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Abstract
We investigate an active pure-exploration setting,
that includes best-arm identification, in the con-
text of linear stochastic bandits. While asymptot-
ically optimal algorithms exist for standard multi-
arm bandits, the existence of such algorithms for
the best-arm identification in linear bandits has
been elusive despite several attempts to address
it. First, we provide a thorough comparison and
new insight over different notions of optimality in
the linear case, including G-optimality, transduc-
tive optimality from optimal experimental design
and asymptotic optimality. Second, we design the
first asymptotically optimal algorithm for fixed-
confidence pure exploration in linear bandits. As
a consequence, our algorithm naturally bypasses
the pitfall caused by a simple but difficult instance,
that most prior algorithms had to be engineered
to deal with explicitly. Finally, we avoid the need
to fully solve an optimal design problem by pro-
viding an approach that entails an efficient imple-
mentation.

1. Introduction
Multi-armed bandits (MAB) probe fundamental exploration-
exploitation trade-offs in sequential decision learning. We
study the pure exploration framework, from among differ-
ent MAB models, which is subject to the maximization of
information gain after an exploration phase. We are par-
ticularly interested in the case where noisy linear payoffs
depending on some regression parameter θ are assumed.
Inspired by Degenne et al. (2019), we treat the problem
as a two-player zero-sum game between the agent and the
nature (in a sense described in Section 2), and we search
for algorithms that are able to output a correct answer with
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high confidence to a given query using as few samples as
possible.

Since the early work of Robbins (1952), a great amount of
literature explores MAB in their standard stochastic setting
with its numerous extensions and variants. Even-Dar et al.
(2002) and Bubeck et al. (2009) are among the first to study
the pure exploration setting for stochastic bandits. A non-
exhaustive list of pure exploration game includes best-arm
identification (BAI), top-m identification (Kalyanakrishnan
& Stone, 2010), threshold bandits (Locatelli et al., 2016),
minimum threshold (Kaufmann et al., 2018), signed ban-
dits (Ménard, 2019), pure exploration combinatorial ban-
dits (Chen et al., 2014), Monte-Carlo tree search (Teraoka
et al., 2014), etc.

In this work, we consider a general pure-exploration set-
ting (see Appendix D for details). Nevertheless, for
the sake of simplicity, in the main text we primarily fo-
cus on BAI. For stochastic bandits, BAI has been stud-
ied within two major theoretical frameworks. The first
one, fixed-budget BAI, aims at minimizing the probabil-
ity of misidentifying the optimal arm within a given num-
ber of pulls (Audibert & Bubeck, 2010). In this work,
we consider another setting, fixed-confidence BAI, intro-
duced by Even-dar et al. (2003). Its goal is to ensure that
the algorithm returns a wrong arm with probability less
than a given risk level, while using a small total number
of samples before making the decision. Existing fixed-
confidence algorithms are either elimination-based such
as SuccessiveElimination (Karnin et al., 2013), rely on
confidence intervals such as UGapE (Gabillon et al., 2012),
or follow plug-in estimates of the optimal pulling propor-
tions by a lower bound such as Track-and-Stop (Garivier
& Kaufmann, 2016). We pay particular attention to the
first two since they have been extended to the linear setting,
which is the focus of this paper. In particular, a natural
extension of pure exploration to linear bandits. Linear ban-
dits were first investigated by Auer (2002) in the stochastic
setting for regret minimization and later considered for fixed-
confidence BAI problems by Soare et al. (2014).

Linear bandits. We consider a finite-arm linear bandit
problem, where the collection of armsA ⊂ Rd is given with
|A| = A, and spans Rd. We assume that ∀a ∈ A, ‖a‖ ≤ L,
where ‖a‖ denotes the Euclidean norm of the vector a. The
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learning protocol goes as follows: for each round 1 ≤ t ≤
T, the agent chooses an arm at ∈ A and observes a noisy
sample

Yt = 〈θ, at〉+ ηt ,

where ηt ∼ N (0, σ2) is conditionally independent from the
past and θ is some unknown regression parameter. For the
sake of simplicity, we use σ2 = 1 in the rest of this paper.

Pure exploration for linear bandits. We assume that θ
belongs to some set M ⊂ Rd known to the agent. For
each parameter a unique correct answer is given by the
function i? :M→ I among the I = |I| possible ones (the
extension of pure exploration to multiple correct answers is
studied by Degenne & Koolen 2019). Given a parameter θ,
the agent then aims to find the correct answer i?(θ) by
interacting with the finite-armed linear bandit environment
parameterized by θ.

In particular, we detail the setting of BAI for which the
objective is to identify the arm with the largest mean.
That is, the correct answer is given by i?(θ) = a?(θ) :=
argmaxa∈A〈θ, a〉 for θ ∈ M = Rd and the set of pos-
sible correct answers is I = A. We provide other pure-
exploration examples in Appendix D.

Algorithm. Let Ft = σ(a1, Y1, . . . , at, Yt) be the infor-
mation available to the agent after t round. A deterministic
pure-exploration algorithm under the fixed-confidence set-
ting is given by three components: (1) a sampling rule
(at)t≥1, where at ∈ A is Ft−1-measurable, (2) a stop-
ping rule τδ , a stopping time for the filtration (Ft)t≥1, and
(3) a decision rule ı̂ ∈ I which is Fτδ -measurable. Non-
deterministic algorithms could also be considered by allow-
ing the rules to depend on additional internal randomization.
The algorithms we present are deterministic.

δ-correctness and fixed-confidence objective. An algo-
rithm is δ-correct if it predicts the correct answer with prob-
ability at least 1 − δ, precisely if Pθ

(
ı̂ 6= i?(θ)

)
≤ δ and

τδ < +∞ almost surely for all θ ∈M. Our goal is to find
a δ-correct algorithm that minimizes the sample complexity,
that is, Eθ[τδ] the expected number of sample needed to
predict an answer.

Pure exploration (in particular BAI) for linear bandits has
been previously studied by Soare et al. (2014); Tao et al.
(2018); Xu et al. (2018); Zaki et al. (2019); Fiez et al. (2019);
Kazerouni & Wein (2019). They all consider the fixed-
confidence setting. To the best of our knowledge, only Hoff-
man et al. (2014) study the problem with a fixed-budget.

Beside studying fixed-confidence sample complexity, Gariv-
ier & Kaufmann (2016) and some subsequent works (Qin
et al., 2017; Shang et al., 2020) investigate a general crite-
rion of judging the optimality of a BAI sampling rule: Algo-

rithms that achieve the minimal sample complexity when δ
tends to zero are called asymptotically optimal. Ménard
(2019) and Degenne et al. (2019) further study the problem
in a game theoretical point of view, and extend the asymp-
totic optimality to the general pure exploration for structured
bandits. Note that a naive adaptation of the algorithm pro-
posed by Degenne et al. (2019) may not work smoothly in
our setting. In this paper we use some different confidence
intervals that benefit better from the linear structure.

Contributions. 1) We provide new insights on the com-
plexity of linear pure exploration bandits. In particular, we
relate the asymptotic complexity of the BAI problem and
other measures of complexity inspired by optimal design
theory, which were used in prior work. 2) We develop a
saddle-point approach to the lower bound optimization prob-
lem, which also guides the design of our algorithms. In par-
ticular we highlight a new insight on a convex formulation
of that problem. It leads to an algorithm with a more direct
analysis than previous lower-bound inspired methods. 3)
We obtain two algorithms for linear pure exploration bandits
in the fixed-confidence regime. Their sample complexity is
asymptotically optimal and their empirical performance is
competitive with the best existing algorithms.

2. Asymptotic Optimality
In this section we extend the lower bound of Garivier &
Kaufmann (2016), to hold for pure exploration in finite-
armed linear bandit problems.

Alternative. For any answer i ∈ I we define the alter-
native to i, denoted by ¬i the set of parameters where the
answer i is not correct, i.e. ¬i := {θ ∈M : i 6= i?(θ)} .

We also define, for any w ∈ (R+)A, the design matrix

Vw :=
∑
a∈A

waaaᵀ .

Further, we define ‖x‖V :=
√
xᵀV x for x ∈ Rd and a

symmetric positive matrix V ∈ Rd×d. Note that it is a norm
only if V is positive definite. We also denote by ΣK the
probability simplex of dimension K − 1 for all K ≥ 2.

Lower bound. We have the following non-asymptotic
lower bound, proved in Appendix C, on the sample com-
plexity of any δ-correct algorithm. This bound was already
proved by Soare et al. (2014) for the BAI example.

Theorem 1. For all δ-correct algorithms, for all θ ∈M,

lim inf
δ→0

Eθ[τδ]
log(1/δ)

≥ T ?(θ) ,
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where the characteristic time T ?(θ) is defined by

T ?(θ)−1 := max
w∈ΣA

inf
λ∈¬i?(θ)

1

2
‖θ − λ‖2Vw .

In particular, we say that a δ-correct algorithm is asymptoti-
cally optimal if for all θ ∈M,

lim sup
δ→0

Eθ[τδ]
log(1/δ)

≤ T ?(θ) .

As noted in the seminal work of Chernoff (1959), the com-
plexity T ?(θ)−1 is the value of a fictitious zero-sum game
between the agent choosing an optimal proportion of alloca-
tion of pulls w and a second player, the nature, that tries to
fool the agent by choosing the most confusing alternative λ
leading to an incorrect answer.

Minimax theorems. Using Sion’s minimax theorem we
can invert the order of the players if we allow nature to play
mixed strategies

T ?(θ)−1 = max
w∈ΣA

inf
λ∈¬i?(θ)

1

2
‖θ − λ‖2Vw (1)

= inf
q∈P(¬i?(θ))

max
a∈A

1

2
Eλ∼q‖θ − λ‖2aaᵀ ,

where P(X ) denotes the set of probability distributions over
the set X . The annoying part in this formulation of the char-
acteristic time is that the set ¬i?(θ) where the nature plays is
a priori unknown (as the parameter is unknown to the agent).
Indeed, to find an asymptotically optimal algorithm one
should somehow solve this minimax game. But it is easy
to remove this dependency noting that infλ∈¬i‖θ − λ‖ = 0
for all i 6= i?(θ),

T ?(θ)−1 = max
i∈I

max
w∈ΣA

inf
λ∈¬i

1

2
‖θ − λ‖2Vw .

Now we can see the characteristic time T ?(θ)−1 as the
value of an other game where the agent plays a proportion
of allocation of pulls w and an answer i. The agent could
also use mixed strategies for the answer which leads to

T ?(θ)−1 = max
ρ∈ΣI

max
w∈ΣA

1

2

∑
i∈I

inf
λi∈¬i

ρi‖θ − λi‖2Vw

= max
ρ∈ΣI

max
w∈ΣA

inf
λ̃∈

∏
i(¬i)

1

2

∑
i∈I

ρi‖θ − λ̃i‖2Vw ,

where
∏
i∈I(¬i) denotes the Cartesian product of the alter-

native sets ¬i. But the function that appears in the value of
the new game is not anymore convex in (w, ρ) and Sion’s
minimax theorem does not apply anymore. We can how-
ever convexify the problem by letting the agent to play a
distribution w̃ ∈ ΣAI over the arm-answer pairs (a, i), see
Lemma 1 below proved in Appendix C.

Lemma 1. For all θ ∈M,

T ?(θ)−1 = max
w̃∈ΣAI

inf
λ̃∈

∏
i(¬i)

1

2

∑
(a,i)∈A×I

w̃a,i‖θ − λ̃i‖2aaᵀ

= inf
q̃∈

∏
i P(¬i)

1

2
max

(a,i)∈A×B
Eλ̃i∼q̃i‖θ − λ̃

i‖2aaᵀ .

Thus in this formulation the characteristic time is the value
of a fictitious zero-sum game where the agent plays a distri-
bution w̃ ∈ ΣAI over the arm-answer pairs (a, i) ∈ A× I
and nature chooses an alternative λ̃i ∈ ¬i for all the answers
i ∈ I. The algorithm LinGame-C that we propose in Sec-
tion 3 is based on this formulation of the characteristic time
whereas algorithm LinGame is based on the formulation of
Theorem 1.

Best-arm identification complexity. The inverse of the
characteristic time of Theorem 1 specializes to

T ?(θ)−1 = max
w∈ΣA

min
a6=a?(θ)

〈
θ, a?(θ)− a

〉2
2‖a?(θ)− a‖2

V −1
w

for BAI (see Appendix D.1 for a proof). It is also possible
to explicit the characteristic time

T ?(θ) = min
w∈ΣA

max
a6=a?(θ)

2‖a?(θ)− a‖2
V −1
w〈

θ, a?(θ)− a
〉2 .

Since the characteristic time involves many problem de-
pendent quantities that are unknown to the agent, previous
papers target loose problem-independent upper bounds on
the characteristic time. Soare et al. (2014) (see also Tao
et al. 2018, Fiez et al. 2019) introduce the G-complexity (de-
noted by AA) which coincides with the G-optimal design
of experimental design theory (see Pukelsheim 2006) and
the ABdir-complexity1 (denoted by ABdir) inspired by the
transductive experimental design theory (Yu et al., 2006),

AA = min
w∈ΣA

max
a∈A
‖a‖2

V −1
w

,

ABdir = min
w∈ΣA

max
b∈Bdir

‖b‖2
V −1
w

,

where Bdir := {a − a′ : (a, a′) ∈ A × A}. For the G-
optimal complexity we seek for a proportion of pulls w that
explores uniformly the means of the arms, since the statis-
tical uncertainty for estimating 〈θ, a〉 scales roughly with
‖a‖V −1

w
. In theAB-complexity we try to estimate uniformly

all the directions a−a′. On the contrary in this paper we try
to maximize directly the characteristic times, that is try to es-
timate all the directions a?(θ)−a scaled by the squared gaps
〈θ, a?(θ)− a〉. Note that the characteristic time can also be
seen as a particular optimal transductive design. Indeed for

1This complexity is denoted as XY by Soare et al. (2014).
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B? :=
{

(a?(θ)− a)/
∣∣〈θ, a?(θ)− a〉∣∣ : a ∈ A/

{
a?(θ)

}}
,

it holds

T ?(θ) = 2AB?(θ) := 2 min
w∈ΣA

max
b∈B?(θ)

‖b‖2
V −1
w

.

We have the following ordering on the complexities

T ?(θ) ≤ 2
ABdir

∆min(θ)2
≤ 8

AA
∆min(θ)2

=
8d

∆min(θ)2
, (2)

where ∆min = mina 6=a?(θ)〈θ, a?(θ)− a〉 and the last equal-
ity follows from the Kiefer-Wolfowitz equivalence theo-
rem (Kiefer & Wolfowitz, 1959). Conversely the AA-
complexity and theABdir-complexity are linked to an other
pure exploration problem, the thresholding bandits (see Ap-
pendix D.2).

Remark 1. In order to compute all these complexities, it is
sufficient to solve the following generic optimal transductive
design problem: for B a finite set of elements in Rd,

AB = min
w∈ΣK

max
b∈B
‖b‖2

V −1
w

.

When B = A we can use an algorithm inspired by Frank-
Wolfe (Frank & Wolfe, 1956) which possesses convergence
guarantees (Atwood, 1969; Ahipasaoglu et al., 2008). But in
the general case, up to our knowledge, there is no algorithm
with the same kind of guarantees. Previous works used
an heuristic based on a straightforward adaptation of the
aforementioned algorithm for general sets B but it seems
to not converge on particular instances, see Appendix I. We
instead propose in the same appendix an algorithm based on
Saddle point Frank-Wolfe algorithm that seems to converge
on the different instances we tested.

3. Algorithm
We present two asymptotically optimal algorithms for the
general pure-exploration problem. We also make the addi-
tional assumption that the set of parameter is bounded, that
is we know M > 0 such that for all θ ∈ M, ‖θ‖ ≤ M .
This assumption is shared by most of the works on linear
bandits (e.g. Abbasi-Yadkori et al. 2011; Soare et al. 2014).

We describe primarily LinGame-C, detailed in Algorithm 2.
The principle behind LinGame, detailed in Algorithm 1, is
similar and significant differences will be highlighted.

3.1. Notations

Counts. At each round t the algorithms will play an arm
at and choose (fictitiously) an answer it. We denote by
Na,i
t :=

∑t
s=1 1{(at,it)=(a,i)} the number of times the pair

(a, i) is chosen up to and including time t, and by Na
t =∑

i∈I N
a,i
s and N i

t =
∑
a∈I N

a,i
s the partial sums. The

vectors of counts at time t is denoted by Nt := (Na
t )a∈A

Algorithm 1 LinGame
Input: Agent learners for each answers (Liw)i∈I , thresh-
old β(·, δ)
for t = 1 . . . do

// Stopping rule
if maxi∈I infλ∈¬i

1
2
‖θ̂t−1−λ‖2VNt−1

≥β(t− 1, δ) then
stop and return ı̂ = i?(θ̂t−1)

end if
// Best answer
it = i?(θ̂t−1)
// Agent plays first
Get wt from Litw and update Wt = Wt−1 + wt
// Best response for the nature
λt ∈ argminλ∈¬it‖θ̂t−1 − λ‖2Vwt
// Feed optimistic gains
Feed learner Litw with gt(w) =

∑
a∈A w

aUat /2
// Track the weights
Pull at ∈ argmina∈AN

a
t−1 −W a

t

end for

and when it is clear from the context we will also denote
by Na

t = (Na,i
t )i∈I and N i

t = (Na,i
t )i∈I the vectors of

partial counts.

Regularized least square estimator. We fix a regulariza-
tion parameter η > 0. The regularized least square estimator
for the parameter θ ∈M at time t is

θ̂t = (VNt + ηId)
−1

t∑
s=1

Ysas ,

where Id is the identity matrix. By convention θ̂0 = 0.

3.2. Algorithms
Stopping rule. Our algorithms share the same stopping
rule. Following Garivier & Kaufmann (2016), our algo-
rithms stop if a generalized likelihood ratio exceeds a thresh-
old. It stops if

max
i∈I

inf
λi∈¬i

1

2
‖θ̂t − λi‖2VNt > β(t, δ) , (3)

and return i?t ∈argmax
i∈I

inf
λi∈¬i

‖θ̂t − λi‖2VNt /2. This stopping

and decision rules ensures that the algorithms LinGame and
LinGame-C are δ-correct regardless of the sampling rule
used, see lemma below2 proved in Appendix F.
Lemma 2. Regardless of the sampling rule, the stopping
rule (3) with the threshold

β(t, δ) =

(√
log

(
1

δ

)
+
d

2
log

(
1 +

tL2

ηd

)
+

√
η

2
M

)2

, (4)

2The fact that τδ < +∞ is a consequence of our analysis, see
Appendix E.
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Algorithm 2 LinGame-C
Input: Agent learner Lw̃, threshold β(·, δ)
for t = 1 . . . do

// Stopping rule
if maxi∈I infλ∈¬i

1
2
‖θ̂t−1−λ‖2VNt−1

≥ β(t−1, δ) then
stop and return ı̂ = i?(θ̂t−1).

end if
// Agent plays first
Get w̃t from Lw̃ and update W̃t = W̃t−1 + w̃t
// Best response for the nature
For all i ∈ I, λ̃it ∈ argminλ∈¬i‖θ̂t−1 − λ‖2V

w̃it

// Feed optimistic gains
Feed learner Lw̃ with gt(w̃) =

∑
(a,i)∈A×I w̃

a,iUa,it /2

// Track the weights
Pull (at, it) ∈ argmin(a,i)∈A×I N

a,i
t−1 − W̃

a,i
t

end for

satisfy Pθ
(
τδ <∞∧ i?τδ 6= i?(θ)

)
≤ δ.

Our contribution is a sampling rule that minimizes the sam-
ple complexity when combined with these stopping and
decision rules. We now explain our sampling strategy to
ensure that the stopping threshold is reached as soon as
possible.

Saddle point computation. Suppose in this paragraph,
for simplicity, that the parameter vector θ is known. By the
definition of the stopping rule and the generalized likelihood
ratio, as long as the algorithm does not stop,

β(t, δ) ≥ inf
λ∈¬i?(θ)

∑
a∈A

Na
t ‖θ − λ‖2aaᵀ/2 .

If we manage to have Nt ≈ tw?(θ) (the optimal pulling
proportions at θ), then this leads to β(t, δ) ≥ tT ?(θ)−1 and,
solving that equation, we have asymptotic optimality.

Since there is only one correct answer, the parameter θ
belongs to all sets ¬i for i 6= i?(θ). Hence

inf
λ∈¬i?(θ)

1

2

∑
a∈A

Na
t ‖θ − λ‖2aaᵀ

≥ inf
λ̃t∈

∏
i(¬i)

1

2

∑
(a,i)∈A×I

Na,i
t ‖θ − λ̃i‖2aaᵀ .

Introducing the sum removes the dependence in the un-
known i∗(θ). LinGame-C then uses an agent playing
weights w in ΣAI . LinGame does not use that sum over
answers, but uses a guess for i?(θ). Its analysis involves
proving that the guess is wrong only finitely many times in
expectation.

Our sampling rule implements the lower bound game be-
tween an agent, playing at each stage s a weight vector w̃s

in the probability simplex ΣA×I , and nature, who computes
at each stage a point λis ∈ ¬i for all i ∈ I. We additionally
ensure that Na,i

t ≈
∑t
s=1 w̃

a,i
s . Suppose that the sampling

rule is such that at stage t, a εt-approximate saddle point is
reached for the lower bound game, see Lemma 1. That is,

inf
λ̃∈

∏
i(¬i)

t∑
s=1

∑
(a,i)∈A×I

w̃i,as ‖θ − λ̃i‖2aaᵀ/2 + εt

≥
t∑

s=1

∑
(a,i)∈A×I

w̃i,as ‖θ − λ̃is‖2aaᵀ/2

≥ max
(a,i)∈A×I

t∑
s=1

‖θ − λ̃is‖2aaᵀ/2− εt .

Then if the algorithm did not stop, it verifies, using
Lemma 1,

β(t, δ) ≥ t max
(a,i)∈A×I

1

t

t∑
s=1

‖θ − λ̃is‖2aaᵀ/2− 2εt

≥ t inf
q̃∈

∏
i∈IP(¬i)

max
(a,i)∈A×I

Eλi∼qi‖θ−λ̃i‖2aaᵀ/2−2εt

= tT ?(θ)−1 − 2εt .

Solving that equation, we get asymptotically the wanted
t . T ?(θ) log(1/δ).

We implement the saddle point algorithm by using Ada-
Hedge for the agent (a regret minimizing algorithm of the
exponential weights family), and using best-response for
the nature, which plays after the agent. Precisely the learner
Lw for LinGame-C is AdaHedge on ΣAI with the gains

gθt (w̃) =
1

2

∑
(a,i)∈A×I

w̃a,i‖θ − λ̃is‖2aaᵀ .

Whereas LinGame uses I learners Liw, one for each possible
guess of i?(θ) with the gains. For i ∈ I, the learner Liw is
also AdaHedge but only on ΣA with the gains (when the
guess is i)

gθt (w) =
1

2

∑
a∈A

wa‖θ − λis‖2aaᵀ .

εt is then the sum of the regrets of the two players. Best-
response has regret 0, while the regret of AdaHedge is
O(
√
t) for bounded gains, as seen in the following lemma,

taken from de Rooij et al. (2014).

Lemma 3. On the online learning problem with K arms
and gains gs(w) =

∑
k∈[K] w

kUks for s ∈ [t], AdaHedge,
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predicting (ws)s∈[t], has regret

Rt := max
w∈ΣK

t∑
s=1

gs(w)− gs(ws)

≤ 2σ
√
t log(K) + 16σ(2 + log(K)/3) ,

where σ = max
s≤t

( max
k∈[K]

Uks − min
k∈[K]

Uks ) .

Other combinations of algorithms are possible, as long as
the sum of their regrets is sufficiently small. At each stage
t ∈ N, both algorithms advance only by one iteration and as
time progresses, the quality of the saddle point approxima-
tion improves. This is in contrast with Track-and-Stop
(Garivier & Kaufmann, 2016), in which an exact saddle
point is computed at each stage, at a potentially much greater
computational cost.

Optimism. The above saddle point argument would be
correct for a known game, while our algorithm is confronted
to a game depending on the unknown parameter θ. Follow-
ing a long tradition of stochastic bandit algorithms, we use
the principle of Optimism in Face of Uncertainty. Given
an estimate θ̂t−1, we compute upper bounds for the gain of
the agent at θ, and feed these optimistic gains to the learner.
Precisely, given the best response λit ∈ ¬i we define,

Ua,it =

{
maxξ min

(
‖ξ − λit‖2aaᵀ , 4L2M2

)
s.t. ‖θ̂t−1 − ξ‖2VNt−1

+ηId
≤ 2h(t)

,

where h(t) = β(t, 1/t3) is some exploration function. We
clipped the values, using that M and A are bounded to
ensure bounded gains for the learners. Under the event that
the true parameter verifies ‖θ̂t−1 − θ‖2 ≤ 2h(t), this is
indeed an optimistic estimate of ‖θ − λit‖2aaᵀ . Note that
Ua,it has a closed form expression, see Appendix E. The
optimistic gain is then, for LinGame-C (see Algorithm 1 for
the one of LinGame),

gt(w̃) =
1

2

∑
(a,i)∈A×I

w̃a,iUa,it .

Tracking. In both Algorithm 1 and 2, the agent plays
weight vectors in a simplex. Since the bandit procedure
allows only to pull one arm at each stage, our algorithm
needs a procedure to transcribe weights into pulls. This
is what we call tracking, following Garivier & Kaufmann
(2016). The choice of arm (or arm and answer) is

at+1 ∈ argmin
a∈A

Na
t −W a

t+1 for Algorithm 1,

(at+1, it+1) ∈ argmin
(a,i)∈A×I

Na,i
t − W̃

a,i
t+1 for Algorithm 2.

This procedure guarantees that for all t ∈ N, u ∈ U , with
U = A (resp. U = I × A) for Algo. 1 (resp. Algo. 2),
− log(|U|) ≤ Nu

t −Wu
t ≤ 1. That result is due to Degenne

et al. (2020) and its proof is reproduced in Appendix G.

Theorem 2. For a regularization parameter3 η ≥ 2(1 +
log(A))AL2 + M2, for the threshold β(t, δ) given by (4),
for an exploration function h(t) = β(t, 1/t3), LinGame
and LinGame-C are δ-correct and asymptotically optimal.
That is, they verify for all θ ∈M,

lim sup
δ→0

Eθ[τδ]
log 1/δ

≤ T ?(θ) .

The main ideas used in the proof are explained above. The
full proof is in appendix E with finite δ upper bounds.

3.3. Bounded parameters

We provide a bounded version of different examples (e.g.
BAI) in Appendix D where we add the assumption that the
parameter setM is bounded. In particular we show how
it affects the lower bound of Theorem 1: the characteristic
time T ?(θ) is reduced (or equivalently T ?(θ)−1 increases).
This is not surprising since we add a new constraint in the
optimization problem. This means that the algorithm should
stop earlier. The counterpart of this improvement is that it
is often difficult to compute the best response for nature.
Indeed, for example, in BAI, there is an explicit expression
of the best response, see Appendix D.1. When the constraint
‖λ‖ ≤M is added there is no explicit expression anymore
and one needs to solve an uni-dimensional optimization
problem, see Lemma 5. To devise an asymptotically optimal
algorithm without the boundedness assumption remains an
open problem.

Note that in the proof of Theorem 2 we only use two times
the boundedness assumption, first in the definition of the
threshold β(t, δ) (see Theorem 3) to handle the bias induced
by the regularization. Second, since the regret of AdaHedge
is proportional to the maximum of the upper confidence
bounds U i,as , we need to ensure that they are bounded.

4. Related Work
We survey previous work on linear BAI. The major focus
is put on sampling rules in this section. We stress that
all the stopping rules employed in the linear BAI litera-
ture are equivalent up to the choice of their exploration
rate (More discussion given in Appendix H). As afore-
mentioned, existing sampling rules are either based on
SuccessiveElimination or UGapE. Elimination-based
sampling rules usually operate in phases and progressively

3This condition is a simple technical trick to simplify the anal-
ysis. An η independent of A,L,M will lead to the same results up
to minor adaptations of the proof.
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discard sub-optimal directions. Gap-based sampling rules
always play the most informative arm that reduces the un-
certainty of the gaps between the empirical best arm and the
others.

XY-Static and XY-Adaptive. Soare et al. (2014)
first propose a static allocation design XY-Static that
aims at reducing the uncertainty of the gaps of all
arms. More precisely, it requires to either solve the
ABdir-complexity or use a greedy version that pulls the
arm argmina∈Amaxb∈Bdir

‖b‖2
V −1
w

at the cost of having
no guarantees. An elimination-like alternative called
XY-Adaptive is proposed then to overcome that issue.
We say elimination-like since XY-Adaptive does not dis-
card arms once and for all, but reset the active arm set
at each phase. XY-Adaptive and XY-Static are the
first algorithms being linked to AA-optimality, but are not
asymptotically optimal.

ALBA. ALBA is also an eliminations-based algorithm
designed by Tao et al. (2018) that improves over
XY-Adaptive by a factor of d in the sample complexity
using a tighter elimination criterion.

RAGE. Fiez et al. (2019) extend XY-Static and
XY-Adaptive to a more general transductive bandits set-
ting. RAGE is also elimination-based and requires the com-
putation of ABdir-complexity at each phase.

LinGapE and variants. LinGapE (Xu et al., 2018) is the
first gap-based sampling rule for linear BAI. LinGapE is
inspired by UGapE (Gabillon et al., 2012). It is, how-
ever, not clear whether LinGapE is asymptotically opti-
mal or not. Similar to XY-Static, LinGapE either re-
quires to solve a time-consuming optimization problem
at each step, or can use a greedy version that pulls arm
argmina∈A‖ait−ajt‖2(Vw+aaᵀ)−1 instead, again at the cost

of losing guarantees. Here it = i?(θ̂t) and ajt is the most
ambiguous arm w.r.t. ait , i.e. argmaxj 6=it〈θ̂t, aj−a

?(θ̂t)〉+
‖a?(θ̂t)−ajt‖V −1

Nt

√
2β(t, δ). On the other hand, Zaki et al.

(2019) propose a new algorithm based on LUCB. With a care-
ful examination, we note that the sampling rule of GLUCB is
equivalent to that of the greedy LinGapE using the Sherman-
Morrison formula. Later, Kazerouni & Wein (2019) provide
a natural extension of LinGapE to the generalized linear
bandits setting, where the rewards depend on a strictly in-
creasing inverse link function. GLGapE reduces to LinGapE
when the inverse link function is the identity function.

Note that all the sampling rules presented here depend on
δ (except XY-Static), while our sampling rules have a δ-
free property which is appealing for applications as argued
by Jun & Nowak (2016). Also all the guarantees in the
literature are of the form C log(δ) + O

(
log(1/δ)

)
for a

constant C that is strictly larger than T ?(θ)−1.

5. Experiments
Besides our algorithms, we implement the following algo-
rithms, all using the same stopping rule (more discussion
given in Appendix H): uniform sampling, the greedy ver-
sion of XY-Static (including AA-allocation and ABdir-
allocation), XY-Adaptive, and the greedy version of
LinGapE. We skip GLUCB/GLGapE since they are more or
less equivalent to LinGapE in the scope of this paper.

The usual hard instance. Usual sampling rules for classi-
cal BAI may not work for the linear case. This can be under-
stood on a well-studied instance already discussed by Soare
et al. (2014); Xu et al. (2018), which encapsulates the diffi-
culty of BAI in a linear bandit, and thus is the first instance
on which we test our algorithms. In this instance, arms are
the canonical basis a1 = e1, a2 = e2, ad = ed, plus an ad-
ditional disturbing arm ad+1 = (cos(α), sin(α), 0, . . . , 0)ᵀ,
and a true regression parameter θ equal to e1. In this prob-
lem, the best arm is always a1, but when the angle α is small,
the disturbing arm ad+1 is hard to discriminate from a1. As
already argued by Soare et al. (2014), an efficient sampling
rule for this problem instance would rather pull a2 in order
to reduce the uncertainty in the direction a1 − ad+1. Naive
adaptation of classical BAI algorithms cannot deal with that
situation naturally. We further use a simple set of experi-
ments to justify that intuition. We run our two algorithms
and the one of Degenne et al. (2019) that we call DKM over
the problem instance whence d = 2, δ = 0.01 and α = 0.1.
We show the number of pulls for each arm averaged over
100 replications of experiments in Table 1. We see that,
indeed, DKM pulls too much a3, while our algorithms focus
mostly on a2.

LinGame LinGame-C DKM
a1 1912 1959 1943
a2 5119 4818 4987
a3 104 77 1775

Total 7135 6854 8705

Table 1. Average number of pulls of each arm.

Comparison of different complexities. We use the pre-
vious setting to illustrate various complexities differ in prac-
tice. In Table 2 we compare the different complexities men-
tioned in this paper: the characteristic time T ?(θ) and its
associated optimal weights w?AB?(θ), the ABdir-complexity
and its associated optimal design w?ABdir

, the G-optimal
complexityAA and its associated optimal design w?AA. For
each weight vector w ∈ {w?AB?(θ), wABdir , wAA}, we also
provide the lower bound Tw given by Therorem 1, i.e.

Tw = max
a 6=a?(θ)

〈
θ, a?(θ)− a

〉2
2‖a?(θ)− a‖2

V −1
w

log(1/δ).
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Figure 1. Sample complexity over the usual counter-example with δ = 0.1, 0.01, 0.0001 respectively. CG = LinGame-C, Lk = LinGame,
RR = uniform sampling, fix = tracking the fixed weights, GS = XY-Static with AA-allocation, XYS = XY-Static with ABdir-
allocation, LG = LinGapE. The mean stopping time is represented by a black cross.
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Figure 2. Sample complexity over random unit sphere vectors with d = 6, 8, 10, 12 from left to right.

In particular we notice that targeting the proportions of pulls
wABdir , wAA leads to a much larger lower bound than the
one obtained with the optimal weights.

w?AB? w?ABdir
w?AA

a1 0.047599 0.499983 0.499983
a2 0.952354 0.499983 0.499983
a3 0.000047 0.000033 0.000033
Tw 369 2882 2882

T ?(θ) 2ABdir/∆
2
min 8AA/∆2

min
Complexity 0.124607 32.0469 64.0939

Table 2. Optimal w for various complexities (∆min = 0.0049958).

Comparison with other algorithms. Finally we bench-
mark our two sampling rules against others from the liter-
ature. We test over two synthetic problem instances, with
the first being the previous counter-example. We set d = 2,
α = π/6. Fig. 1 shows the empirical stopping time of each
algorithms averaged over 100 runs, with a confidence level
δ = 0.1, 0.01, 0.0001 from left to right. Our two algorithms
show competitive performance (the two leftmost boxes on
each plot), and are only slightly worse than LinGapE.

For the second instance, we consider 20 arms randomly gen-
erated from the unit sphere Sd−1 := {a ∈ Rd; ‖a‖2 =
1}. We choose the two closest arms a, a′ and we set
θ = a + 0.01(a′ − a) so that a is the best arm. This
setting has already been considered by Tao et al. (2018).
We report the same box plots over 100 replications as be-
fore with increasing dimension in Fig. 2. More precisely,

we set d = 6, 8, 10, 12 respectively, and always keep a
same δ = 0.01. Our algorithms consistently show strong
performances compared to other algorithms apart from
LinGapE. Moreover, we can see that in these random exam-
ples, LinGame-C works better than the non-confexified one,
and is even competitive compared to LinGapE.

We stress that although the main focus of this paper is the-
oretical, with algorithms that are asymptotically optimal,
our methods are also competitive with earlier algorithms
experimentally.

6. Conclusion
In this paper, we designed the first practically usable asymp-
totically optimal sampling rules for the pure exploration
game for finite-arm linear bandits. Should the boundedness
assumption be necessary to have optimal algorithm remains
an open question.

Another concern about the current sampling rules could be
their computational complexity. In BAI, the one step com-
plexity of LinGame-C (or LinGame) is dominated by the
computation of the best response for nature, which requires
a full matrix inversion. Alternatives that involve rank-1
updates should be considered.

More generally, however, the part of fixed-confidence pure
exploration algorithms that needs an improvement the most
is the stopping rule. While the one we used guarantees δ-
correctness, it is very conservative. Indeed, the experimental
error rates of algorithms using that stopping rule are orders
of magnitude below δ. This means that the concentration
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inequality does not reflect the query we seek to answer. It
quantifies deviations of the d-dimensional estimate in all
directions (morally, along 2d directions). However, for the
usual BAI setting with d arms in an orthogonal basis, it
would be sufficient to control the deviation of that estimator
in d− 1 directions to make sure that i∗(θ) = i∗(θ̂t).

Finally, the good performance of LinGapE raises the natu-
ral question of whether it could be proven to have similar
asymptotic optimality.
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A. Outline
The appendices are organized as follows:

� Notation is given in Appendix B.

� We give a full proof of Theorem 1 in Appendix C.

� We list and elaborate in detail several pure exploration problems in Appendix D.

� Appendix E is dedicated to the proof of sample complexity for LinGame-C and LinGame.

� Appendix F is dedicated to some important concentration results.

� We discuss the tracking procedure in Appendix G.

� We discuss the stopping rules in Appendix H.

� Finally, we provide some further details about the experiments in Appendix I.

B. Notation

Table 3. Table of notation

Notation Meaning

M set of parameters
M upper bound on the norm of θ
A finite set or arms
A number of arms
B transductive set
B number of elements in the transductive set
I finite set of answers
I number of answers
L upper bound on the norms of the arms
θ parameter inM
at arm pulled at time t
it answer chosen at time t
Na,i
t =

∑t
s=1 1{as=a,it=i} number of draws of arm a for a given answer i

η regularization parameter
θ̂t regularized least square estimate
ws weights in ΣA played by the agent in LinGame
wa,is = ws1{is=i} weights for arm a and answer i in LinGame
W a,i
t =

∑t
s=1 w

a,i
s cumulative sum of weights in LinGame

was =
∑
i∈I w

a,i
s or (wa,is )i∈I partial weights or vector of partial weights in LinGame

wis =
∑
a∈A w

a,i
s or (wa,is )a∈A partial weights or vector of partial weights in LinGame

w̃s weights in ΣAI played by the agent in LinGame-C
W̃ a,i
t =

∑t
s=1 w̃

a,i
s cumulative sum of weights in LinGame-C

w̃as =
∑
i∈I w̃

a,i
s or (w̃a,is )i∈I partial weights or vector of partial weights in LinGame-C

w̃is =
∑
a∈A w̃

a,i
s or (w̃a,is )a∈A partial weights or vector of partial weights in LinGame-C

Ua,is upper confidence bounds to build the optimistic gain, see (10)

C. Proofs of the Lower Bounds and Equivalent Formulations
We start this section by proving the lower bound.
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Proof of Theorem 1. Fix λ ∈ ¬i?(θ) in the alternative of θ. Thanks to the contraction of the entropy and the chain rule (see
Garivier et al. 2018), we have

kl
(
Pθ (̂ı = i?),Pλ(̂ı = i?)

)
≤
∑
a∈A

Eθ
[
Na(τδ)

]‖θ − λi‖2aaᵀ
2

,

where we denote by kl(p, q) the Kullback-Leibler divergence between two Bernoulli distributions Ber(p) and Ber(q)

kl(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

Since the algorithm is δ-correct we know that

Pλ
(
ı̂ = i?(θ)

)
≤ δ ≤ 1

2
≤ 1− δ ≤ Pθ

(
ı̂ = i?(θ)

)
.

Thanks to monotonic properties of the function kl(·, ·) and the inequality kl(1 − p, p) ≥ − log(2.4p) (see Garivier et al.
2018), it yields

kl
(
Pθ (̂ı = i?(θ)),Pλ(̂ı = i?(θ))

)
≥ kl(1− δ, δ) ≥ log

(
1

2.4δ

)
,

thus

log

(
1

2.4δ

)
≤
∑
a∈A

Eθ
[
Na(τδ)

]‖θ − λi‖2aaᵀ
2

.

Using the fact that the previous inequality is true for all λ ∈ ¬i?(θ) and that the vector of components Eθ
[
Na(τδ)

]
/Eθ

[
τδ
]

belongs to the probability simplex ΣA we get

log

(
1

2.4δ

)
≤ Eθ[τδ] inf

λ∈¬i?(θ)

K∑
a=1

Eθ
[
Na(τδ)

]
Eθ[τδ]

‖θ − λi‖2aaᵀ
2

≤ Eθ[τδ] sup
w∈ΣK

inf
λ∈¬i?(θ)

K∑
a=1

wa
‖θ − λi‖2aaᵀ

2
.

Dividing the previous inequality by log(1/δ) and taking the limit inferior when δ goes to zero allows us to conclude.

We restate and prove below Lemma 1.

Lemma 4. For all θ ∈M,

T ?(θ)−1 = max
i∈I

max
w∈ΣA

inf
λ∈¬i

‖θ − λ‖2Vw
2

(5)

= max
w̃∈ΣAI

inf
λ̃∈

∏
i(¬i)

1

2

∑
(a,i)∈A×I

w̃a,i‖θ − λi‖2aaᵀ (6)

= max
w̃∈ΣAI

inf
q̃∈

∏
i P(¬i)

∑
(a,i)∈A×Ĩ

wa,iEλi∼q̃i‖θ − λi‖2aaᵀ (7)

= inf
q̃∈

∏
i P(¬i)

1

2
max

(a,i)∈A×B
Eλi∼q̃i‖θ − λi‖2aaᵀ . (8)

Proof. The transition from (6) to (7) comes from the fact that the second player can use indifferently mixed or pure strategy.
The equality between (7) and (8) is just an application of the Sion lemma (see Degenne & Koolen 2019). It remains to prove
(5) = (6). First note that we can replace the first maximum in (5) over i?(θ) by a maximum over I because when i /∈ i?(θ)
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we know that θ ∈ ¬i. Since we can express the maximum over the answers as a maximum over the probability simplex ΣI
we have

max
i∈I

sup
w∈ΣA

inf
λ∈¬i

1

2

∑
a∈A

wa‖θ − λ‖2aaᵀ = max
ρ∈ΣI

∑
i∈I

sup
w∈ΣA

inf
λ∈¬i

1

2

∑
a∈A

ρiwa‖θ − λ‖2aaᵀ

= max
ρ∈ΣI

∑
i∈I

sup
wi∈ΣA

inf
λi∈¬i

1

2

∑
a∈A

ρiw
i
a‖θ − λi‖2aaᵀ

= sup
w̃∈ΣAI

inf
λ̃∈

∏
i∈I ¬i

1

2

∑
(a,i)∈A×I

w̃ia‖θ − λ̃i‖2aaᵀ ,

where for the last line we use the fact that all w̃ ∈ ΣAI can be written as w̃ia = ρiw
i
a with ρ ∈ ΣI and wi ∈ ΣA for all

i ∈ I.

D. Examples
We gather in this appendix several pure exploration problems for linear bandits. We first state a useful lemma.

Lemma 5. For θ, λ ∈ Rd , w in the interior of the probability simplex
◦

ΣA, y ∈ Rd , x ∈ R, we have

inf
λ: 〈λ,y〉≥x

‖θ − λ‖2Vw
2

=


(x− 〈θ, y〉)2

2‖y‖2
V −1
w

if x ≥ 〈θ, y〉

0 otherwise
.

Proof. We consider the Lagrangian of the problem, and we obtain

inf
λ: 〈λ,y〉≥x

‖θ − λ‖2Vw
2

= sup
α≥0

inf
λ∈Rd

‖θ − λ‖2Vw
2

+ α(x− 〈λ, y〉)

= sup
α≥0

α(x− 〈θ, y〉)− α2
‖y‖2

V −1
w

2

=


(x− 〈λ, y〉)2

2‖y‖2
V −1
w

if x ≥ 〈θ, y〉

0 otherwise
,

where the infimum in the first equality is reached at λ = θ + αV −1
w y and the supremum in the last equality is reached at

α = (x− 〈θ, y〉)/‖y‖2
V −1
w

if x ≥ 〈θ, y〉 and at α = 0 else.

D.1. Best-arm identification

For BAI the goal is to identify the arm with the largest mean. Thus, the set of parameters is M = Rd/{θ ∈ Rd :
| argmaxa∈A〈θ, a〉| > 1}, the set of possible answers is I = A and the correct answer is given by i?(θ) = a?(θ) :=
argmaxa∈A〈θ, a〉.
Lemma 6. For all θ ∈M,

T ?(θ)−1 = max
w∈ΣA

min
a6=a?(θ)

〈
θ, a?(θ)− a

〉2
2‖a?(θ)− a‖2

V −1
w

,

and

T ?(θ) = min
w∈ΣA

max
a6=a?(θ)

2‖a?(θ)− a‖2
V −1
w〈

θ, a?(θ)− a
〉2 .

Proof. Recall that the characteristic time is given by

T ?(θ)−1 = max
w∈∆A

inf
λ∈¬a?(θ)

‖θ − λ‖2Vw
2

.
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We just express the set ¬a?(θ) as a union of convex sets, and then compute the infimum for each one of them. Using
Lemma 5, it yields

T ?(θ)−1 = max
w∈∆A

min
a6=a?(θ)

inf
λ:〈λ,a〉>〈λ,a?(θ)〉

‖θ − λ‖2Vw
2

= max
w∈∆A

min
a6=a?(θ)

〈
θ, a?(θ)− a

〉2
2‖a?(θ)− a‖2

V −1
w

.

The formula for T ?(θ) is then straightforward given the one for T ?(θ)−1.

In fact the characteristic time is just a particular case of the optimal transductive design. Indeed if we set

B?(θ) :=

{
1∣∣〈θ, a?(θ)− a〉∣∣(a?(θ)− a) : a ∈ A/

{
a?(θ)

}}
,

then we have T ?(θ) = 2AB?(θ) where
AB?(θ) := min

w∈ΣA

max
b∈B?
‖b‖2

V −1
w

.

Best response. There is an explicit formula for the best response in BAI. Indeed if we inspect the proof of Lemma 6 we
have

inf
λ∈¬a?(θ)

‖θ − λ‖2Vw
2

= min
a6=a?(θ)

‖θ − λ?a‖V −1
w

.

where λ?a is defined in Lemma 7.

Lemma 7. For θ ∈ Rd , w in the interior of the probability simplex
◦

ΣA, we have

min
〈λ,a−a?(θ)〉≥0

‖θ − λ‖2Vw =

〈
θ, a?(θ)− a

〉2
2‖a?(θ)− a‖2

V −1
w

,

and λ?a defined below attains the infimum of the left hand term above

λ?a = θ − max (〈θ, a?(θ)− a〉, 0)

‖a?(θ)− a‖2(Vw+γId)−1

V −1
w (a? − a) .

Proof. See proof of Lemma 5.

D.1.1. BOUNDED BAI

One straightforward extension of this setting is to consider the bounded BAI. In this case, the set of parameters is
M = {θ ∈ Rd : | argmaxa∈A〈θ, a〉| = 1 and ‖θ‖ ≤M} for some M > 0. The set of possible answers is I = A and the
correct answer is given by i?(θ) = a?(θ) := argmaxa∈A〈θ, a〉. This additional assumption reduces the characteristic time
to

T ?(θ)−1 = max
w∈ΣA

min
a6=a?(θ)

inf
〈λ,a−a?(θ)〉>0
‖λ‖≤M

‖θ − λ‖2Vw .

But the best response is less trivial to compute, in particular there is no closed formula for λ?a as in BAI, see Lemma 8.

Lemma 8. For θ, λ ∈ Rd , w in the interior of the probability simplex
◦

ΣA,

min
〈λ,a−a?(θ)〉≥0
‖λ‖≤M

‖θ − λ‖2Vw = sup
γ≥0

max
(
〈θ, (Vw + γId)

−1Vw(a?(θ)− a)〉, 0
)2

2‖a?(θ)− a‖2(Vw+γId)−1

− γ

2

(
‖θ‖2 −M2

)
. (9)
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And if γ attains the supremum in the right hand term of (9), then

λ = θ −
max

(
〈θ, (Vw + γId)

−1Vw(a?(θ)− a)〉, 0
)

‖a?(θ)− a‖2(Vw+γId)−1

(Vw + γId)
−1(a? − a) ,

attains the minimum of the left hand term of (9).

Proof. We set a?(θ) = a?, and introduce the Lagrangian

inf
〈λ,a−a?〉>0
‖λ‖≤M

‖θ − λ‖2Vw = sup
γ≥0,α≥0

inf
〈λ,a−a?〉>0
‖λ‖≤M

‖θ − λ‖2Vw + α〈θ, a? − a〉+
γ

2

(
‖λ‖2 −M2

)
.

The infimum above is attained for
λ = θ − α(Vw + γId)

−1(a? − a) .

Thus the Lagrangian reduces to

inf
〈λ,a−a?〉>0
‖λ‖≤M

‖θ − λ‖2Vw = sup
γ≥0,α≥0

−α
2

2
‖a? − a‖2Vw+γId

+ α〈θ, (Vw + γId)
−1Vw(a? − a)〉+

γ

2

(
‖θ‖2 −M2

)
.

The supremum in α is reached for

α =
max

(
〈θ, (Vw + γId)

−1Vw(a? − a)〉, 0
)

‖a? − a‖2(Vw+γId)−1

.

Using this particular α in the definition of λ and in the Lagrangian allows us to conclude.

D.1.2. TRANSUDCTIVE BAI

We can also consider the transductive BAI (Fiez et al., 2019) where the agent wants to find the best arm of a different set B
that the one he is allow to pull. Precisely the set of parameters isM = Rd/{θ ∈ Rd : | argmaxb∈B〈θ, b〉| > 1}, the set of
possible answers is I = B and the correct answer is given by i?(θ) = b?(θ) := argmaxb∈B〈θ, b〉.

The characteristic time in this case is

T ?(θ)−1 = max
w∈ΣA

min
b 6=b?(θ)

〈
θ, b?(θ)− b

〉2
2‖b?(θ)− b‖2

V −1
w

.

Note that the dependency on the arm set A here only appears through the matrix Vw.

D.2. Threshold bandits

In this example the goal is to identify the set of arms whose mean is above a threshold ι ∈ R known by the agent. Thus, the
set of parameters isM = Rd/{θ ∈ Rd : ∃a ∈ A, 〈θ, a〉 = ι}, the set of possible answers is I = P(A), the power set of
the set of arms and the correct answer is given by i?(θ) = {a ∈ A : 〈θ, a〉 ≥ ι}. We can also express in this example the
characteristic time in a more explicit way.

Lemma 9. For all θ ∈M,

T ?(θ)−1 = max
w∈ΣA

min
a∈A

(
ι− 〈θ, a〉

)2
2‖a‖2

V −1
w

,

and T ?(θ) = 2AA(ι), where we define A(ι) := {|ι− 〈θ, a〉|−1a : a ∈ A} and

AA(ι) := min
w∈ΣA

max
a∈A(ι)

‖a‖2
V −1
w

.
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Proof. We proceed as the proof of Lemma 6. We have, using Lemma 5,

T ?(θ)−1 = max
w∈∆A

min
a∈A

inf
λ: sign(ι−〈λ,a〉)〈λ,a〉>ι

‖θ − λ‖2Vw
2

= max
w∈∆A

min
a∈A

(
ι− 〈θ, a〉

)2
2‖a‖2

V −1
w

.

Note that we recover in this example a weighted version of the G-complexity (AA-complexity) defined in Section 2. In
particular if θ = 0 and ι = 1 then

T ?(θ) = 2AA = 2d .

That makes sense since in this case, one shall estimate uniformly the mean of each arms.

D.2.1. TRANSDUCTIVE THRESHOLD BANDITS

We can generalize the previous example to any set of arms. Indeed if we fix a finite set of vector B ∈ Rd the goal is then
to identify all the elements b of this set such that 〈θ, b〉 ≥ ι for a known threshold τ ∈ R. Thus, the set of parameters is
M = Rd/{θ ∈ Rd : ∃b ∈ B, 〈θ, b〉 = ι}, the set of possible answers is I = P(B) and the correct answer is given by
i?(θ) = {b ∈ B : 〈θ, b〉 ≥ ι}. The characteristic time makes appear, unsurprisingly, in this case, the transductive optimal
design (Yu et al., 2006).

Lemma 10. For all θ ∈M,

T ?(θ)−1 = max
w∈ΣA

min
b∈B

(
ι− 〈θ, b〉

)2
2‖b‖2

V −1
w

,

and T ?(θ) = 2AB(ι), where we defined B(ι) := {|ι− 〈θ, b〉|−1b : b ∈ B} and

AB(ι) := min
w∈ΣA

max
b∈B(ι)

‖b‖2
V −1
w

.

Proof. Simple adaptation of the proof of Lemma 9.

Again, in particular, if θ = 0 and τ = 1 we recover the complexity of the optimal transductive design

T ?(θ)−1 = 2AB .

E. Proof for the Sample Complexity
In this section we prove the asymptotic optimality of LinGame-C and LinGame.

E.1. Events

We fix a constant α > 2 and define the event where the least square estimator is concentrated around the true parameter,

Et =

{
∀s ≤ t :

1

2
‖θ̂s − θ‖2VNs+ηId

≤ h(t) := β(t, 1/tα)

}
.

This event holds with high probability.

Lemma 11. For all t ≥ 1

Pθ (Ect ) ≤ 1

tα−1
.
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Optimistic loss. We need to build an upper confidence bound on the true gain for LinGame-C and LinGame respectively
at time s, for all w̃ ∈ ΣAI or all w ∈ ΣA,

gθs(w̃) =
1

2

∑
(a,i)∈A×I

w̃a,i‖θ − λ̃it‖2Vw̃ gθs(w) =
1

2

∑
a∈A×I

wa‖θ − λist ‖2Vw̃ ,

where λis ∈ argminλ∈¬i‖θ̂s−1 − λ‖Vws . For that, we just build a confidence bound for each term that appears in the right
hand sum.

Lemma 12. On the event Et, for all a ∈ A and λ ∈M, for all s ≤ t,

‖θ − λ‖2aaᵀ ≤ min

(
max
±

(
〈θ̂s − λ, a〉 ±

√
2h(t)‖a‖(VNs+ηId)−1

)2

, 4L2M2

)
.

Proof. First, note that since θ, λ ∈M, their norms are bounded by M , thus it holds

‖θ − λ‖2aaᵀ = 〈θ − λ, a〉2 ≤ ‖θ − λ‖2‖λ‖2 ≤ 4M2L2 .

Furthermore on Et we have

‖θ − λ‖2aaᵀ = 〈θ − λ, a〉2 ≤ sup{
θ′: ‖θ̂s−θ′‖2

(VNs
+ηId)

−1≤2h(t)
}〈θ′ − λ, a〉2

= max
±

(
〈θ̂s − λ, a〉 ±

√
2h(t)‖a‖(VNs+ηId)−1

)2

.

Combining the two inequalities above allows us to conclude.

Thus we define the upper confidence Ua,is on the coordinate (a, i) of the loss at time s ≤ t by

Ua,is = min

(
max
±

(
〈θ̂s−1 − λ, a〉 ±

√
2h(t)‖a‖(VNs−1

+ηId)−1

)2

, 4L2M2

)
, (10)

where λ = λ̃is for LinGame-C and λ = λis for LinGame. The optimistic gains are: gs(w̃) =
∑

(a,i)∈A×I w̃
a,iUa,is /2 for

LinGame-C and gs(w) =
∑
a∈A w

aUa,iss /2 for LinGame.

Analysis. The first step of our analysis is to restrict it to the event Et, as done by Garivier & Kaufmann (2016); Degenne
et al. (2019).

Lemma 13. Let Et be an event and T0(δ) ∈ N be such that for t ≥ T0(δ), Et ⊆ {τδ ≤ t}. Then

E[τδ] ≤ T0(δ) + 1 +
2α−2

α− 2
.

Proof. We have, using Lemma 11,

Eθ[τδ] =

+∞∑
t=0

P(τδ ≤ t) = T0(δ) +

+∞∑
t=T0(δ)

P(Ect )

≤ T0(δ) +

+∞∑
t=1

1

tα−1
≤ T0(δ) + 1 +

2α−2

α− 2
,

where we use an integral-sum comparison for the last inequality.

We need to prove that if Et holds, there exists such a time T0(δ) of order T ?(θ)−1 log(1/δ) + o
(

log(1/δ)
)
. The proof is

given in the next section.
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E.2. Analysis under concentration of LinGame-C

We assume in this section that the event Et holds. If the algorithm does not stop at stage t, then it holds

β(t, δ) ≥ max
i∈I

inf
λi∈¬i

1

2
‖θ̂t − λi‖2VNt .

However, by definition of the event Et we have∑
i∈I

inf
λi∈¬i

1

2
‖θ̂t − λi‖2V

Nit

≤ inf
λ∈¬i?(θ)

1

2
‖θ̂t − λ‖2V

N
i?(θ)
t

+
∑

i 6=i?(θ)

1

2
‖θ̂t − θ‖2V

Nit

≤ inf
λ∈¬i∗

1

2
‖θ̂t − λ‖2VNt +

1

2
‖θ̂t − θ‖2VNt

≤ max
i

inf
λ∈¬i

1

2
‖θ̂t − λ‖2VNt +

1

2
‖θ̂t − θ‖2VNt

≤ max
i

inf
λ∈¬i

1

2
‖θ̂t − λ‖2VNt + h(t) ,

thus one obtains
β(t, δ) + h(t) ≥

∑
i∈I

inf
λi∈¬i

1

2
‖θ̂t − λi‖2V

Nit

.

Hence we need to find a lower bound for the right hand sum. Let λi,w(θ) ∈ argminλ∈¬i ‖θ − λ‖Vw .

Lemma 14. On Et, if the algorithm does not stop at t,

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) ≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

. (11)

Proof. Using the triangular inequality,

‖θ − θ̂t‖V
Nit

+ ‖θ̂t − λi,Nit (θ̂t)‖VNit ≥ ‖θ − λi,Nit (θ̂t)‖VNit ,

and the inequality of Cauchy-Schwarz, we obtain∑
i∈I

1

2
‖θ̂t − λi,Nit (θ̂t)‖

2
V
Nit

≥
∑
i∈I

1

2

(
‖θ − λi,Nit (θ̂t)‖VNti − ‖θ̂t − θ‖VNit

)2

≥
∑
i∈I

1

2
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

−
∑
i∈I
‖θ̂t − θ‖V

Nit

‖θ − λi,Nit (θ̂t)‖VNit

≥
∑
i∈I

1

2
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

−
√∑

i∈I
‖θ̂t − θ‖2V

Nit

√∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

.

Using again that 1
2‖θ̂t − θ‖

2
VNt
≤ h(t) on Et, we get

β(t, δ) ≥
∑
i∈I

1

2
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

−
√

4h(t)
∑
i∈I

1

2
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

,

which leads to, using Lemma 28,

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) ≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

.
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We now continue the proof by replacing the counts by the weights in (11).

Lemma 15. On Et, if the algorithm does not stop at t,

β(t, δ) + 5AI
(√

h(t)β(t, δ) + 2h(t)
)
≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃i
t

. (12)

Proof. Using the tracking property, see Lemma 31, to state that for all (a, i) ∈ A × I, − log(AI) ≤ Na,i
t − W̃

a,i
t ≤ 1,

which implies

1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃t

− log(AI)

2

∑
(a,i)∈A×I

‖θ − λi,Nit (θ̂t)‖
2
aaᵀ

≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃i
t

− log(AI)

2

√√√√ ∑
(a,i)∈A×I

Na,i
t ‖θ − λit,Nt(θ̂t)‖2aaᵀ

∑
(a,i):Na,it ≥1

1

Na
t

≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃t

− log(AI)

2

√∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
Nit

AI .

Combining the last inequality with (11) yields

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) +
log(AI)

2

√
2AI

√
β(t, δ) +

√
4h(t)β(t, δ) + 4h(t) ≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃i
t

.

Some simplifications, using the fact that h(t) ≥ 1 and β(t, δ) ≥ 1 (thanks to the choice of η), give us

β(t, δ) + 5AI
(√

h(t)β(t, δ) + 2h(t)
)
≥ 1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃i
t

.

We now transit from θ to each θ̂s for s ≤ t in the right hand term of (12).

Lemma 16. On Et, if the algorithm does not stop at t,

β(t, δ) + 30AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

∑
i∈I

t∑
s=1

‖θ̂s−1 − λi,Nit (θ̂t)‖
2
Vw̃is

. (13)

Proof. Thanks to the inequality of Cauchy-Schwarz, we have,

1

2

∑
i∈I
‖θ − λi,Nit (θ̂t)‖

2
V
W̃i
t

=
1

2

∑
i∈I

t∑
s=1

‖θ − λi,Nit (θ̂t)‖
2
Vw̃is

≥ 1

2

∑
i∈I

t∑
s=1

(
‖θ̂s−1 − λi,Nit (θ̂t)‖

2
Vw̃is
− 2‖θ − θ̂s−1‖Vw̃is ‖θ̂s−1 − λi,Nit (θ̂t)‖Vw̃is

)
≥ 1

2

∑
i∈I

t∑
s=1

‖θ̂s−1 − λi,Nit (θ̂t)‖
2
Vw̃is

−

√√√√∑
i∈I

t∑
s=1

‖θ − θ̂s−1‖2Vw̃is
∑
i∈I

t∑
s=1

‖θ̂s−1 − λi,Nit (θ̂t)‖
2
Vw̃is

. (14)



Gamification of Pure Exploration for Linear Bandits

We need to upper bound the quantity
∑
i∈I
∑t
s=1 ‖θ − θ̂s−1‖2w̃is . By definition of the event Et we have

‖θ − θ̂s−1‖2aaᵀ = 〈θ − θ̂s−1, a〉2

≤ ‖θ − θ̂s−1‖2VNs−1
+ηId
‖a‖2(VNs−1

+ηId)−1

≤ 2h(t)‖a‖2(VNs−1
+ηId)−1 .

Thus thanks to Lemma 30, we get

∑
i∈I

t∑
s=1

‖θ − θ̂s−1‖2w̃is =

t∑
s=1

∑
(a,i)∈A×I

w̃a,is ‖θ − θ̂s−1‖2aaᵀ ≤ 2h(t)

t∑
s=1

∑
a∈A

w̃as‖a‖2(VNs−1
+ηId)−1 ≤ 4h(t)2 .

Now going back to (14) in combination with (12) and Lemma 28, it follows

β(t, δ) + 30AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

∑
i∈I

t∑
s=1

‖θ̂s−1 − λi,Nit (θ̂t)‖
2
Vw̃is

.

We now introduce the upper confidence bounds.

Lemma 17. On Et, if the algorithm does not stop at t,

β(t, δ) + 50AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,is Ua,is . (15)

Proof. By definition of the best response λ̃is = argminλ∈¬i ‖θ̂s−1 − λ‖2w̃is , we have

1

2

∑
i∈I

t∑
s=1

‖θ̂s−1 − λi,Nit (θ̂t)‖
2
Vw̃is
≥ 1

2

∑
i∈I

inf
λi∈¬i

t∑
s=1

‖θ̂s−1 − λi‖2Vw̃is

≥ 1

2

t∑
s=1

∑
(a,i)∈A×I

w̃i,as ‖θ̂s−1 − λ̃is‖2aaᵀ . (16)

We recall the upper confidence bounds (10),

U i,as = min

(
max
±

(
〈θ̂s−1 − λ̃is), a〉 ±

√
2h(t)‖a‖(VNs−1

+ηId)−1

)2

, 4L2M2

)
,

it then holds

U i,as − ‖θ̂s−1 − λ̃is‖2aaᵀ ≤ max
±

(
〈θ̂s−1 − λ̃is, a〉 ±

√
2h(t)‖a‖(VNs−1

+ηId)−1

)2

− ‖θ̂s−1 − λ̃is‖2aaᵀ

≤ 2h(t)‖a‖2(VNs−1
+ηId)−1 + 2

√
2h(t)‖a‖(VNs−1

+ηId)−1 |〈θ̂s−1 − λ̃is, a〉| .
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Hence summing over t and using the inequality of Cauchy-Schwarz, we obtain

1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,is

(
U i,as − ‖θ̂s−1 − λ̃is‖2aaᵀ

)

≤
t∑

s=1

∑
(a,i)∈A×I

w̃a,is h(t)‖a‖2(VNs−1
+ηId)−1 + w̃a,is

√
2h(t)‖a‖(VNs−1

+ηId)−1 |〈θ̂s−1 − λ̃is, a〉|

≤ h(t)
∑

(a,i)∈A×I

t∑
s=1

w̃a,is ‖a‖2(VNs−1
+ηId)−1

+
√

2h(t)

√√√√ ∑
(a,i)∈A×I

t∑
s=1

w̃a,is ‖a‖2(VNs−1
+ηId)−1

√√√√ t∑
s=1

∑
(a,i)∈A×I

w̃a,is ‖θ̂s−1 − λ̃is‖2aaᵀ

≤ 2h(t)2 + 2
√

2h(t)

√√√√1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,is ‖θ̂s−1 − λ̃is‖2aaᵀ ,

where the last inequality is derived from Lemma 30. Thus combining the previous inequality with (13) and (16) with some
simplifications leads to

β(t, δ) + 50AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,is Ua,is .

It remains to bound the regret of the learner.
Lemma 18. On Et, if the algorithm does not stop at t,

β(t, δ) + 50AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 ≥ tT ?(θ)−1 , (17)

where
C1 = 4L2M2

√
log(AI) C2 = 64L2M2 (2 + log(AI)) .

Proof. Thanks to Proposition 3 for the algorithm AdaHedge, we have the following regret bound for the Lw̃-learner

max
w̃∈ΣAI

1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,iUa,is −
1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,is Ua,is ≤ 4L2M2
√

log(AI)︸ ︷︷ ︸
:=C1

√
t+ 64L2M2 (2 + log(AI))︸ ︷︷ ︸

:=C2

.

Finally, using this inequality in combination with (15) and the fact that the gains are optimistic (see Lemma 12), we obtain

β(t, δ) + 50AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 ≥ sup

w̃∈ΣAI

1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,iUa,is

≥ sup
w̃∈ΣAI

1

2

t∑
s=1

∑
(a,i)∈A×I

w̃a,i‖θ − λ̃is‖2aaᵀ

= t sup
w∈ΣAI

∑
i∈I

1

t

t∑
s=1

1

2
‖θ − λ̃is‖2Vw̃i

≥ t sup
w̃∈ΣAI

∑
i∈I

inf
qi∈P(¬i)

Eλ∼qi
1

2
‖θ − λ‖2Vw̃i

= tT ?(θ)−1 ,

where for the last line we use the Sion’s minimax theorem, see Lemma 1.
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Now let T (δ) be the maximum of the t ∈ N such that

β(t, δ) + 50AI
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 ≥ tT ?(θ)−1 . (18)

And let δmin be the largest δ ∈ (0, 1) such that

β(log(1/δ)3/2, δ)+50AI

(
h
(

log(1/δ)3/2
)√

β
(

log(1/δ)3/2, δ
)

+ 2h
(

log(1/δ)3/2
)2)

+C1 log(1/δ)3/4+C2 < log(1/δ)3/2T ?(θ)−1 .

(19)
Such δ always exists since

β(log(1/δ)3/2, δ) + 50AI

(
h
(

log(1/δ)3/2
)√

β
(

log(1/δ)3/2, δ
)

+ 2h
(

log(1/δ)3/2
)2)

+ C1 log(1/δ)3/4 + C2 = o
(

log(1/δ)
)

and it depends only on the parameter of the problem: T ?(θ), L,M,α, η,A, I . Hence for δ ≤ δmin we know that T (δ) ≤
log(1/δ)3/2, which implies

T (δ) < T0(δ)

:= T ?(θ)

(
β(log(1/δ)3/2, δ) + 50AI

(
h
(

log(1/δ)3/2
)√

β
(

log(1/δ)3/2, δ
)

+ 2h
(

log(1/δ)3/2
)2)

+ C1 log(1/δ)3/4 + C2 + 1

)
.

(20)

Actually, if we do not stop on Et, it implies that t ≤ T (δ) thanks to Lemma 17. Thus for t ≥ T0(δ) > T (δ) we know that
τδ ≤ t. We just proved the following lemma.

Lemma 19. If δ ≤ δmin, defined in (19) then for t ≥ T0(δ) where T0(δ) is defined in (20) , Et ⊂ {τδ ≤ t} .

E.3. Proof of Theorem 2

Combining Lemma 13 and Lemma 19 for LinGame-C or Lemma 27 in Appendix E.4 for LinGame, we have for δ ≤ δmin,

Eθ[τδ] ≤ T0(δ) + 1 +
2α−2

α− 2
, (21)

with T0(δ) = T ?(θ) log(1/δ)+o(log(1/δ)), see (20) for an exact expression for LinGame-C (or equation (33) for LinGame).
That implies the asymptotic optimality of LinGame-C and LinGame,

lim sup
δ→0

Eθ[τδ]
log(1/δ)

= T ?(θ) .

It remains to prove the δ-correctness. Thanks to the inequality (21) above, we have4 that τδ < +∞ almost surely. And using
Lemma 2 we know that Pθ

(
ı̂ 6= i?(θ)

)
≤ δ, which allows us to conclude.

E.4. Analysis under concentration of LinGame

In this section we assume that the event Et holds and set i? = i?(θ). We prove that β(t, δ) & N i?

t T
?(θ)−1 and that

N i
t = O(

√
t) , for all i 6= i?. We define the weights wit = 1{it=i}wt and the best response λts = argminλ∈¬i ‖θ̂t−1−λ‖2wt .

Note that our algorithm computes λit only when it = i.

When is = i?. Here we proceed as in Appendix E.2. If the algorithm does not stop at stage t we have

β(t, δ) ≥ 1

2
max
i∈I

inf
λi∈¬i

‖θ̂t − λi‖2VNt ≥
1

2
inf
λ∈¬i?

‖θ̂t − λ‖2VNt .

Hence we need to find a lower bound for the right hand sum. Let λi,w(θ) ∈ argminλ∈¬i ‖θ − λ‖Vw . We first replace in this
sum θ̂t by θ.

4If δ ≤ δmin the inequality holds replacing T0(δ) by T (δ) + 1 defined in (18) which is also finite.
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Lemma 20. On Et, if the algorithm does not stop at t,

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) ≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VNt . (22)

Proof. Using the triangular inequality,

‖θ − θ̂t‖VNt + ‖θ̂t − λi?,Nt(θ̂t)‖VNt ≥ ‖θ − λi?,Nt(θ̂t)‖VNt ,

we obtain

1

2
‖θ̂t − λi?,Nt(θ̂t)‖2VNt ≥

1

2

(
‖θ − λi?,Nt(θ̂t)‖VNt − ‖θ̂t − θ‖VNt

)2

≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VNt − ‖θ̂t − θ‖VNt‖θ − λi?,Nt(θ̂t)‖VNt .

By definition of the event Et we know that 1
2‖θ̂t − θ‖

2
VNt
≤ h(t). Thus we get

1

2
‖θ̂t − λi?,Nt(θ̂t)‖2VNt ≥

1

2
‖θ − λi?,Nt(θ̂t)‖2VNt −

√
4h(t)

1

2
‖θ − λi?,Nt(θ̂t)‖2VNt ,

which leads to, using Lemma 28,

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) ≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VNt .

We now continue the proof by replacing the counts by the weights in (22).

Lemma 21. On Et, if the algorithm does not stop at t,

β(t, δ) + 5A
(√

h(t)β(t, δ) + 2h(t)
)
≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VWt . (23)

Proof. Using the tracking property, see Lemma 31, to state that for all a, − log(A) ≤ Na
t −W a

t ≤ 1, we get

1

2
‖θ − λi?,Nt(θ̂t)‖2VNt ≥

1

2
‖θ − λi?,Nt(θ̂t)‖2VWt −

log(A)

2

∑
a∈A
‖θ − λi?,Nt(θ̂t)‖2aaᵀ

≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VWt −

log(A)

2

√√√√∑
a∈A

Na
t ‖θ − λi?,Nt(θ̂t)‖2aaᵀ

∑
a:Nat ≥1

1

Na
t

=
1

2
‖θ − λi?,Nt(θ̂t)‖2VWt −

log(A)

2

√√√√‖θ − λi?,Nt(θ̂t)‖2VNt ∑
a:Nat ≥1

1

Na
t

≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VWt −

log(A)

2

√
A‖θ − λi?,Nt(θ̂t)‖2VNt .

Combining the last inequality with (22) yields

β(t, δ) +
√

4h(t)β(t, δ) + 4h(t) +
log(A)

2

√
2A

√
β(t, δ) +

√
4h(t)β(t, δ) + 4h(t) ≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VWt .

Some simplifications, using the fact that β(t, δ) ≥ 1 and h(t) ≥ 1, give us

β(t, δ) + 5A
(√

h(t)β(t, δ) + 2h(t)
)
≥ 1

2
‖θ − λi?,Nt(θ̂t)‖2VWt .
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We now go from θ to each θ̂s for s ≤ t in the right hand term of (23).

Lemma 22. On Et, if the algorithm does not stop at t,

β(t, δ) + 30A
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws . (24)

Proof. Using the inequality of Cauchy-Schwarz, we have,

1

2
‖θ − λi?,Nt(θ̂t)‖2VWt =

1

2

t∑
s=1

‖θ − λi?,Nt(θ̂t)‖2Vws

≥ 1

2

t∑
s=1

(
‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws − 2‖θ − θ̂s−1‖Vws ‖θ̂s−1 − λi?,Nt(θ̂t)‖Vws

)
≥ 1

2

t∑
s=1

‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws

−

√√√√ t∑
s=1

‖θ − θ̂s−1‖2Vws

t∑
s=1

‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws . (25)

We need to upper bound the quantity
∑t
s=1 w

a
s‖θ − θ̂s−1‖2aaᵀ . By definition of the event Et we have

‖θ − θ̂s−1‖2aaᵀ = 〈θ − θ̂s−1, a〉2

≤ ‖θ − θ̂s−1‖2VNs−1
+ηId
‖a‖2(VNs−1

+ηId)−1

≤ 2h(t)‖a‖2(VNs−1
+ηId)−1 .

Thus thanks to Lemma 30, we get

t∑
s=1

∑
a∈A

was‖θ − θ̂s−1‖2aaᵀ ≤ 2h(t)

t∑
s=1

∑
a∈A

was‖a‖2(VNs−1
+ηId)−1 ≤ 4h(t)2 . (26)

Now going back to (25) in combination with (23) and Lemma 28 leads to

β(t, δ) + 30A
(
h(t)

√
h(t)β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws . (27)

We now introduce the upper confidence bounds.

Lemma 23. On Et, if the algorithm does not stop at t,

β(t, δ) + 50A
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

wasU
a,i?

s . (28)

Proof. By definition of the best response λis = argminλ∈¬i ‖θ̂s−1 − λ‖2ws , we have

1

2

t∑
s=1

‖θ̂s−1 − λi?,Nt(θ̂t)‖2Vws ≥
1

2
inf
λ∈¬i?

t∑
s=1

‖θ̂s−1 − λ‖2Vws

≥ 1

2

t∑
s=1

∑
a∈A

was‖θ̂s−1 − λi
?

s ‖2aaᵀ . (29)
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We recall the upper confidence bounds (10)

Ua,is = min

(
max
±

(
〈θ̂s−1 − λis), a〉 ±

√
2h(t)‖a‖(VNs−1

+ηId)−1

)2

, 4L2M2

)
,

it then holds

Ua,is − ‖θ̂s−1 − λis‖2aaᵀ ≤ max
±

(
〈θ̂s−1 − λis, a〉 ±

√
2h(t)‖a‖(VNs−1

+ηId)−1

)2

− ‖θ̂s−1 − λis‖2aaᵀ

≤ 2h(t)‖a‖2(VNs−1
+ηId)−1 + 2

√
2h(t)‖a‖(VNs−1

+ηId)−1 |〈θ̂s−1 − λis, a〉| .

Hence summing over t and using the inequality of Cauchy-Schwarz we obtain

1

2

t∑
s=1

∑
a∈A

was

(
Ua,i

?

s − ‖θ̂s−1 − λi
?

s ‖2aaᵀ
)

≤
t∑

s=1

∑
a∈A

wash(t)‖a‖2(VNs−1
+ηId)−1 + was

√
2h(t)‖a‖(VNs−1

+ηId)−1 |〈θ̂s−1 − λi
?

s , a〉|

≤ h(t)
∑
a∈A

t∑
s=1

was‖a‖2(VNs−1
+ηId)−1

+
√

2h(t)

√√√√∑
a∈A

t∑
s=1

was‖a‖2(VNs−1
+ηId)−1

√√√√ t∑
s=1

∑
a∈A

was‖θ̂s−1 − λi?s ‖2aaᵀ

≤ 2h(t)2 + 2
√

2h(t)

√√√√1

2

t∑
s=1

∑
a∈A

was‖θ̂s−1 − λi?s ‖2aaᵀ ,

where the last inequality is derived from Lemma 30. Thus combining the previous inequality with (24) and (29) with some
simplifications leads to

β(t, δ) + 50A
(
h(t)

√
β(t, δ) + 2h(t)2

)
≥ 1

2

t∑
s=1

∑
a∈A

wasU
a,i?

s .

We then bound the regret of the learner.

Lemma 24. On Et, if the algorithm does not stop at t,

β(t, δ) + 50A
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 ≥ N i?(t)T ?(θ)−1 , (30)

where
C1 = 4L2M2

√
log(A) and C2 = 64L2M2 (2 + log(A)) .

Proof. Thanks to Proposition 3 for the algorithm AdaHedge we have the following regret bound for the learner Li?w

max
w∈ΣA

1

2

t∑
s=1

1{is=i?}
∑
a∈A

waUa,i
?

s − 1

2

t∑
s=1

∑
a∈A

wa,i
?

s Ua,i
?

s ≤ 4L2M2
√

log(A)︸ ︷︷ ︸
:=C1

√
t+ 64L2M2 (2 + log(A))︸ ︷︷ ︸

:=C2

.



Gamification of Pure Exploration for Linear Bandits

Note that the learner Li?w is updated only when is = i? that is why the indicator function appears in the regret above. Finally
using this inequality in combination with (28) and the fact that the gains are optimistic (see Lemma 12) we obtain

β(t, δ) + 50A
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 ≥

1

2

t∑
s=1

∑
a∈A

wa,i
?

s Ua,i
?

s

≥ sup
w∈ΣA

1

2

t∑
s=1

1{is=i?}
∑
a∈A

waUa,i
?

s

≥ sup
w∈ΣA

1

2

t∑
s=1

1{is=i?}
∑
a∈A

wa‖θ − λi
?

s ‖2aaᵀ

= N i?

t sup
w∈ΣA

1

t

t∑
s=1

1{is=i?}
1

2
‖θ − λi

?

s ‖2Vw

≥ N i?

t sup
w∈ΣA

inf
q∈P(¬i?)

Eλ∼q
1

2
‖θ − λ‖2Vw

= N i?

t T
?(θ)−1 ,

where in the last line we use the Sion’s minimax theorem, see (1).

When is 6= i?. It remains to show that N i?

t = t−O(
√
t).

Lemma 25. Under event Et,

N i?

t ≥ t−
2AI

∆2
min

(
8h(t)2 + C1

√
t+ C2

)
,

where
C1 = 4L2M2

√
log(A) and C2 = 64L2M2 (2 + log(A)) .

Proof. Under Et, using successively (26) and the fact that θ ∈ ¬i for i 6= i?, we get

2h(t)2 ≥
t∑

s=1

∑
a∈A

was
1

2
‖θ − θ̂s−1‖2aaᵀ ≥

t∑
s=1

1{i 6=i?}
1

2

∑
a∈A

was‖θ − θ̂s−1‖2aaᵀ

≥
∑
i 6=i?

inf
λ∈¬i

t∑
s=1

1

2

∑
a∈A

wa,is ‖λ− θ̂s−1‖2aaᵀ

≥
∑
i 6=i?

t∑
s=1

1

2

∑
a∈A

wa,is ‖λis − θ̂s−1‖2aaᵀ

where for the last inequality we used the fact that wa,is = 0 if is 6= i and wa,is = was otherwise. Now proceeding exactly as
in the proof of Lemma 23 we have

1

2

t∑
s=1

∑
a∈A

wa,is Ua,is ≤ 1

2

t∑
s=1

∑
a∈A

wa,is ‖θ̂s−1 − λis‖2aaᵀ

+ 2h(t)2 + 2
√

2h(t)

√√√√1

2

t∑
s=1

∑
a∈A

was‖θ̂s−1 − λiss ‖2aaᵀ .

Summing over i 6= i? in combination with the previous inequality then the inequality of Cauchy-Schwarz, we obtain

∑
i 6=i?

1

2

t∑
s=1

∑
a∈A

wa,is Ua,is ≤ 2h(t)2 + 2h(t)2I + 4h(t)2
√
I ≤ 8Ih(t)2 .
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However, thanks to Proposition 3 for the algorithm AdaHedge we have the following regret bound for the learner Liw

max
a∈A

1

2

t∑
s=1

1{is=i}U
a,i
s −

1

2

t∑
s=1

∑
a∈A

wa,is Ua,is ≤ 4L2M2
√

log(A)︸ ︷︷ ︸
:=C1

√
t+ 64L2M2 (2 + log(A))︸ ︷︷ ︸

:=C2

.

Therefore combining the two previous inequalities leads to

I
(
8h(t)2 + C1

√
t+ C2

)
≥
∑
i 6=i?

1

2
max
a∈A

t∑
s=1

1{is=i}U
a,i
s ≥

∑
i6=i?

1

2A

∑
a∈A

t∑
s=1

1{is=i}U
a,i
s . (31)

We now use the lemma stated below to lower bound one of the Ua,is . Lemma 26 and (31) then allow us to conclude

I
(
8h(t)2 + C1

√
t+ C2

)
≥
∑
i6=i?

1

2A

t∑
s=1

1{is=i}∆
2
min =

∆2
min

2A
(t−N i?

t ) .

Lemma 26. On Et, for all s ≤ t, if is 6= i? then there exists an arm a ∈ A such that

Ua,iss ≥ ∆2
min ,

where ∆2
min = infλ∈¬i? maxa∈A〈θ − λ, a〉2 > 0 .

Proof. Consider the projection θ̂Ms−1 ∈ argminθ′∈M‖θ̂s−1 − θ′‖VNs−1
+ηId . By definition of is we know that i?(θ̂Ms−1) =

is 6= i?. Indeed if i?(θ̂Ms−1) = i 6= is then

inf
λ∈¬i
‖θ̂s−1 − λ‖VNs−1

+ηId < inf
λ∈¬is

‖θ̂s−1 − λ‖VNs−1
+ηId

≤ inf
λ∈M: i?(λ)=i

‖θ̂s−1 − λ‖VNs−1
+ηId = ‖θ̂s−1 − θ̂Ms−1‖VNs−1

+ηId ,

which leads to a contradiction since ¬i ∈M. In particular θ̂Ms−1 ∈ ¬i?, thus there exists a ∈ A such that

〈θ − θ̂Ms−1, a〉2 ≥ ∆2
min .

Then by construction of the upper confidence bound, the definition of the projection and the inequality of Cauchy-Schwarz,

Ua,iss ≥ 2h(t)‖a‖2(VNs−1
+ηId)−1

≥ ‖θ − θ̂s−1‖2VNs−1
+ηId
‖a‖2(VNs−1

+ηId)−1

≥ ‖θ − θ̂Ms−1‖2VNs−1
+ηId
‖a‖2(VNs−1

+ηId)−1

≥ 〈θ − θ̂Ms−1, a〉2 ≥ ∆2
min .

Conclusion. Hence combining Lemma 24 and Lemma 25, on the event Et, if the algorithm does not stop

β(t, δ) + 50A
(
h(t)

√
β(t, δ) + 2h(t)2

)
+ C1

√
t+ C2 +

2AIT ?(θ)−1

∆2
min

(
8h(t)2 + C1

√
t+ C2

)
≥ T ?(θ)−1t . (32)

We can then conclude as in Appendix E.2. Let δmin be the largest δ ∈ (0, 1) such that

β(log(1/δ)3/2, δ) + 50A

(
h
(

log(1/δ)
)√

β(log(1/δ)3/2, δ) + 2h(t)2

)
+ C1 log(1/δ)3/4 + C2

+
2AIT ?(θ)−1

∆2
min

(
8h
(

log(1/δ)3/2
)2

+ C1 log(1/δ)3/4 + C2

)
< T ?(θ)−1 log(1/δ)3/2 .
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Then for

T0(δ) := T ?(θ)

(
β(log(1/δ)3/2, δ) + 50A

(
h
(

log(1/δ)
)√

β(log(1/δ)3/2, δ) + 2h(t)2

)
+ C1 log(1/δ)3/4 + C2

+
2AIT ?(θ)−1

∆2
min

I
(

8h
(

log(1/δ)3/2
)2

+ C1 log(1/δ)3/4 + C2

))
(33)

we have the following lemma. Note that we have T0(δ) = T ?(θ) log(1/δ) + o
(

log(1/δ)
)
.

Lemma 27. If δ ≤ δmin then for t ≥ T0(δ) where T0(δ) is defined in (33) , Et ⊂ {τδ ≤ t} .

E.5. Technical lemmas

We regroup in this section some technical lemmas.

Lemma 28. For all α, y ≥ 0, if for some x ≥ 0 if holds y ≥ x− α
√
x then

x ≤ y + α
√
y + α2 .

Proof. Just note that for z =
√
x we have

z2 − αz − y ≤ 0 ,

thus

x ≤ 1

4

(
α+

√
α2 + 4y

)2

≤ y +
α2

2
+
α

2

√
α2 + 4y ≤ y + α

√
y + α2 .

We then state a result derived from the concavity of V 7→ log det(V ).

Lemma 29. Let (wt)t≥1 be a sequence in ΣA and η > 0 then

t∑
s=1

∑
a∈A

wsa‖a‖2Ws+ηId
≤ d log

(
1 +

tL2

dη

)
.

where Wt =
∑t
s=1 ws.

Proof. Define the function f(W ) = log det(VW + ηId) for any W ∈ (R+)A. It is a concave function since the function
V 7→ log det(V ) is a concave function over the set of positive definite matrices (see Exercise 21.2 of Lattimore & Szepesvari
2018). And its partial derivative with respect to the coordinate a at W is

∇af(W ) = ‖a‖2(W+ηId)−1 .

Hence using the concavity of f we have∑
a∈A

wsa‖a‖2(VWs+ηId)−1 = 〈Ws −Ws−1,∇af(Ws)〉 ≤ f(Ws)− f(Ws−1) .

Which implies that

t∑
s=1

∑
a∈A

wsa‖a‖2VWs+ηId
≤ f(Wt)− f(W0) = log

(
det(VWt

+ ηId)

det(ηId)

)
≤ d log

(
1 +

tL2

dη

)
,

where for the last inequality we use the inequality of arithmetic and geometric means in combination with Tr(Wt) ≤
tL2 .

A simple consequence of the previous lemma follows.
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Lemma 30. For all t,

t∑
s=1

∑
a∈A

w̃as‖a‖2(VNs−1
+ηId)−1 ≤ 2h(t) = 2β(t, 1/tα)

t∑
s=1

∑
a∈A

was‖a‖2(VNs−1
+ηId)−1 ≤ 2h(t) .

Proof. According to the tracking procedure (Lemma 31), we know that Na
s−1 ≥ W̃ a

s−1 − log(AI). Thus, in combination
with the choice of η we can replace counts by weights

VNs−1 + ηId ≥ VW̃a
s
− Vw̃as − log(AI)V1A + ηId ≥ VW̃a

s
− (log(A) + 1)V1A + ηId ≥ VWs +

η

2
Id ,

where 1A = (1, . . . , 1) ∈ RA. Hence we obtain

‖a‖2(VNs−1
+ηId)−1 ≤ ‖a‖2(V

W̃a
s

+(η/2)Id)−1 ,

and applying Lemma 29 leads to

t∑
s=1

∑
a∈A

w̃as‖a‖2(VNs−1
+ηId)−1 ≤ d log

(
1 +

tL2

dη

)
≤ 2h(t) .

The exact same proof holds for was instead of w̃as since thanks to the tracking we have also in this case Na
s−1 ≥W a

s−1 −
log(A) ≥W a

s−1 − log(AI).

F. Concentration Results
We restate here the Theorem 20.4 (in combination with the Equation 20.10) by Lattimore & Szepesvari (2018).

Theorem 3. For all η > 0 and δ ∈ (0, 1),

Pθ
(
∃t ∈ N,

1

2
‖θ̂t − θ‖2VNt+ηId ≥ β(t, δ)

)
≤ δ ,

where

β(t, δ) :=

(√
log

(
1

δ

)
+
d

2
log

(
1 +

tL2

ηd

)
+

√
η

2
M

)2

= log

(
1

δ

)
+
d

2
log

(
1 +

tL2

ηd

)
+M

√
η

√
2 log

(
1

δ

)
+ d log

(
1 +

tL2

ηd

)
+
ηM2

2
.

The Lemma 2 is a simple consequence of this theorem.

Proof of Lemma 2. Using the fact that θ ∈ ¬i?t when i?t 6= i?(θ) and Theorem 3, it follows

Pθ
(
τδ <∞∧ i?τδ 6= i?(θ)

)
≤ Pθ

(
∃t ∈ N, inf

λ∈¬i?t

1

2
‖θ̂t − λ‖2VNt > β(t, δ), i?t 6= i?(θ)

)

≤ Pθ
(
∃t ∈ N,

1

2
‖θ̂t − θ‖2VNt+ηId ≥ β(t, δ)

)
≤ δ .
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G. Tracking
We call tracking the following interaction. Starting from vectors W0 = N0 = (0, . . . , 0) ∈ RK , for each stage t = 1, 2, . . .

• Nature reveals a vector wt in the simplex ΣK and updates Wt = Wt−1 + wt.

• A tracking rule selects kt ∈ [K] based on (w1, . . . , wt) and forms Nt = Nt−1 + ekt , where (ei)i∈[K] is the canonical
basis.

Note that wt is known to the tracking rule when choosing kt.

Definition 1. We call C-Tracking any rule which for all stages t ≥ 1 selects kt ∈ argmink∈[K]N
k
t−1 −W k

t .

This defines C-tracking up to the choice of kt when the argmin is not unique. The name stands for cumulative tracking and
is introduced by Garivier & Kaufmann (2016).

Lemma 31. The C-Tracking procedure described above ensures that for all t ∈ N, for all k ∈ [K],

−
K∑
j=2

1

j
≤ Nk

t −W k
t ≤ 1 .

The upper bound is given by Garivier & Kaufmann (2016). The lower bound is due to Degenne et al. (2020) and is
reproduced below.

Proof. Let S0 = {v ∈ RK :
∑K
k=1 v

k = 0}. The tracking procedure is such that for all stages t ∈ N, Nt −Wt ∈ S0.
Our proof strategy is to characterize the subset of S0 that can be reached during the tracking procedure, starting from
v0 = N0 −W0 = 0 .

We define a move→w as function from S0 to itself parametrized by w that maps v to v−w+ek, where k = argminj∈[K] v−
w. If the value of that function at v is u, we write v →w u . A vector u ∈ S0 is said to be reachable in one move from
v ∈ S0 if there exists w ∈ 4K such that v →w u. We denote it by v → u. It is said to be reachable from v if there is a
finite sequence of such moves such that v → . . .→ u.

A reverse move←k,w is a function from S0 to itself parametrized by k and w that maps v to v + w − ek. A reverse move
is said to be valid at v if vk ≤ minj v

j + 1. If the value of that function at v is u, we write u←k,w v . A vector u ∈ S0 is
said to be reverse-reachable in one move from v ∈ S0 if there exists k ∈ [K] and w ∈ 4K such that u←k,w v and such
that this is a valid reverse move at v. We denote it by u← v.

We now prove that (u → v) ⇔ (u ← v) . First, if u → v then let w be the parameter of a move u →w v and let
k = argminj∈[K] u −w. Then u ←k,w v is a valid reverse move. Second, if u ←k,w v is a valid reverse move, then
k = argminj∈[K] u−w and we have u→w v .

We characterize the elements v of S0 such that 0← . . .← v .

Let u,v ∈ S0 be such that u← v. Let Mv = {k ∈ [K] : vk ≤ minj v
j + 1}. Then for any set S ⊆ [K] such that Mv ⊆ S,∑

i∈S u
i ≤

∑
i∈S v

i. Indeed, for the reverse move to be valid, one of the coordinates in Mv was decreased by 1, and they
were added coordinates of a w ∈ 4K , that sum at most to 1.

Let S ⊆ [K] and AS = {u ∈ S0 : ∀k /∈ S, uk > 1
|S|
∑
i∈S u

i + 1}. We now prove that if u ← v and v ∈ AS , then
u ∈ AS and as a consequence, that if u← . . .← v and v ∈ AS , then u ∈ AS . Indeed,

• Since v ∈ AS , we have Mv ⊆ S, hence the previous remark proves 1
|S|
∑
i∈S u

i ≤ 1
|S|
∑
i∈S v

i.
• For k /∈ S, then k /∈Mv and uk ≥ vk > 1

|S|
∑
i∈S v

i + 1 ≥ 1
|S|
∑
i∈S u

i + 1 .

Since 0 /∈
⋃
S∈P([K])\{[K]}AS , we can now state that if 0← . . .← v, then v /∈

⋃
S∈P([K])\{[K]}AS .

Let j ∈ [2 : K] and let v(j) ∈ S0 be such that v1
(j) ≥ . . . ≥ v

j−1
(j) > vj(j) = . . . = vK(j). Then we will prove that one of the

two following statements is true:

1. vj−1
(j) > vj(j) + 1 and v(j) is not reachable from 0,
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2. vj−1
(j) ≤ vj(j) + 1. Then let vj−1:K be the mean of vj−1

(j) , . . . , v
K
(j) and let v(j−1) be the vector with v1

(j−1) = v1
(j), ...,

vj−2
(j−1) = vj−2

(j) and vj−1
(j−1) = . . . = vK(j−1) = vj−1:K . Then v(j−1) ← v(j) .

Case 1: vj−1
(j) > vj(j) + 1. Let S = [j : K]. then S 6= [K] and v ∈ AS . Hence v is not reachable from 0.

Case 2: vj−1
(j) ≤ vj(j) + 1. Let w be defined by w1 = . . . = wj−2 = 0, wj−1 = 1 − (K − j + 1)(vj−1:K − vj(j)) and

wj = . . . = wK = vj−1:K − vj(j). Since vj−1
(j) ≤ vj(j) + 1 and w ∈ 4K , the reverse move←j−1,w is valid at v(j). Then

the image of v(j) by that reverse move is v(j−1). Note that wj−1 ≥ wj = . . . = wK .

We have now all the tools to state the characterization of the the elements v of S0 such that 0 ← . . . ← v . By a
simple induction using the last case distinction, we have the following: let v ∈ S0 and let i1, . . . , iK ∈ [K] be such that
vi1 ≥ . . . ≥ viK . If 0← . . .← v, then there exists u1, . . . ,uK−2 and w1, . . . ,wK−1 such that

1. 0←i1,w1 u1 ←i2,w2 . . .←iK−2,wK−2
uK−2 ←iK−1,wK−1

v,

2. for all j ∈ [K − 2], ui1j ≥ . . . u
ij
j ≥ u

ij+1

j = . . . = uiKj = 1
K−j

∑K
k=j+1 v

ik ,

3. for all j ∈ [K − 1], wi1j = . . . w
ij−1

j = 0 and wjj ≥ w
ij+1

j = . . . = wiKj .

In order to prove the theorem, we then only need a bound on viK = −
∑K−1
j=1 wKj . The characterization of wj implies that

wKj ≤ 1/(K − j + 1) . Hence viK ≥ −
∑K
j=2

1
j .

H. A Fair Comparison of Stopping Rules
We investigate closely the stopping rules employed in existing linear BAI algorithm. We first make a synthesized table that
resembles stopping rules and decision rules of all existing algorithms, including ours, in Table 4. We denote by Ât the active
arm set for elimination-based algorithms, and by iÂt the only arm left in Ât when |Ât| = 1.

We show that they are all the same up to the choice of the exploration rate. Note that in Table 4, we have replaced all the
exploration term by β(t, δ), and we have also listed the original terms (with their original notation, thus may be in conflict
with notation of the current paper). In the following, we always use the same exploration rate β(t, δ) for all stopping rules.

LinGame and LinGame-C. We first notice that using the same argument as the proves of Lemma 5 and Lemma 6, the
stopping rule of LinGame and LinGame-C (and also the one of GLUCB) can be rewritten as

min
i6=i?(θ̂t)

〈θ̂t, ai − a?(θ̂t)〉2

2‖ai − a?(θ̂t)‖2V −1
Nt

1
{
a?(θ̂t)

ᵀθ̂t ≥ aᵀi θ̂t
}
> β(t, δ) .

Now we compare it with other stopping rules.

LinGame-C and LinGame⇒XY-Static. If LinGame-C stops at time t, then for a = a?(θ̂t), we have

∀a′ 6= a, ‖a− a′‖V −1
Nt

√
2β(t, δ) ≤ 〈θ̂t, a− a′〉 ,

and XY-Static stops as well.

XY-Static⇒XY-Adaptive. Suppose that XY-Static stops at time t under its stopping rule, then

∃a ∈ A,∀a′ 6= a, ‖a− a′‖V −1
Nt

√
2β(t, δ) ≤ 〈θ̂t, a− a′〉 .

It is clear that if such a exists, then it can only be the empirical best arm a?(θ̂t). Thus,

∀a′ 6= a?(θ̂t), ‖a?(θ̂t)− a′‖V −1
Nt

√
2β(t, δ) ≤ 〈θ̂t, a?(θ̂t)− a′〉 ,
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Table 4. Stopping rules for different algorithms

Algorithm Stopping rule Original term Decision rule

XY-Static ∃a ∈ A, ∀a′ 6= a, ‖a− a′‖
V−1
Nt

√
2β(t, δ) ≤ 〈θ̂t, a− a′〉 logt(A

2/δ) ı̂ = i?(θ̂t)

XY-Adaptive
|Ât| = 1, where all arms a ∈ A s.t.

∃a′ ∈ A, ‖a− a′‖
V−1
Nt

√
2β(t, δ) ≤ 〈θ̂t, a′ − a〉 are discarded logt(A

2/δ) ı̂ = iÂt

ALBA

|Ât| = 1, where all arms a ∈ A s.t.
‖a?(θ̂t)− a‖V−1

Nt√
1/2β(t, δ)

≤ 〈θ̂t, a?(θ̂t)− a〉 are discarded
1/`t ı̂ = iÂt

RAGE |Ât| = 1, where all arms a ∈ A s.t.
∃a′ ∈ A, 2−t−2 ≤ 〈θ̂t, a′ − a〉 are discarded

- ı̂ = iÂt

LinGapE
〈θ̂t, ajt − a?(θ̂t)〉+ ‖a?(θ̂t)− ajt‖V−1

Nt

√
2β(t, δ) < 0

with jt = argmaxj∈I〈θ̂t, aj − a?(θ̂t)〉+ ‖a?(θ̂t)− aj‖V−1
Nt

√
2β(t, δ)

Ct ı̂ = i?(θ̂t)

GLGapE
〈θ̂t, ajt − a?(θ̂t)〉+ ‖a?(θ̂t)− ajt‖V−1

Nt

√
2β(t, δ) < 0

with jt = argmaxj∈I〈θ̂t, aj − a?(θ̂t)〉+ ‖a?(θ̂t)− aj‖V−1
Nt

√
2β(t, δ)

Ct ı̂ = i?(θ̂t)

GLUCB maxi∈I infλ∈¬i
‖θ̂t − λ‖2VNt

2
≥ β(t, δ) - ı̂ = i?(θ̂t)

LinGame maxi∈I infλ∈¬i
‖θ̂t − λ‖2VNt

2
≥ β(t, δ) - ı̂ = it+1

LinGame-C maxi∈I infλ∈¬i
‖θ̂t − λ‖2VNt

2
≥ β(t, δ) - ı̂ = i?(θ̂t)

and all arms different from a?(θ̂t) would be discarded under XY-Adaptive. Furthermore, a?(θ̂t) would never be discarded
since

∀a′ 6= a?(θ̂t), 〈θ̂t, a′ − a?(θ̂t)〉 < 0 ≤ ‖a?(θ̂t)− a′‖V −1
Nt

√
2β(t, δ) ,

and XY-Adaptive stops.

XY-Adaptive⇒ ALBA Now if XY-Adaptive stops at time t, then all arms but a?(θ̂t) are discarded, and

∀a 6= a?(θ̂t), ‖a?(θ̂t)− a′‖V −1
Nt

√
2β(t, δ) =

‖a?(θ̂t)− a‖V −1
Nt√

1/2β(t, δ)
≤ 〈θ̂t, a?(θ̂t)− a〉 .

Therefore, those arms would also be discarded under ALBA, and ALBA stops.

ALBA⇒ LinGapE and GLGapE. Next, suppose that ALBA stops at time t under its stopping rule, then the only arm left
would be a?(θ̂t), and

∀a 6= a?(θ̂t),
‖a?(θ̂t)− a‖V −1

Nt√
1/2β(t, δ)

≤ 〈θ̂t, a?(θ̂t)− a〉 .

And in particular, we get
〈θ̂t, ajt − a?(θ̂t)〉+ ‖a?(θ̂t)− ajt‖V −1

Nt

√
2β(t, δ) < 0 .

Thus LinGapE/GLGapE stops under its stopping rule.
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LinGapE⇒ LinGame-C and LinGame Finally, we suppose that LinGapE stops at time t, then it comes

jt = argmax
j∈I

〈θ̂t, aj − a?(θ̂t)〉+ ‖a?(θ̂t)− aj‖V −1
Nt

√
2β(t, δ)

= argmin
j∈I

〈θ̂t, a?(θ̂t)− aj〉 − ‖a?(θ̂t)− aj‖V −1
Nt

√
2β(t, δ) .

By consequence,

min
i 6=i?(θ̂t)

〈θ̂t, ai − a?(θ̂t)〉2

2‖ai − a?(θ̂t)‖2V −1
Nt

1
{
a?(θ̂t)

ᵀθ̂t ≥ aᵀi θ̂t
}

=
〈θ̂t, ajt − a?(θ̂t)〉2

2‖ajt − a?(θ̂t)‖2V −1
Nt

≥ β(t, δ) ,

and LinGame-C stops as well.

In conclusion, all the stopping rules are equivalent if we set their exploration term to the same, though formulated in different
manners.

I. Implementation Details
In this section, we provide some further experiment details. We also share a few insights over different aspects of
implementations of different pure exploration linear bandits algorithms. In particular, we propose a new Frank-Wolfe-typed
heuristic to solve generic AB-design.

I.1. Experimental setting

More details for algorithm implementations. We give more clarifications on each individual algorithm implemented.

• For our algorithms LinGame and LinGame-C, we implemented the version with the boundedness assumption.

• For LinGapE We implemented the greedy version, that is, pull the arm argmina∈A‖ait − ajt‖2(VNt+aaᵀ)−1 with

it = i?(θ̂t) and jt = argmaxj 6=it〈θ̂t, aj − a
?(θ̂t)〉 + ‖a?(θ̂t) − ajt‖V −1

Nt

√
2β(t, δ). Note that this version does not

have a theoretical guarantee in the general case. However, as we stated in Section 4, the GLUCB proposed by Zaki et al.
(2019) is equivalent to this greedy version of LinGapE, and they provided an analysis for the 2-arm and 3-arm case.
LinGapE is designed for ε-best-arm identification, we set ε = 0 in our experiments to make sure that it outputs the
optimal one.

• For XY-Static, we implemented the greedy incremental version for both AA-allocation and ABdir-allocation, that
allows us to avoid the optimal design-computing step. To implement the non-greedy version, readers are invited to look
at next Section I.2 where we discuss in detail the computation of AB-optimal design.

• For XY-Adaptive, it requires a hyper-parameter that characterizes the length of each phase. We set that hyper-
parameter to 0.1 as done by Soare et al. (2014).

Technical details. All the algorithms and experiments are implemented in Julia 1.3.1, and
plots are generated using the StatsPlots.jl package. Other external dependencies are:
JLD2.jl, Distributed.jl, IterTools.jl, CPUTime.jl, LaTeXStrings.jl.

For reproducibility. To rerun our code, your need to have Julia installed, then unzip code.zip and do the following in
your terminal.

$ cd PATH/TO/THE/ FOLDER /code/ linear
$ julia
julia > include (" experiment_bai1 .jl") # reproduce Fig .1
julia > include (" viz_bai1 .jl") # visualization
julia > include (" experiment_bai2 .jl") # reproduce Fig .2
julia > include (" viz_bai2 .jl") # visualization
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I.2. Computation of different complexities

As mentioned in Section 2, computing the solution to a specified optimization problem is required in many existing linear
BAI algorithms. We survey some methods that can potentially be useful to handle that issue.

We recall that the three notions of complexity AA,ABdir,AB?(θ) can be written in a unified form,

AB = min
w∈ΣA

max
b∈B
‖b‖2

V −1
w
, (34)

where B is the transductive set, i.e. a finite set of elements in Rd. Transductive sets corresponding to different complexity
types mentioned in this paper can be found in Table 5.

Table 5. Different transductive sets

Allocation type Arm set Transductive set

(1) AA-allocation A A
(2) ABdir-allocation A Bdir = {a− a′ : (a, a′) ∈ A×A}
(3) AB?(θ)-allocation A B?(θ) =

{
(a?(θ)− a)/

∣∣〈θ, a?(θ)− a〉∣∣ : a ∈ A/
{
a?(θ)

}}
Frank-Wolfe. We can use a Frank-Wolfe heuristic to compute the optimizer of (34) shown in Algorithm 3. This heuristic
is used for example by Fiez et al. (2019). Note that this heuristic has been proved to have a linear convergence guarantee
when B = A (Ahipasaoglu et al., 2008). It is not clear, however, that the same guarantee holds for other transductive sets.

A simple sanity check to test whether a solver works smoothly is to solveAB?(θ) for classical multi-armed bandits (i.e. when
A = {e1, e2, . . . , ed}), for which a solver with guarantee exists (see Garivier et al. 2018). In particular we found instances
where Algorithm 3 does not converge toward the optimal weights, for example: A = {e1, e2, e3}, θ = (0.9, 0.5, 0.5).

Algorithm 3 Frank-Wolfe heuristic for computing generic AB-design
Input: arm set A ⊂ Rd, transductive set B ⊂ Rd, maximum iterations n
Initialize: w ← (1, 1, . . . , 1) ∈ RA, V ← Id, t← 0
while t < n do
ã ∈ argmaxa∈Amaxb∈B〈a, b〉2V −1

V ← V + ããᵀ

w ← t
t+1w + 1

t+1eã
t← t+ 1

end while
return w

We propose a variant of the previous heuristic that takes into account a count for each element in the transductive set B. The
pseudo-code of our method is displayed in Algorithm 4. Sanity check on various MAB instances shows the correctness of
our heuristic, its convergence guarantee remains for the future work.

Entropic mirror descent. An entropic mirror descent alternative is used by Tao et al. (2018) to computeAA. The entropic
mirror descent approach requires the knowldge of the Lipschitz constant of log detVw. Unfortunately, that Lipschitzness
property does not seem to hold. Lu et al. (2018) propose a solution to overcome the Lipschitz issue, but only for AA-design.
Whether it still works for general AB-design remains an open question.
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Algorithm 4 Saddle Frank-Wolfe heuristic for computing generic AB-design
Input: arm set A ⊂ Rd, transductive set B ⊂ Rd, maximum iterations n
Initialize: w ← (1, 1, . . . , 1) ∈ RA, Ṽ ← Id, V ← Id, t← 0
while t < n do
ã ∈ argmaxa∈A‖a‖

2
V −1Ṽ V −1

b̃ ∈ argmaxb∈B‖b‖2V −1

V ← V + ããᵀ

Ṽ ← Ṽ + b̃b̃ᵀ

w ← t
t+1w + 1

t+1eã
t← t+ 1

end while
return w


