Algorithm 1

Setting

- **Unknown** $(p_h)_h$ — (symmetric) probability of influences
- In each time step $t = 1, \ldots, n$
- Learner picks a node h
- Environment **reveals** the set of influenced nodes S_t
- Select influential people — find the strategy maximizing $L = \sum_{t=1}^{n} |S_t|$.

Our solution.

Bandit Revelator: 2-phase algorithm

- **Global exploration phase.**
 - Super-efficient exploration
 - Linear regret needs to be short!
 - Exit B-nodes
- **Bandit phase.**
 - Uses a minimax-optimal bandit algorithm
 - GraphMoss is a little brother of MOSS
 - Has a “square root” regret on B-nodes
 - D-realizes the optimal trade-off!
 - Different from exploration/exploitation tradeoff.

Guarantees.

Upper bound on the regret of BARE $\mathbb{E}[R_n] \leq C \min (r_d, n, D, r_s + \sqrt{r_s n D_n})$

Matching lower bound.

Algorithm.

BARE - Bandit Revelator

Input: d: the number of nodes n: time horizon

Initialization: $\bar{T}_t = 0$, for $\forall t < d$

$d \leftarrow 1$, $T_0 = 0$, $D_{t+1} = d$, $\bar{N}_{t+1} = d$

Global exploration phase:

while $\bar{t} \leq d - 1$

for $i = 2d + 1, \ldots, n$

$C_{i, t+1} \leftarrow 2N_{t+1} \log (n r d) + 2 r_s \log (n r d) / (t+1)$

$L_{t+1} = \max_{1 \leq h < d} \{ C_{i, t+1} \}$. Sample node h_t and receive S_{t+1}.

Update T_{t+1}, \bar{N}_{t+1}, and T_{t+1}.

end while

Bandit phase.

Run minimax-optimal bandit algorithm on the D_{t+1}-chosen nodes (e.g. Algorithm 1).