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SIMPLE REJECTION SAMPLING BOUNDING THE GAP EXPERIMENTS - SCALING WITH PEAKINESS
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Goal: Sample from a target density f (not easy to sample from) Theorem 1. The estimate f is such that with probability larger than f o (11_:1:)& , parameter a defines the peakiness level
Tool: Use a proposal density g (from which sampling is quite easy) 1 — 8, for any point = € [0, A]%,

Property: Smaller R — fewer rejections (good!) 1
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proposal g where Hy 1s a constant that depends on the problem parameters.
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THE PLIABLE PROPOSAL

e Remaining requests to f: n — NV

o letry = AdHC (log(NAd/(S)) Tard
M verifies f < M g. The sampling algorithm: K

* Sample x from g #() e Construct the pliable proposal g out of f:

e Accept x as a sample from f with probability —gzgx)

eptance Rate
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Let d > 1 and let f be a density on R?.
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e Perform rejection sampling using g and the empirical rejec-
tion sampling constant

Question: Given a number n of requests to f, what is
the number 7" of samples Y7, ..., Yr that one can gen-
erate such that they are i.i.d. according to f?

Can we increase the acceptance rate?
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Peakiness

ALGORITHM: PRS

Parameters: s, n, 0, H¢
Adaptive Rejection Sampling (ARS) [Gilks and Wild 1992] Initial sampling
e The target f is assumed to be log-concave (unimodal) Draw uniformly at random N samples on [0, A]“
e The enveloppe is made of tangents at a set of points S and evaluate f on them
e At each rejection, the sample is added to S Estimation of /
Estimate f by f on these N samples (Equation 1) - - i
log(f) Generating the samples P akineils
e \ Sample n — N samples from n — 10°

/ the compact pliable proposal g*
Perform rejection sampling on these samples

using M as a rejection constant to get n samples
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EXPERIMENTS - MULTIMODAL EXAMPLES

Output: Return the n samples A 2D example

f(x,y) (1 + sin (47T33 — g)) (1 + sin (47ry — g)) .

NUMBER OF ACCEPTED SAMPLES

Adaptive Rejection Metropolis Sampling (ARMS) Theorem 2. Under Theorem 1's assumptions and if:
[Gilks, Best and Tan 1995]

e Performs a Metropolis-Hastings step for each accepted sample e Hy<Hc  8ry < [i g0 [(@)da
(which correlates the samples) . »
For n large enough, we have with probability larger than 1 — ¢ that

Convex-Concave Adaptive Rejection Sampling - .-
[Gorur and Tuh 2011] 10O (log (”Ad/5)> setd
e Decomposes the target as convex + concave n
e Builds piecewise linear upper bounds (tangents, secant lines) ) )

e T Convergence Rate | with dimensionality

Better proposal means smaller rejection area R
Smaller R means g should have a similar “shape" to f

For this purpose: PRS PROPERTIES

o Build an estimate f e Translate it uniformly

n>mn

PRS deals with a wider class of functions and not necessarily
normalized n = 10° acceptance rate  standard deviation

PRS has guarantees: asymptotically we accept everything PRS 66.4% 0.45%
(whp). A* sampling 76.1% 0.80%

SRS 25.0% 0.01%

envelope Mg

PRS is a perfect sampler (whp) the samples are iid (unlike

MCMCO)
The Clutter Problem [Thomas P. Minka, UAI '01]

PRS empirical performance is comparable to state of the art

e Consider K data points (X;)% , with half within [-5, -3]¢ and

target — PRS deals better with peakiness than A* sampling half within [2, 4]¢

estimate f ~ 7

! — in general PRS does not scale to high dimensions

e These points are assumed to be generated from

A It should be easy to sample from g ... and f! An extension to densities with unbounded support is pro-
vided p(x|0) = (1 — m)N(z;0,1) + 7N (z;0,101)
CHOICE OF THE ESTIMATE

Assumption 1 (on the density). Some notes on (very) high dimensionality .
e f defined on [0, A]* and bounded. e The goal is to sample from p(0|(X;)E ;) o< p(0) [[,.—, p(X:]0)

o [t admits a Taylor expansion in any point up to some degree 0 < s < 2. Let the y-support of f be

e We put a gaussian prior on the mean p(6) = N (6;0,1001)

n = 10°, 1D | acceptance rate  standard deviation

Supp, ., = As., where Aj, = {xeD: f(x) >~} PRS 79.5% 0.2%

A* sampling 89.4% 0.8%

e In general, localizing the 0-support of f may require an expo- SRS 17.6% 0.1%
nential cost in d

Assumption 2 (on the kernel).

o Let K =[]\, Ko

o K is aadensity kernel : defined on R, uniformly bounded, normalized
and non-negative

® Ko is e-Holder for some e > 0 e Ko is of degree 2, L. n = 10°,2D | acceptance rate  standard deviation
e Supp,  islocalizable with a less than exponential cost, if: ’ P
rKo(x)de =0 and ° Ko(x)dr < 0o : PRS 51,0% 0.47%
» 0 B R 0 — f|5upp?ﬁ the restriction of f on the complementary of A* sampling 56.1% 0.5%
Supp ., is convex SRS 2.107°% 107°%

Let X1,..., XNy ~ Ujp 2. The (modified) kernel regression esti- — One can evalute f and its gradient pointwise

mate is EXTENDING THIS WORK

Xi — X . .

e PRS is a 2 step algorithm: estimation + RS

The trick: find a point zo in Supp’ | and use standard gradient e Possibly improve the estimate on several steps

e Optimize the number of samples gathered between these “esti-

based optimization to find a maximum on JSupp . P
’ mation update steps”



