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2 Local influence bandit settings

2.1 Description of the problem

Let G be a graph with d nodes. When a node i is se-
lected, it can influence the nodes of G, including itself.
Node i influences each node j with fixed but unknown
probability pi,j . Let M = (pi,j)i,j be the d⇥ d matrix
that represents G.

We consider the following online, active setting. At
each round (time) t, the learner chooses a node kt and
observes which nodes are influenced by kt, i.e., the
set Skt,t of influenced nodes is revealed. Let us also
write Skt,t(r) for the rth coordinate of Skt,t, i.e., it
is 1 if kt influences r at time t and 0 otherwise. Given
a budget of n rounds, the objective is to maximize the
number of influences that the selected node exerts.
Formally, our goal is to find the strategy maximizing
the performance

Ln =
n
X

t=1

|Skt,t| .

The influence of node k, i.e., the expected number of
nodes that node k exerts influence on, is by definition

rk = E [|Sk,t|] =
X

jd

pk,j .

We also define the dual influence of node k as

r�k =
X

jd

pj,k.

This quantity is the expected number of nodes that
exert influence on node k. For an undirected graph G,
M is symmetric and r�k = rk. However, in general, this
is not the case, but we assume that the influence is up
to a certain degree mutual. In other words, we assume
that if a node is very influential, it also is subject to the
influence of many other nodes. We make this precise
in Section 3.

As the performance measure, we compare any adaptive
strategy for this setting with the optimal oracle that
knows M. The oracle strategy always chooses one of
the most influential nodes, which are the nodes whose
expected number of influences rk is maximal. We call
one of these node k?, such that

k? = argmax
k

E
"

n
X

t=1

|Sk,t|
#

= argmax
k

nrk.

Let the reward of this node be

r? = rk? .

Then, its expected performance, if it consistently sam-
pled k? over n rounds, is equal to

E [L?
n] = nr?.

The expected regret of any adaptive strategy that is
unaware of M, with respect to the oracle strategy, is
defined as the expected di↵erence of the two,

E [Rn] = E [L?
n]� E [Ln] .

Dually, we define r�? as the average number of influ-
ences received by the most influenced node,

r�? = max
k

r�k.

2.2 Baseline comparison: Observing only
|Skt |, the number of influenced nodes

For a meaningful baseline comparison that shows the
benefit of the graph structure, we first consider a re-
stricted version of the setting from Section 2.1. The
restriction is that the learner, at round t, does not
observe the set of influenced nodes Skt,t, but only the
number number of elements in Skt,t, denoted by |Skt,t|.
In other words, once we select a node, we receive as
a feedback only the number of influenced nodes, but
not their identity. In this setting, we do not observe
enough information about the graph structure to ex-
ploit it, since we do not observe the links between the
nodes. As a result, this setting can be mapped to
a classic multi-arm bandit setting without underlying
graph structure, where the reward that the learner ob-
serves for node kt is equal to |Skt,t|.

If n � d, it is possible to directly apply classic multi-
arm bandit reasoning. Since we never receive any in-
formation about the graph structure, we cannot ex-
ploit it and we can only consider the quantity |Skt,t|
as the standard bandit reward, which is a noisy ver-
sion of rkt . Such problem is a standard bandit problem
with rewards |Skt,t|, that are integers between 0 and d
and have a variance bounded by rkt .

Directly building on upper and lower bounds argu-
ments for the classic bandit strategies (Lai & Rob-
bins, 1985; Audibert & Bubeck, 2009), we give the
following result. This result’s upper bound holds for
a specific bandit algorithm that we call GraphMOSS, a
slight adaptation of the MOSS algorithm by Audibert
& Bubeck (2009) to our specific setting.

Theorem 1 (proof in Appendix A). In the graph ban-
dit problem from Section 2.2, with the reward equal to
the number of influenced nodes |Skt,t| instead of Skt,t,
the regret is bounded as follows.

• Lower bound. If for some fixed " > 0, we have
"d < r? < (1 � ")d, then there exists a constant

What this is a bandit problem?

What are bandits anyway?

Case n < d
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The number of expected influences of node k is by definition
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matching lower bound

Revealing graph bandits for maximizing local influence

� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn]  U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d  2, for 8k  d

for t = 2d+ 1, . . . , n do

Ck,t  2b�k,t

q

max(log(n/(dTk,t)),0)
Tk,t

+ 2max(log(n/(dTk,t)),0)
Tk,t

, for 8k  d

kt  argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k  d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n  d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i  d : r�? � r�i  �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced
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� > 0 such that for n large enough, depending
on ", we have that

inf supE [Rn] � �min
⇣

r?n, r?d+
p

r?nd
⌘

,

where inf sup means the best possible algorithm
on the worst possible graph bandit problem.

• Upper bound. There exists a constant U > 0
such that the regret of Algorithm 1 is bounded as

E [Rn]  U min
⇣

r?n, r?d+
p

r?nd
⌘

.

Algorithm 1 GraphMOSS
Input

d: the number of nodes
n: time horizon

Initialization
Sample each arm twice
Update brk,2d, b�k,2d, and Tk,2d  2, for 8k  d

for t = 2d+ 1, . . . , n do
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Tk,t

+ 2max(log(n/(dTk,t)),0)
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, for 8k  d

kt  argmaxk brk,t + Ck,t

Sample node kt and receive |Skt,t|
Update brk,t+1

, b�k,t+1

, and Tk,t+1

, for 8k  d
end for

The lower bound holds also in the specific case where
the graph G is undirected (i.e., symmetric M), as is
explained in the proof. This is an important remark
as the undirected graphs are a canonical and “per-
fect” example of graphs where influencing and being
influenced is correlated and where the dual influence
is equal to the influence for each node.

3 The BARE algorithm and results

In this section we treat the unrestricted setting de-
scribed in Section 2.1 where we get revealed the iden-
tity of the influenced nodes, while the reward stays the
same as in Section 2.2. First, note that the minimax-
optimal rate in this setting is the same as in the re-
stricted information case above. To see that, one can,
for instance, consider a network composed of isolated
nodes with only a very small clique of most influen-
tial nodes, connected only to each other. Another ex-
ample is a graph where the fact of being influential
is uncorrelated with the fact of being influenced and
where, for instance, the most influential node is not
influenced by any node. For the same reasons as the
ones described in Theorem 1, when n  d, there is

no adaptive strategy in a minimax sense, also in this
unrestricted setting.

However, the cases where the identity of the influenced
nodes does not help, are somewhat pathological. In-
tuitively, they correspond to cases where the graph
structure is not very informative for finding the most
influential node. This is the case when there are many
isolated nodes, and also in the case where observing
nodes that are very influenced does not provide in-
formation on these nodes’ influence. In many typical
and more interesting situations, this is not the case.
First, in these problems, the nodes that have high
influence are also very likely to be subject being in-
fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i  d : r�? � r�i  �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as
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or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced
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BACK TO THE REAL SETTING

Can we actually do better?  

Well, not really…..  

Minimax optimal rate is still the same  

But the bad cases are somehow pathological 

isolated nodes 

uncorrelated being influenced and being influential 

Barabási–Albert etc tell us that the real-world graphs are not like that 

Let’s think of some measure of difficulty 

to define some non-degenerate cases 

ideas?
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DETECTABLE DIMENSION
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number of nodes we can efficiently extract in less than n rounds 

function D controls number of nodes given  a gap 

D(r) = d for r≥ r* and D(0) = number of most influenced nodes 

Detectable dimension D* = D(Δ∆*) 

Detectable gap Δ∆*  constants coming from the analysis and the Bernstein inequality 

Detectable horizon T*, smallest integer s.t.  

Equivalently: D* corresponding to smallest T* such that  

- For (easy, structured) star graphs  D* = 1 even for small n  (big gain) 
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fluenced, for instance, many interesting networks are
symmetric and then it is immediately the case. Sec-
ond, in the realistic graphs, there is typically a small
portion of the nodes that are noticeably more con-
nected than the others (Barabási & Albert, 1999).

In order to rigorously define these non-degenerate
cases, let us first define function D that controls the
number of nodes with a given dual gap, i.e., a given
suboptimality with respect to the most influenced
node

D(�)
def

= |{i  d : r�? � r�i  �}| .
The function D(�) is a non-decreasing quantity dual
to the arm gaps. Note that D(r) = d for any r � r�?
and that D(0) is the number of most influenced nodes.
We now define the problem dependent quantities that
express the di�culty of the problem and allow us to
state our results.

Definition 1. We define the detectable horizon as
the smallest integer T? > 0 such that

T?r
�
? �

p

D?nr�?,

when such T? exists and T? = n otherwise. Here, D?

is the detectable dimension defined as

D?
def

=D(�?),

where the detectable gap �? is defined as

�?
def

= 16

s

r�?d log (nd)

T?
+

80d log (nd)

T?
·

Remark 1. From the definitions above, the detectable
dimension is the D? that corresponds to the smallest
integer T? > 0 such that

T?r
�
? �

v

u

u

u

tD

0

@16

s

r�?d log (nd)

T?
+

80d log (nd)

T?

1

Anr�?,

or D? = d if such T? does not exist. It is therefore
a well defined quantity. Moreover, since D is nonde-
creasing and D(0) is the number of most influenced



HOW DOES D* BEHAVE?

For (easy, structured) star graphs  D* = 1 even for small n  (big gain) 

For (difficult) empty graphs D*= d even for large n  (no gain) 

In general: D* roughly decreases with n and it is small when D decreases quickly 

For n large enough D* is the number of the most influences nodes 

Example: D*  for Barabási–Albert model & Enron graph as a function of n 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BAndit REvelator: 2-phase algorithm 
- global exploration phase 

- super-efficient exploration 😸 

- linear regret 😿  — needs to be short! 

- extracts D* nodes   
- bandit phase 

- uses a minimax-optimal bandit algorithm 
- GraphMOSS is a little brother of MOSS 
- has a “square root” regret on D* nodes 

- D* realizes the optimal trade-off ! 
- different from exploration/exploitation tradeoff
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Algorithm BARE - BAndit REvelator 

Alexandra Carpentier, Michal Valko

nodes, then D? converges to the number of most influ-
enced nodes as n tends to infinity.

Finally let us write the influential-influenced gap as

"?
def

= r? � max
k2D�

rk,

where D� def

={i : r�i = maxk r�k}. The quantity "? quan-
tifies the gap between the most influential node overall
vs. the most influential node in the set of most influ-
enced nodes.

Remark 2. The quantity "? is small when one of the
most influenced nodes is also very influential. It is
exactly zero when one of the most influential nodes
happens to also be one of the most influenced nodes.
For instance, the case "? = 0 appears in undirected
social network models with mutual influence.

The graph structure is helpful when the D function
decreases quickly with n. To give an intuition about
how is D linked to the graph topology, consider a star-
shaped graph which is the most helpful and can have
D? = 1 even for a small n. On the other hand, a bad
case is a graph with many small cliques. The worst
case is where all nodes are disconnected except two,
where D? will be of order d even for a large n.

The detectable dimension D? is a problem dependent
quantity that represents the complexity of the problem
instead of d. In real networks, D? is typically smaller
than the number of nodes d and we give several ex-
amples of the empirical value of D? in Section 5 and
Appendix ??. As our analysis will show, D? represents
the number of nodes that we can e�ciently extract
from d nodes in less than n rounds of the time budget.
Our bandit revelator algorithm, BARE (Algorithm 2),
starts by the global-exploration phase and extracts a
subset of cardinality less than or equal toD?, that con-
tains a very influential node, that is at most "? away
from the most influential node. BARE does this extrac-
tion without scanning all the d nodes, which could be
impossible anyway, since we do not restrict to d  n.
In the subsequent bandit phase, BARE proceeds with
scanning this smaller set of selected nodes to find the
most influential one.

We now state our main theoretical result that proves
a bound on the regret of BARE.
Theorem 2 (proof in Section 4). In the unrestricted
local influence setting with information about the
neighbors, BARE satisfies, for a constant C > 0,

E [Rn]  Cmin
⇣

r?n,D?r? +
p

r?nD? + n"?
⌘

.

Remark 3. Note that BARE does not need prelimi-
nary information about G, as a classic multi-arm ban-
dit strategy described in Section 2.2 would require in
order to attain this rate.

Algorithm 2 BARE: Bandit revelator
Input
d: the number of nodes
n: time horizon

Initialization
Tk,t  0, for 8k  d
dr�k,t  0, for 8k  d

t 1, bT?  0, bD?,t  d, b�?,1  d
Global exploration phase

while t
⇣

b�?,t � 4
p

d log(dn)/t
⌘


q

bD?,tn do

Influence a node at random (choose kt uniformly
at random) and get Skt,t from this node
\r�k,t+1

 t
t+1

dr�k,t +
d

t+1

Skt,t(k)

b�?,t+1

 maxk0

q

\r�k0,t+1

+ 8d log(nd)/(t+ 1)

w?,t+1

 8b�?,t+1

q

d log(nd)
t+1

+ 24d log(nd)
t+1

bD?,t+1

 
�

�

�

n

k : maxk0 \r�k0,t+1

�\r�k,t+1

 w?,t+1

o

�

�

�

t t+ 1
end while
bT?  t.
Bandit phase
Run minimax-optimal bandit algorithm on the
bD?,bT?

chosen nodes (e.g., Algorithm 1)

Corollary 1. For an undirected social network model
the expected regret of BARE is

E [Rn]  Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

which is the minimax-optimal regret in the case where
there are D? instead of d nodes. This highlights the
dimensionality reduction potential of our method.

Finally, we state a lower bound for our setting. Notice
that the influential-influence gap also appears here.

Theorem 3 (proof in Appendix ??). Let d � Cn > 0
where C > 0 is an universal constant. Consider the
set of unrestricted local influence settings with infor-
mation about the neighbors, and the set of all problems
that have maximal influence bounded by r, detectable
dimension smaller than D  d/2 and influential-
influence gap smaller than ". Then the expected regret
of the best possible algorithm in the worst case of these
problems is lower bounded as

C 00 min
⇣

rn,Dr? +
p

rnD + n"
⌘

,

where C 00 is a universal constant.

4 Proof of Theorem 2

For any node k  d and any round t that is during
the global exploration phase, let us define the following
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Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.
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Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear
regret up to time t = d, since there is no sharing of in-
formation and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer
linear for t > d and eventually detects the best node,
BARE is able to detect promising nodes much sooner
during its global exploration phase and we can see the
benefit of revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information on the
structure and the performance of BARE and Graph-
MOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnuttella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook
network with d = 4039 (Viswanath et al., 2009). We
used the same parameters as for the Barabási-Albert
case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depends heavily on the structure. In En-
ron and Facebook, the gain of BARE is significant
which suggests that the graphs from these networks

feature a relatively small number of influential nodes.
On the other hand, the gain of BARE in Gnutella was
much smaller which again suggests that this network
is more decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD⇤ and the detectable
horizon bT⇤. Notice that the smaller bD⇤, as compared
to d, and the smaller bT⇤ is as compared to n, the sooner
is BARE able to learn the most influential node as
compared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., identity of the influencing paths, our results could
extend more e�ciently.

Note that in our setting, we were completely agnos-
tic to the graph structure. Realistic networks often
exhibit some additional structural properties that are
captured by graph generator models, such as various
stochastic block models (Girvan & Newman, 2002).

In future, we would like to extend our approach to
cases where we can take advantage of the assump-
tions stemming from these models and consider the
subclasses of graph structures where we can further
improve the learning rates.

Enron and Facebook vs. Gnutella (decentralised)
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Figure 1: Left : Barabási-Albert. Middle left : Facebook. Middle right : Enron. Right : Gnutella.
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Figure 2: Barabási-Albert model with varying p between 0.2 and 1

We first performed an experiment on a graph gen-
erated by 10-out-degree Barabási-Albert model with
d = 1000 nodes. Figure 1 (left) compares BARE with
GraphMOSS. As expected, GraphMOSS su↵ers linear re-
gret up to time t = d, since there is no sharing of
information and for t  d, GraphMOSS pulls each arm
once. While the regret of GraphMOSS is no longer linear
for t > d and eventually detects the best node, BARE is
able to detect promising nodes much sooner during its
global exploration phase and we can see the benefit of
revealed information already around t = 300.

In Figure 2, we varied the probability of revelation p
for a Barabási-Albert graph. When p close is to one,
the more of the graph structure is revealed and the
problem becomes easier. On the other hand, with p
close to zero we do not get as much information
about the structure and the performance of BARE and
GraphMOSS are similar.

We also performed the experiments on Enron mail
graph (Klimt & Yang, 2004) with d = 36692 and the
snapshot of symmetrized version of Gnutella network
from August 4th, 2002 (Ripeanu et al., 2002) with
d = 10879, obtained from Stanford Large Network
Dataset Collection (Leskovec & Krevl, 2014). Further-
more, we evaluated BARE on a subset of Facebook net-
work with d = 4039 (Viswanath et al., 2009). We used
the same parameters as for the Barabási-Albert case.

As expected, Figure 1 (middle left, middle right,
right) shows that the performance gains of BARE over
GraphMOSS depend heavily on the structure. In Enron
and Facebook, the gain of BARE is significant which
suggests that the graphs from these networks feature
a relatively small number of influential nodes. On the
other hand, the gain of BARE on Gnutella was much
smaller which again suggests that this network is more
decentralized.

In all the plots we include also the empirical estimate
of the detectable dimension bD? and the detectable
horizon bT?. Notice that the smaller bD?, as compared
to d, and the smaller bT? is as compared to n, the sooner
is BARE able to learn the most influential node as com-
pared to GraphMOSS.

6 Conclusion

We hope that out work on local revelation incites the
extensions on more elaborate propagation models on
graphs (Kempe et al., 2015). One way to directly ex-
tend to more general propagation models is to consider
that a more distant neighbor is a direct neighbor with
contamination probability being the sum of the path
products. Moreover, if we allow for more feedback,
e.g., the identity of the influencing paths, our results
could extend more e�ciently. Note that in our setting,
we were completely agnostic to the graph structure.
Realistic networks often exhibit some additional struc-
tural properties that are captured by graph generator
models, such as various stochastic block models (Gir-
van & Newman, 2002). In future, we would like to
extend our approach to cases where we can take advan-
tage of the assumptions stemming from these models
and consider the subclasses of graph structures where
we can further improve the learning rates.
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REVEALING BANDITS: WHAT DO YOU MEAN?

Ignoring the structure again?  

BAndit REvelator: 2-phase algorithm 

global exploration phase 

super-efficient exploration  

linear regret — needs to be short! 

extracts D* nodes   

bandit phase 

uses a minimax-optimal bandit algorithm (GraphMOSS) 

has a “square root” regret on D* nodes 

D* realizes the optimal trade-off ! 

different from exploration/exploitation tradeoff
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reward of the 
best node

D* - detectable dimension 
(depends on T and the structure) 

good case: star-shaped graph 
can have D* = 1 

bad case: a graph with many 
small cliques.  

the worst case: all nodes are 
disconnected except 2

Revealing Graph bandits: Influence Maximization

Ignoring the structure again? The best we can do is eO �p
r⇤TN

�

We aim to do better: RT = eO �p
r⇤TD⇤

�

D⇤ - detectable dimension dependent on T and the structure
I good case: star-shaped graph can have D⇤ = 1
I bad case: a graph with many small cliques.
I the worst case: all nodes are disconnected except 2

Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

More information: Revealing Graph Bandits for Maximizing Local Influence, Carpentier and Valko, AISTATS 2016

Michal Valko – Graphs in Machine Learning SequeL - 39/67

Revealing Graph bandits: Influence Maximization
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We aim to do better: RT = eO �p
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�

D⇤ - detectable dimension dependent on T and the structure
I good case: star-shaped graph can have D⇤ = 1
I bad case: a graph with many small cliques.
I the worst case: all nodes are disconnected except 2

Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes

More information: Revealing Graph Bandits for Maximizing Local Influence, Carpentier and Valko, AISTATS 2016

Michal Valko – Graphs in Machine Learning SequeL - 39/67

Regret of BARE
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Revealing graph bandits for maximizing local influence

estimator of reward r�k,t,

dr�k,t =
1

t

t
X

t0=1

dSkt,t0(k).

Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,

�

�

�

dr�k,t � r�k

�

�

�

 4

r

dr�k log (nd)

t
+

4d log (nd)

t
· (1)

Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,

r�k � 4

r

dr�k log (nd)

t
+

4d log (nd)

t
dr�k,t +

8d log (nd)

t

 r�k + 4

r

dr�k log (nd)

t
+

12d log (nd)

t
,

which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,

 

p

r�k � 2

r

d log (nd)

t

!

2

dr�k,t +
8d log (nd)

t


 

p

r�k + 4

r

d log (nd)

t

!

2

,

which implies

p

r�k � 2

r

d log (nd)

t

r

dr�k,t +
8d log (nd)

t


p

r�k + 4

r

d log (nd)

t
·

We deduce from this that
�

�

�

�

�

p

r�k �
r

dr�k,t +
8d log (nd)

t

�

�

�

�

�

 4

r

d log (nd)

t
·

In particular, this implies that on ⇠,

�

�

�

b�?,t �
p

r�?

�

�

�

 4

r

d log (nd)

t
· (2)

On ⇠, we also have by Equation 1,
�

�

�

�

✓

max
k0

dr�k0,t �dr�k,t
◆

� (r�? � r�k)

�

�

�

�

 8

r

dr�? log (nd)

t
+

8d log (nd)

t
,

which implies that on ⇠, by Equation 2,
�

�

�

�

✓

max
k0

dr�k0,t �dr�k,t
◆

� (r�? � r�k)

�

�

�

�

 8b�?,t

r

d log (nd)

t
+

40d log (nd)

t
·

Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D

 

16b�?,t

r

d log (nd)

t
+

80d log (nd)

t

!

 D

 

16

r

dr�? log (nd)

t
+

144d log (nd)

t

!

· (3)

First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)

T?
+

144d log (nd)

T?
·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy

r�? � 16

s

r�?d log (nd)

T?
+

144d log (nd)

T?
,

which implies that

T? � 144d log (nd)

r�?
· (4)

In the case we consider
⇣

bT? � 3T?

⌘

, the exploration

phase does not stop at 3T ? and we have that on ⇠,

3T?

0

@

b�?,T? � 4

s

d log (nd)

T?

1

A 
q

bD?,T?n,
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estimator of reward r�k,t,
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
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which implies that on ⇠, by factorizing the left hand
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,
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By the definition of D? we also have that
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?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to
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Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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In particular, this implies that on ⇠,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,
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By the definition of D? we also have that
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D?nr�? � (T? � 1)r�? � T?r
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?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to
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Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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Similarly (from the same Bernstein bound)
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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In particular, this implies that on ⇠,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,
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By the definition of D? we also have that
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?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to
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Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,
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By the definition of D? we also have that
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which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to
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Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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In the case we consider
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Plugging in the upper bound (“variance”) on the best reward
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Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
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Let ⇠ be the event such that Equation 1 holds. Note
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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which implies
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We deduce from this that
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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which implies that on ⇠, by Equation 2,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)

T?
+

144d log (nd)
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·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy

r�? � 16

s

r�?d log (nd)

T?
+

144d log (nd)
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which implies that

T? � 144d log (nd)
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· (4)

In the case we consider
⇣

bT? � 3T?
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, the exploration

phase does not stop at 3T ? and we have that on ⇠,
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On ξ, BARE will keep the most influenced nodes (and maybe some more)
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CASE 1: Before 3T*

Revealing graph bandits for maximizing local influence

estimator of reward r�k,t,

dr�k,t =
1

t

t
X

t0=1

dSkt,t0(k).

Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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We deduce from this that
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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which implies that on ⇠, by Equation 2,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)

T?
+

144d log (nd)

T?
·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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,

which implies that

T? � 144d log (nd)
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· (4)

In the case we consider
⇣

bT? � 3T?

⌘

, the exploration

phase does not stop at 3T ? and we have that on ⇠,
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Revealing graph bandits for maximizing local influence

estimator of reward r�k,t,

dr�k,t =
1

t

t
X

t0=1

dSkt,t0(k).

Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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dr�k,t � r�k
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 4
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dr�k log (nd)

t
+
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,

r�k � 4
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+
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t
dr�k,t +
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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which implies
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We deduce from this that
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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which implies that on ⇠, by Equation 2,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)

T?
+

144d log (nd)

T?
·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy

r�? � 16

s

r�?d log (nd)

T?
+

144d log (nd)
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,

which implies that

T? � 144d log (nd)

r�?
· (4)

In the case we consider
⇣

bT? � 3T?

⌘

, the exploration

phase does not stop at 3T ? and we have that on ⇠,
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Revealing graph bandits for maximizing local influence

estimator of reward r�k,t,

dr�k,t =
1

t

t
X

t0=1

dSkt,t0(k).

Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,

�
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dr�k,t � r�k
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 4
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,

r�k � 4
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+
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t
dr�k,t +

8d log (nd)
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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which implies
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We deduce from this that
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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which implies that on ⇠, by Equation 2,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)

T?
+

144d log (nd)
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·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy
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+

144d log (nd)
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,

which implies that

T? � 144d log (nd)
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· (4)

In the case we consider
⇣

bT? � 3T?

⌘

, the exploration

phase does not stop at 3T ? and we have that on ⇠,

3T?

0

@

b�?,T? � 4

s

d log (nd)

T?

1

A 
q

bD?,T?n,

By BARE

By def of D*

Together

… and the optimal arm is among the kept ones.
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CASE 2: After 3T* (we show that this cannot happen, by contradiction)

By BARE (the “if ” part)

Revealing graph bandits for maximizing local influence

estimator of reward r�k,t,

dr�k,t =
1

t

t
X

t0=1

dSkt,t0(k).

Notice that during the global exploration phase, the
nodes are chosen uniformly at random among all the
nodes. This means that for any k, the (Skt,t0(k))t0
are i.i.d. Bernoulli random variables with parameter
r�k/d. By Bernstein inequality, this implies that with
probability larger than 1 � 1/n2, for any node k 
d and for any round t within the global exploration
phase,
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Let ⇠ be the event such that Equation 1 holds. Note
that on ⇠, we have that for any t of the global explo-
ration phase and for any k  d,
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which implies that on ⇠, by factorizing the left hand
side and right hand side, for any k  d,
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We deduce from this that
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In particular, this implies that on ⇠,
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On ⇠, we also have by Equation 1,
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which implies that on ⇠, by Equation 2,
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Note that by the definition of the global exploration
phase, we know that for any round t  bT?, the set of
most influenced nodes D� will be on ⇠ in the set of the
bD?,t kept nodes. Note that by Equation 2, this also
implies that on ⇠,

bD?,t  D
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First case: the global exploration phase finishes
before 3T? We consider the case bT?  3T?. If the
exploration finishes at bT?, then on ⇠, by Equation 2,
and by the definition of BARE,

3T?

p

r�? � bT?

p

r�? �
q

bD?,bT?
n.

By the definition of D? we also have that
p

D?nr�? � (T? � 1)r�? � T?r
�
?/2,

which together implies

bD?,bT?
 36D?.

Also, on ⇠, the optimal arm is among the bD?,bT?
arms.

Second case: the global exploration phase fin-
ishes after 3T? The detectable gap �? is equal to

�? = 16

s

r�?d log (nd)
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+

144d log (nd)
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·

Since the detectable dimension D? is smaller or equal
to d, then �?  r�?. This implies that T? must satisfy

r�? � 16

s

r�?d log (nd)
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+

144d log (nd)

T?
,

which implies that

T? � 144d log (nd)

r�?
· (4)

In the case we consider
⇣

bT? � 3T?

⌘

, the exploration

phase does not stop at 3T ? and we have that on ⇠,

3T?
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and thus by Equation 2, we have that
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which implies in turn by Equation 4 that
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Combining Equation 3, with the fact that D is a non-
decreasing function, we get that on ⇠,
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which is false by definition of D? and T?. Therefore,
we know that on ⇠, 3T? � bT? .

Conclusion To sum up, we know that on ⇠,

bT?  3T? and bD?,bT?
 36D?,

and that the set of most influenced nodes D� is among
the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
at most "?.

Taking the bD?,bT?
 36D? kept arms and running a

minimax bandit algorithm, such as GraphMOSS, we
can upper bound the regret incurred in the remain-
ing rounds using Theorem 1. Since there are n � T?

remaining rounds, this implies that the expected re-
gret on these last rounds, on ⇠, for a given constant
C 0 > 0, bounded by
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⌘
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with respect to the optimal nodes in the set of kept
nodes. Now, since D� is in the set of kept nodes, and
since the maximal gap of most influential nodes with
respect to this set is at most "?, the regret with respect
to the most influential node r? is
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We can now conclude the proof by bounding the ex-
pected regret as
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p
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4.1 Discussion

Lower bound Theorem 3 holds in the case Cn  d
and makes the quantity "? appear. But we emphasize
that in the case n � d, even if the oracle provides the
learner with a set of nodes such that the optimal node
belongs to this set, the minimax-optimal rate for the
bandit problem becomes

Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.
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which is false by definition of D? and T?. Therefore,
we know that on ⇠, 3T? � bT? .

Conclusion To sum up, we know that on ⇠,

bT?  3T? and bD?,bT?
 36D?,

and that the set of most influenced nodes D� is among
the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
at most "?.

Taking the bD?,bT?
 36D? kept arms and running a

minimax bandit algorithm, such as GraphMOSS, we
can upper bound the regret incurred in the remain-
ing rounds using Theorem 1. Since there are n � T?

remaining rounds, this implies that the expected re-
gret on these last rounds, on ⇠, for a given constant
C 0 > 0, bounded by
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with respect to the optimal nodes in the set of kept
nodes. Now, since D� is in the set of kept nodes, and
since the maximal gap of most influential nodes with
respect to this set is at most "?, the regret with respect
to the most influential node r? is
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We can now conclude the proof by bounding the ex-
pected regret as
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4.1 Discussion

Lower bound Theorem 3 holds in the case Cn  d
and makes the quantity "? appear. But we emphasize
that in the case n � d, even if the oracle provides the
learner with a set of nodes such that the optimal node
belongs to this set, the minimax-optimal rate for the
bandit problem becomes

Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.
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which is false by definition of D? and T?. Therefore,
we know that on ⇠, 3T? � bT? .

Conclusion To sum up, we know that on ⇠,

bT?  3T? and bD?,bT?
 36D?,

and that the set of most influenced nodes D� is among
the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
at most "?.

Taking the bD?,bT?
 36D? kept arms and running a

minimax bandit algorithm, such as GraphMOSS, we
can upper bound the regret incurred in the remain-
ing rounds using Theorem 1. Since there are n � T?

remaining rounds, this implies that the expected re-
gret on these last rounds, on ⇠, for a given constant
C 0 > 0, bounded by
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with respect to the optimal nodes in the set of kept
nodes. Now, since D� is in the set of kept nodes, and
since the maximal gap of most influential nodes with
respect to this set is at most "?, the regret with respect
to the most influential node r? is
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We can now conclude the proof by bounding the ex-
pected regret as
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4.1 Discussion

Lower bound Theorem 3 holds in the case Cn  d
and makes the quantity "? appear. But we emphasize
that in the case n � d, even if the oracle provides the
learner with a set of nodes such that the optimal node
belongs to this set, the minimax-optimal rate for the
bandit problem becomes

Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.
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which is false by definition of D? and T?. Therefore,
we know that on ⇠, 3T? � bT? .

Conclusion To sum up, we know that on ⇠,

bT?  3T? and bD?,bT?
 36D?,

and that the set of most influenced nodes D� is among
the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
at most "?.

Taking the bD?,bT?
 36D? kept arms and running a

minimax bandit algorithm, such as GraphMOSS, we
can upper bound the regret incurred in the remain-
ing rounds using Theorem 1. Since there are n � T?

remaining rounds, this implies that the expected re-
gret on these last rounds, on ⇠, for a given constant
C 0 > 0, bounded by
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⌘
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with respect to the optimal nodes in the set of kept
nodes. Now, since D� is in the set of kept nodes, and
since the maximal gap of most influential nodes with
respect to this set is at most "?, the regret with respect
to the most influential node r? is

C 0D?r?+C 0
r

r? bD?,bT?

⇣

n� bT?

⌘

+ n"?

 C 0D?r? + C 0
p

r?D?n+ n"?.

We can now conclude the proof by bounding the ex-
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4.1 Discussion

Lower bound Theorem 3 holds in the case Cn  d
and makes the quantity "? appear. But we emphasize
that in the case n � d, even if the oracle provides the
learner with a set of nodes such that the optimal node
belongs to this set, the minimax-optimal rate for the
bandit problem becomes

Cmin
⇣

r?n,D?r? +
p

r?nD?

⌘

,

for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.
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which is false by definition of D? and T?. Therefore,
we know that on ⇠, 3T? � bT? .

Conclusion To sum up, we know that on ⇠,

bT?  3T? and bD?,bT?
 36D?,

and that the set of most influenced nodes D� is among
the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
at most "?.

Taking the bD?,bT?
 36D? kept arms and running a

minimax bandit algorithm, such as GraphMOSS, we
can upper bound the regret incurred in the remain-
ing rounds using Theorem 1. Since there are n � T?

remaining rounds, this implies that the expected re-
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with respect to the optimal nodes in the set of kept
nodes. Now, since D� is in the set of kept nodes, and
since the maximal gap of most influential nodes with
respect to this set is at most "?, the regret with respect
to the most influential node r? is
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4.1 Discussion

Lower bound Theorem 3 holds in the case Cn  d
and makes the quantity "? appear. But we emphasize
that in the case n � d, even if the oracle provides the
learner with a set of nodes such that the optimal node
belongs to this set, the minimax-optimal rate for the
bandit problem becomes

Cmin
⇣

r?n,D?r? +
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r?nD?

⌘

,

for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.
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we know that on ⇠, 3T? � bT? .
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the nodes that are kept at the end of the global explo-
ration phase. In particular, this implies that the gap
with respect to the most influential node on this set is
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for a constant C. This can be seen from an argument
similar to Theorem 1, together with the example with
isolated nodes, given above. This argument holds even
for undirected graphs with "? = 0. In this sense, BARE
is minimax-optimal over the set of problems with de-
tectable dimension D?.

Large scale setting The quantity D? and BARE be-
come particularly appealing when we consider an in-
teresting practical situation with a large number of
graph nodes. For instance, even in a medium-sized
social network, the advertiser would not have enough
budget to target all the users and discover the most
influential one, i.e., n  d. Notice again, that in the
restricted setting of Section 2.2, the regret of bandit
strategies in this problem for n ⌧ d is of order nr?,
which is larger than the regret of BARE.

However, in the unrestricted setting, the situation is
di↵erent when D?  n. This is the case where a small
number of nodes is noticeably more influential than
the others and the regret of BARE is of order

D?r? +
p

r?nD? + n"?,

which is smaller than nr?, and the problem becomes
learnable.

5 Experiments

The purpose of our experiments is to show that BARE
can do better in the regime n  d, compared to the
algorithms ignoring the graph structure. For the min-
imax optimal algorithm during the bandit phase of
BARE, we used GraphMOSS, defined in Section 2.2 and
analyzed in Appendix A, which is a close variation of
the MOSS algorithm (Audibert & Bubeck, 2009). We
also used GraphMOSS as the baseline algorithm that
does not use the graph structure.

The confidence parameter � was set to 0.01 and pi,j
to 0.8 for all i and j. This means that whenever a
node is chosen, each of its neighbors is influenced and
revealed with probability 0.8. Since the confidence
terms of BARE are conservative, in the experiments we
multiplied them by 0.01. All figures show the results
averaged over 100 trials.

Final regret

In both cases:



NEXT: GLOBAL INFLUENCE MODELS

Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models 

global and multiple-source models 

Different feed-back models 

Full bandit (only the number of influenced nodes) 

Node-level semi-bandit (identities of influenced nodes) 

Edge-level semi-bandit (identities of influenced edges) 

http://arxiv.org/abs/1605.06593 (Wen, Kveton, MV) 

IMLinUCB with linear parametrization of edge weights 

Regret analysis for subset of graphs (forests, …)
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http://arxiv.org/abs/1605.06593
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