, -3]d and

half within [2, 4]d

• These points are assumed to be generated from

p(x|θ) = (1− π)N (x; θ, I) + πN (x; 0, 10I)

•We put a gaussian prior on the mean p(θ) = N (θ; 0, 100I)

• The goal is to sample from p(θ|(Xi)
K
i=1) ∝ p(θ)

∏K
i=1 p(Xi|θ)

n = 105, 1D acceptance rate standard deviation
PRS 79.5% 0.2%

A? sampling 89.4% 0.8%
SRS 17.6% 0.1%

n = 105, 2D acceptance rate standard deviation
PRS 51,0% 0.4%

A? sampling 56.1% 0.5%
SRS 2.10−3% 10−5%

EXTENDING THIS WORK
Iterative version:
• PRS is a 2 step algorithm: estimation + RS
• Possibly improve the estimate on several steps
• Optimize the number of samples gathered between these “esti-

mation update steps"


