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Abstract

Determinantal point processes (DPPs) are a useful probabilistic model for selecting
a small diverse subset out of a large collection of items, with applications in
summarization, stochastic optimization, active learning and more. Given a kernel
function and a subset size k, our goal is to sample k out of n items with probability
proportional to the determinant of the kernel matrix induced by the subset (a.k.a. k-
DPP). Existing k-DPP sampling algorithms require an expensive preprocessing
step which involves multiple passes over all n items, making it infeasible for large
datasets. A naïve heuristic addressing this problem is to uniformly subsample a
fraction of the data and perform k-DPP sampling only on those items, however
this method offers no guarantee that the produced sample will even approximately
resemble the target distribution over the original dataset. In this paper, we develop
α-DPP, an algorithm which adaptively builds a sufficiently large uniform sample of
data that is then used to efficiently generate a smaller set of k items, while ensuring
that this set is drawn exactly from the target distribution defined on all n items.
We show empirically that our algorithm produces a k-DPP sample after observing
only a small fraction of all elements, leading to several orders of magnitude faster
performance compared to the state-of-the-art. Our implementation of α-DPP is
provided at https://github.com/guilgautier/DPPy/.

1 Introduction

Selecting k diverse items out of a larger collection of n items is a classical problem in computer science
which naturally emerges in many tasks such as summarization (select k phrases) and recommendation
(select k articles/ads to show to the user). An increasingly popular approach to model and quantify
diversity in this subset selection problem is that of determinantal point processes (DPPs). Given a set
[n]

def
= {1, . . . , n} of n items and a target size k, one can define a DPP of size k (known as a k-DPP)

through an n× n posivite semi-definite (PSD) similarity matrix L (also known as the kernel matrix).
The matrix L encodes the similarities between items, and the user must choose it so that [L]ij is
larger the more the i-th and j-th items are similar. Given k and L, we define S ∼ k-DPP(L) as a
distribution over all

(
n
k

)
index subsets S ⊆ [n] of size k, such that Pr(S) ∝ det(LS) is proportional to

the determinant of the sub-matrix LS induced by the subset. DPPs have found numerous applications
in machine learning, not only for summarization [32, 23, 21, 7] and recommendation [19, 8], but also
in experimental design [17, 34], stochastic optimization [39, 35, 15], Gaussian Process optimization
[26], low-rank approximation [18, 24, 16], and more (recent surveys include [29, 4, 11]). Note that
early work on DPPs focused on a random-size variant, which we denote S ∼ DPP(L), where the
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subset size is allowed to take any value between 0 and n, and the role of parameter k is replaced by
the expected size E[|S|] = deff(L)

def
= tr

(
L(L + I)−1

)
. The quantity deff(L) is known in randomized

linear algebra [2, 11] and learning theory [6] as the effective dimension. While random-size DPPs
exhibit deep connections to many scientific domains [25], the fixed-size k-DPPs are typically more
practical from a machine learning stand-point [28].

Sampling from a k-DPP. The first k-DPP samplers scaled poorly, as they all relied on an eigende-
composition [28] of L taking O(n3) time. Replacing the eigendecomposition with a Cholesky factor-
ization can increase numerical stability [30], and empirical performance [36] thanks to dynamically-
scheduled, shared-memory parallelizations, but still ultimately require O(n3) time. A number of
methods have been proposed which use approximate eigendecomposition [31, 1] to reduce the com-
putational cost, however these approaches provide limited guarantees on the accuracy of sampling.

To improve scalability, several approaches based on Monte-Carlo sampling were introduced, using
rejection or Gibbs sampling. The fastest MCMC sampler for k-DPPs, to the best of our knowledge,
is by [3] and has n · poly(k) complexity, i.e., asymptotically much faster than the cost of eigende-
composition. However these MCMC methods do not sample exactly from the k-DPP distribution,
and can only guarantee that the final sample will be close in distribution to a k-DPP. Moreover these
guarantees only hold after mixing, which is difficult to verify and requires at least O(nk2) time,
making MCMC methods not applicable when n is large.

Complexity
[28, 30, 36, 24] n3

DPP-VFX [13] n · k10 + k15

α-DPP (this paper) (βn · k6 + k9)
√
k

Table 1: Runtime comparison of exact k-DPP
sampling algorithms. Here, β ≤ 1 is the fraction
of items observed by α-DPP (see Theorem 1).

A recent line of works [13, 10], using the ideas from
[12, 14], developed sampling algorithms specially de-
signed for a random-size DPP (as opposed to a k-
DPP), which avoid expensive decomposition of the
kernel while sampling exactly from S ∼ DPP(L).
In particular, they showed that it is sufficient to first
choose an intermediate subset σ ⊆ [n] sampled
i.i.d. from the marginal distribution of the DPP, i.e.,
P(i ∈ σ) ≈ P(i ∈ S), and then sample from a DPP restricted to the items indexed by σ. Since the
size of σ is typically much less than n, this leads to a more efficient algorithm. Note that rescaling
DPP(L) into DPP(αL) using some constant α only changes the expected size of S from deff(L) to
deff(αL). By accurately choosing an appropriate α?, one can boost the probability that the random
size of S is exactly k, and convert a DPP sampler into a k-DPP sampler by repeatedly sampling
S ∼ DPP(α?L) until S has size k. Based on this reduction, Dereziński et al. [13] gave the first algo-
rithm (DPP-VFX) which is capable of exact sampling from a k-DPP in time n · poly(k). However,
when sampling from k-DPPs, the approach of [13] has two major limitations:

1. DPP-VFX has an Ω(n) runtime bottleneck, since it requires computing all n marginals, one for
each item, in order to define the i.i.d. distribution of σ, which may be infeasible for very large n.

2. The reduction used by [13] to convert a DPP sampler into a k-DPP sampler increases the time
complexity by a factor of at least k4, resulting in a Õ(n · k10 + k15) runtime.

In this paper, we address both of these limitations by introducing a new algorithm called α-DPP,
which 1) does not need to compute all of the marginals, and 2) uses a new efficient reduction to
convert from a random-size DPP to a fixed-size k-DPP (see Table 1 for comparison).

Main contribution: uniform intermediate sampling for k-DPPs. To resolve the Ω(n) runtime
bottleneck, we use an additional intermediate sample ρ based on uniform sub-sampling. Since
uniform sampling can be implemented without looking at the actual items in the collection, this
means that we do not even have to look at any item outside of ρ. The only necessary assumption
required by our approach is that the maximum entry (i.e., similarity) of L is bounded by a constant
κ2. However, to simplify exposition we also assume w.l.o.g. that deff(L) ≥ k (see Section 3).

In particular, we 1) sample ρ uniformly out of [n], then 2) only approximate the marginal probabilities
of items in ρ to compute σ, and finally 3) downsample σ into a DPP sample S. To guarantee that S is
distributed exactly according to the DPP it is crucial that ρ is diverse enough. We show that sampling
a k2/deff(L) fraction of [n] into ρ (i.e., |ρ| ≈ k2/deff(L) · n) is enough. Since all the expensive
computation is performed only on ρ, this gives us a deff(L)/k2 speedup over existing methods.
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Theorem 1. Given any L � 0 with maxij Lij ≤ κ2 and 1 ≤ k ≤ deff(L), there exists an algorithm
that returns S ∼ k-DPP(L), and with probability 1− δ runs in time

Õ
(
(βn · k6 + k9)

√
k log(1/δ)

)
,

where β ≤ min
{
k2κ2/deff(L), 1

}
is the fraction of items observed by the algorithm.

In the derivation of Theorem 1 we make several novel contributions. First, we provide a DPP
sampler that given L and a rescaling α ≤ 1 leverages a mixture of uniform and rejection sampling to
sample from DPP(αL) observing only an ακ2k fraction of the items. We then show that the optimal
rescaling α? required by the reduction from k-DPP to DPP can be bounded with α? ≤ O(k/deff(L)),
and thus our rescaling-aware sampler can sample from k-DPPs looking only at a k2/deff(L) fraction
of the items. Finally, we provide an efficient search algorithm to find a close approximation α̂ of α?.

Model misspecification and computational free lunch. Our result can be also interpreted from
a perspective of model misspecification. Note that every time the users define a k-DPP they also
implicitly define a random size DPP(L). Moreover, the natural expected sample size (i.e., implicit
number of unique items in [n]) of DPP(L) is deff(L), which does not depend on the desired size k.
Therefore, if L is not chosen appropriately deff(L) might be much larger than k, and the k-DPP is
selecting k unique items out of a much larger implicit pool of deff(L)� k unique items. In this case,
it is possible to consider only a small k2/deff(L) fraction of the items selected uniformly at random
and still have enough unique items to sample a diverse k-subset. Our result shows for the first time
that it is possible to take advantage of this modeling disagreement between k and deff(L) to gain
computational savings while still sampling exactly from the DPP, i.e., a computational free lunch.

Binary search reduction from k-DPP to DPP. Both our approach and the one of Dereziński et al.
[13] rely on first implementing an efficient random-size DPP sampler, followed by the usage of a
black-box construction based on rejection sampling to transform the DPP sampler into a k-DPP
sampler. However the reduction of Dereziński et al. [13] requires access to a high-precision estimate
of deff(αL) in order to appropriately tune α. This makes optimizing α the bottleneck in the reduction
from k-DPP to DPP, and therefore there is a large computational gap between the two problems. We
close this gap thanks to a novel approach to find a suitable rescaling α based not on optimization but
rather on binary search. Crucially, to find a suitable α this approach does not require an estimate of
deff(αL), but only O(

√
k log(n)) black-box calls to a DPP sampler. Therefore, it can transform any

random size DPP sampler into a k-DPP sampler with only a
√
k overhead, and could be applied to

any future improved sampler beyond this paper.

2 Sampling from a rescaled DPP with intermediate uniform subsampling

In this section we focus on a specific class of DPPs, S ∼ DPP(αL), specified using a rescaling
α ≤ 1 and a similarity matrix L, which we refer to as rescaled DPPs. The main result of the section is
showing that a sufficiently large subset selected uniformly at random can be used as an intermediate
sample to sample from a rescaled DPP without looking at all of the items. The main reason to focus
on rescaled DPPs is because they naturally appear when reducing k-DPP sampling to DPP sampling,
where rescaling is used to align the random size of the DPP and k. This is going to be the focus of
the next section. However the approach proposed in this section is not limited to rescaled DPPs, but
under the right assumptions can be extended to accelerate sampling from generic DPPs. We will
discuss these extensions at the end of the section.

Notation We use [n] to denote the set {1, . . . , n}. For a matrix B ∈ Rn×m and index sets C, D,
we use BC,D to denote the submatrix of B consisting of the intersection of rows indexed by C with
columns indexed by D. If C = D, we use a shorthand BC and if D = [m], we may write BC,[m].
Finally, we also allow C,D to be multisets or sequences, in which case each row/column is duplicated
in the matrix according to its multiplicity (and in the case of sequences, we order the rows/columns as
they appear in the sequence). Note that with this notation if L = BB> then LC,D = BC,[n]B

>
D,[n].

2.1 Background: distortion-free intermediate sampling.

Rather than sampling directly from the target DPP, intermediate sampling [10, 12] first selects an
intermediate subset σ from [n], and then refines it by extracting S from σ. Crucially, if σ is selected
according to a so-called Regularized DPP (R-DPP), this is equivalent to sampling S from a DPP.
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Definition 1. For any psd matrix L ∈ Rn×n, distribution p
def
= {pi}ni=1 and r > 0, define L̃ ∈ Rn×n

with L̃i,j
def
=

Li,j
r
√
pipj

. We define an R-DPPrp(L) as distribution over events A ⊆
⋃∞
k=0[n]k such that

Pr(A)
def
= Eσ

[
1[σ∈A] det(I + L̃σ)

]
/det(I + L) , for σ = (σ1, . . . , σt)

i.i.d.∼ p, t ∼ Poisson(r).

Proposition 1 (10, Theorem 8). For any L, p, r, and L̃ defined as in Definition 1,

if σ ∼ R-DPPrp(L) and S ∼ DPP(L̃σ) then {σi : i∈S} ∼ DPP(L).

A computationally inefficient but conceptually simple approach to rejection sample σ is the following:
1) compute all marginals P(i ∈ S) = `i(L)

def
= [L(I + L)−1]i and sum to

∑n
i=1 `i(L) = deff(L) [2];

2) sample t ∼ Poisson(c) and σ ∼ Multinomial
(
t, `1(L)
deff(L) , . . . ,

`n(L)
deff(L)

)
for an appropriate constant c;

3) accept σ w.p. det(I+L̃σ)
C det(I+L) , where C is an appropriate constant used to make the rejection step valid.

All existing intermediate sampling algorithms [10, 13, 12, 14] rely on this approach, refining it to
make use of efficient approximations of the marginals `i(L) and adapting the constants c and C to
the data. However they all share a common bottleneck: to sample σ i.i.d. they need to approximate
all marginals `i(L) and the normalization constant deff(L), and therefore the final runtime scales as
n · poly(k). While this is much smaller than the O(n3) required by an exact sampler, it still becomes
quickly unfeasible when n is very large. In what follows we will introduce another approach to
sample from an R-DPP that does not require to approximate the marginals of all items, but only the
items selected in a preliminary uniform intermediate sample.

2.2 Faster DPP sampling with uniform intermediate sampling

Algorithm 1 α-DPP sampler

Input: α, L, D, W, r ≥ 1

1: Set L̂ = W1/2LD,DW
1/2 ∈ Rm×m

2: repeat
3: Sample u ∼ Poisson(re1/rαnκ2)
4: Sample ρ = Uniform(u, [n])
5: for j = {1, . . . , u} do
6: Compute lρj using Eq. (1)
7: Sample zj ∼ Bernoulli(lρj/(ακ

2))
8: end for
9: Set σ = {ρj : zj = 1}, t = |σ|

10: Set [L̃σ]ij = 1
r
√
lσi lσj

[L]σiσj

11: Acc ∼Bernoulli
(

edeff(αL̂) det(I+αL̃σ)

et/r det(I+αL̂)

)
12: until Acc = true
13: Sample S̃ ∼ DPP

(
αL̃σ

)
14: return S = {σi : i∈ S̃}

We now introduce our novel α-rescaled DPP sampler,
called α-DPP (see Algorithm 1). It requires as input
a rescaling α, a similarity matrix L and a parame-
ter r that will be used to tune the Poisson sampling
step of Proposition 1 approach. It also requires as
input a dictionary D containing m elements, and set
of weights stored in a diagonal matrix W ∈ Rm×m.
A dictionary is a subset of items D ⊆ [n] such that
reweighting the items inD by W provides a good ap-
proximation of L, so that the approximate marginals

li
def
= α[L− αL>[n],D(αLD + W−1)−1L[n],D]i (1)

computed using D and W are close to the true
marginals `i (see Appendix E). Compared to the meta-
approach of Proposition 1, the main technical differ-
ence is that rather than sampling directly t from an
appropriate Poisson, and then σ from a Multinomial,
we introduce an intermediate uniform sampling step.
In particular, we first sample a Poisson u, and then
uniformly sample a subset ρ containing u items. We
then compute an approximation li of the marginal `i only for the items in ρ, and downsample ρ into
σ using rejection sampling (Line 7). Finally, we accept or reject σ (Line 11) and then downsample σ
into S using a standard DPP sampler on the smaller L̃σ .

Algorithm 1 is not simply a different implementation of the approach of Proposition 1, since even if
Multinomial sampling is implemented with lazy evaluations of li, we would still need to compute the
normalization constant of the Multinomial, which strictly requires computing all li. Similarly, the
rejection test of Line 11 is also designed to accept as many candidates as possible without requiring
the computation of the normalization constant as in [13]. Rather our approach is a novel method to
sample from an R-DPP using Poisson rejection sampling. In particular, we prove not only that it
always returns an S sampled according to the exact DPP distribution, but also that if the dictionary
satisfies certain conditions, the main of which is (ε, α)-accuracy (see Appendix E and [5]), then the
algorithm will generate S quickly.
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Theorem 2. Given any L � 0, dictionary D, W � 0, r ≥ 1 and α > 0, α-DPP returns
S ∼ DPP(αL). Moreover, if r ≥ deff(αL) ≥ 1/2, D and W are (1/deff(αL), α)-accurate, D
satisfies |D| ≤ 10deff(αL), and deff(αL̂) ≤ 10deff(αL), w.p. 1− δ α-DPP runs in time

O
( [

min{ακ2deff(αL), 1} · n · deff(αL)6 log2(n/δ) + deff(αL)9 log3(n/δ)
]
· log(1/δ)

)
.

The main implication of our result is that the intermediate distribution based on marginals can be
replaced more and more accurately with a uniform distribution as α becomes smaller. This results in
having to compute marginals only for a min{ακ2deff(αL), 1} fraction of the n items. This speedup
can be significant when the rescaling α is very small, as is the case when we want to sample a
small number of items out of a large collection. Compared to other exact DPP samplers, such as
DPP-VFX, our α-DPP is strictly faster by roughly a 1/(ακ2deff(αL)) factor when implemented
with an appropriate caching strategy for the estimates li (see Appendix E). Further, unlike MCMC
samplers, α-DPP is an exact sampler. Moreover, there is no known MCMC approach that can achieve
a runtime sub-linear in n when α is small as α-DPP.

An (ε, α)-accurate dictionary that also satisfies the other conditions can be generated using a slight
modification of the BLESS algorithm [37], that we call BLESS-I algorithm, presented in Appendix C.
However, note that since the marginals `i are equivalent to the ridge leverage scores [2] of item i,
we can replace BLESS-I with any present or future algorithm for leverage score sampling that can
be modified to be rescaling-aware [5, 37]. Moreover, note that BLESS-I also returns an estimate
of deff(αL) that is sufficiently accurate to tune r and ε. At the same time, our analysis could
be excessively conservative, and instead of trying to set r and ε using deff(αL) as suggested by
Theorem 2, a more practical strategy is to start with a constant r and increase it slowly if the sampler
is rejecting with a too low probability, using a doubling schedule to preserve overall time complexity.

Proof sketch. The proof is divided in two parts, proving that α-DPP is an exact sampler (Lemma 6)
and that under the right conditions it is efficient (Lemma 7).

For the first part we once again rely on the approach of Proposition 1, but with the added difficulty of
not being allowed to compute all the marginals. To avoid this bottleneck, we show that:

A) sampling t ∼ Poisson(r) and σ ∼ Multinomial(t, {`i/deff(αL)}ni=1); and
B) sampling n independent si ∼ Poisson(r′`i(αL)), and adding si copies of item i to σ,

are equivalent for an appropriate choice of r and r′, i.e., we prove that the σ generated by both
approach A and B follow the same distribution. However, unlike approach A, approach B does
not require computing a normalization constant, i.e., it samples from unnormalized probabilities.
Moreover, if we know an upper bound on the marginals we can further reduce the number of marginals
that need to be computed. In our case we use the bound `i ≤ ακ2, and show that

C) sampling n Poisson independently ui ∼ Poisson(r′ακ2), only if ui > 0 computing `i and
sampling si ∼ Binomial(ui, `i/(ακ2)), and adding si copies of item i to σ

once again generates σ strictly equivalent to the ones of approach B and A. The added advantage of
approach C over the others is that only the marginals of items with ui > 0 are actually computed, and
there is no need to compute a normalization constant. Starting from this new approach, to obtain our
α-DPP sampler (Algorithm 1) we simply replace the n Poisson ui ∼ Poisson(r′ακ2) with a single
u ∼ Poisson(r′ακ2n) followed by uniform sampling, and replace the exact `i with approximate li.

For the second part we derive a lower bound on the acceptance probability similar to the one from
Dereziński et al. [13]. However, while they use an n×deff(αL) Nyström approximation of the matrix
L, to avoid direct dependencies on n we are forced to use a less stable approximation L̂. As a result,
controlling deff(αL̂) requires a more careful analysis.

Beyond uniform subsampling. One of the implications of our analysis is that more adaptive upper
bounds on the marginals `i could further speedup our α-DPP sampling approach. In particular,
we chose uniform sampling, i.e., a uniform upper bound, for its conceptual simplicity and because
knowing an upper bound κ2 on the entries of the similarity matrix usually does not require looking
at the items, e.g., κ2 is always equal to 1 for Gaussian similarity, Cosine similarity or other self
normalized similarities. However for other similarities, such as linear similarity, this bound could
be very loose. A simple replacement is using the actual diagonal of L, which requires to look at all
items and O(n) time to compute but is usually very scalable. Ideally, one could imagine designing a
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sequence of upper bounds starting from cheaper to more computationally expensive, where more
advanced techniques such as random projection are used near the end to further filter candidate items.

3 Efficient reduction from k-DPP to rescaled DPP via binary search

Given our fast DPP sampler, we can see a k-DPP as a sampling process where we first sample
S ∼ DPP(αL), check if the sample size |S| is equal to k, and then accept or reject the sample
accordingly. Rescaling L by a constant factorα only changes the expected size deff(αL) (and not the k-
DPP), with α > 1 increasing the expected size and α < 1 decreasing it. Thus, it is natural to imagine
that there exists some α? for which the acceptance probability is high. Indeed this was recently proven
to be possible. Dereziński et al. [13] show that if the mode mα? of Sα? ∼ DPP(α?L) is equal to k,
then we will accept with probability at least Ω(1/

√
k). They also provide an algorithm to find such

an α?. However, this algorithm has a prohibitively high computational cost, Õ(nk10 + k15), because
ensuring that the mode of DPP(α?L) is exactly k requires an extremely accurate approximation of L.
Instead, our approach is to run a binary search to find a good rescaling α, which will terminate once
the acceptance probability is high enough, regardless of whether k is exactly the mode. Crucially, this
binary search only requires a black box DPP(αL) sampler (such as our α-DPP), and it only queries
the sampler Õ(

√
k) many times. To prove that the binary search finds a good α in a small number of

steps, we establish a new property (Lemma 3) of the Poisson Binomial distribution (the distribution
of the subset sizes of DPP(αL)), which should be of independent interest.

3.1 Binary search

Our main result in this subsection is Algorithm 2, which requires only oracle access to the samples
from a random-size DPP, and finds a rescaling α̂ which enables efficient rejection sampling from
a k-DPP. Note that the provided oracle sampler does not have to be our α-DPP sampler, so the
algorithm could be paired with other samplers.
Lemma 1. Suppose that we are given an integer k, a range I = [αmin, αmax] where αmax = γαmin,
and access to an oracle which, for any α ∈ I , returns S ∼ DPP(αL). If there exists α? ∈ I such
that k is the mode of |S| for S ∼ DPP(α?L), then using O

(√
k log2(k log(γ)/δ)

)
calls to the oracle

we can find α̂ ∈ I such that with probability 1− δ we have

Pr(|S| = k) = Ω
(

1√
k

)
, for S ∼ DPP(α̂L).

The distribution of subset size |S| for S ∼ DPP(L) can be defined via the eigenvalues λ1 ≥ λ2 ≥ ...
of L (see [25]): if we let bi ∼ Bernoulli( λi

λi+1 ) for i ≥ 1, then
∑
i bi is distributed identically to

|S|. This distribution is known as the Poisson Binomial, and it has been extensively studied in the
probability literature [38]. The recent result of [13] on the probability of the mode of a Poisson
Binomial shows that it is possible to find α̂ satisfying the condition of Lemma 1.
Lemma 2. There is an absolute constant 0 < c < 1 such that for any Poisson Binomial distribution
p : Z≥0 → R≥0, with mode k∗ we have p(k∗) ≥ c√

k∗+1
·

This result, however, does not provide an efficient way of finding an α̂ such that the mode of the
subset size distribution of DPP(α̂L) is k. We circumvent this problem by performing a binary search
(Algorithm 2) that looks for such an α̂, but stops early when it reaches a sufficiently good candidate,
avoiding excess computations. To make this rigorous, we establish the following new property of the
Poisson Binomial distribution, which should be of independent interest.
Lemma 3. Let p : Z≥0 → R≥0 be a Poisson Binomial distribution, and let k ≥ 1 satisfy p(k) <

c

12
√

3(k+1)
, where c comes from Lemma 2. Then, P<k =

∑
i<k p(k) and P>k =

∑
i>k p(k) satisfy:

1. if the mode of p is less than k, then P>k ≤ 1
2 −

c
12 ;

2. if the mode of p is greater than k, then P<k ≤ 1
2 −

c
12 ·

Informally, the above result states the following: For any k, either its probability under the given
Poisson Binomial is at least Ω( 1√

k
), or this k splits the probability mass into two uneven parts, with

the larger one containing the mode. Thus, as long as our candidate α does not yield high acceptance
probability for k, it is easy to make the branching decision in the binary search by estimating the
quantities P>k and P<k simply by repeated sampling from DPP(αL). Note that if the condition
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Algorithm 2 Binary search for initializing the k-DPP(L) sampler

Input: 0 < αmin < αmax, sampling oracle for DPP(αL), integer k and constants C > 0, δ ∈ (0, 1)

Output: α̂ such that DPP(α̂L) can be used to efficiently sample k-DPP(L)

1: for s = {1, . . . , dlog(γ)e} do
2: if αmax/αmin < (1 + 1

(k+3)2 ) then return α̂ = αmin

3: ᾱ← √αminαmax

4: Sample S1, ..., St
i.i.d.∼ DPP(ᾱL) where t = C

√
k log(s/δ)

5: P̂k ← 1
t

∑t
i=1 1[|Si|=k]

6: if P̂k ≥ 1
2 ·

c

12
√

3(k+1)
then return α̂ = ᾱ

7: (P̂<k, P̂>k)←
(

1
t

∑t
i=1 1[|Si|<k],

1
t

∑t
i=1 1[|Si|>k]

)
8: if P̂<k > P̂>k then (αmin, αmax) = (ᾱ, αmax) else (αmin, αmax) = (αmin, ᾱ)

9: end for

on p(k) is not satisfied, then performing the branching decision could be very expensive, but our
algorithm avoids this possibility. The proof of Lemma 1 (Appendix B) follows from Lemmas 2 and 3.

3.2 Constructing the initial interval

To initiate our binary search, we must first find a range of values [αmin, αmax], which contains the
desired α?, and also construct a sampling oracle for DPP(αL). The binary search procedure is
deliberately presented in a way that is agnostic to how these two steps are accomplished, because
a number of existing DPP samplers could be adapted to take advantage of Algorithm 2, including
[30, 36, 10, 13]. Our implementation of these two steps is different than these previous approaches in
that it takes advantage of the structure of the kernel so that it only has to look at a potentially small
fraction of the data points. We achieve this with a modified version of the BLESS algorithm [37].

Lemma 4. W.p. 1− δ BLESS-I runs in time Õ
(
min{αmaxκ

2, 1}nk6 + k9
)

and satisfies:

1. The interval [αmin, αmax] is bounded by 1
4 (k−1)/tr(L) ≤ αmin ≤ αmax ≤ 8(k+2)/deff(L)

2. There is α? ∈ [αmin, αmax] for which k is the mode of |S| where S ∼ DPP(α?L);
3. The dictionary Dαmax satisfies the conditions from Theorem 2 for any α ∈ [αmin, αmax].

The first two parts of the lemma ensure that the interval I = [αmin, αmax] is a valid input for the
binary search in Algorithm 2 and that its size γ = αmax/αmin ≤ 4tr(L)/deff(L) is bounded in the
log-scale. The last part implies that α-DPP can be used by that algorithm as the oracle sampler.

At a high level, Algorithm 6 proceeds by starting with a small α0 that is guaranteed to be a valid
lower bound for the interval, and for which a dictionary D0 can be constructed simply via uniform
sampling. Then we repeatedly double the α and refine the dictionary, until we reach αi such that we
can ensure that with high probability deff(α

iL) ≥ k + 1 which makes it a valid upper bound for the
interval (then, this αi becomes αmax).

3.3 Overall time complexity of k-DPP sampling

Putting together all the results from the previous sections, we can finally bound the computational
complexity of our k-DPP sampler, which first uses BLESS-I (Algorithm 6) to construct a dictionary
and search interval, and then applies the binary search of (Algorithm 2) using our α-DPP sampler
(Algorithm 1) as the sampling oracle. Once again note that in the following computational analysis
we will use conservative values for many parameters, notably r from α-DPP and q from BLESS-
I, as they are suggested from the theory. However in practice it is always better to start from
a more optimistic value, and keep doubling them only if the sampler repeatedly fails to accept.
Importantly, samples generated this way will still be exactly distributed according to the DPP, as all
the approximations used in our approach only influence the runtime of our algorithm, and not the
correctness of its acceptance, which always holds.
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By Lemma 4, the preprocessing step of running BLESS-I takes Õ
(
min{αmaxκ

2, 1}nk6 + k9
)

and generates a dictionary D with size Õ(k3). Since deff(αL) ≤ deff(αmaxL) ≤ O(k)
for all α in the search interval, each call to the α-DPP sampler also requires at most
Õ
(
min{αmaxκ

2k, 1}nk6 + k9
)
. Finally, the binary search invokes α-DPP at most Õ(

√
k) times so

the overall runtime is Õ
(
(min{αmaxκ

2k, 1}nk6 + k9) ·
√
k
)
. We now provide a bound on αmax.

Lemma 5. For any matrix L and 0 < α ≤ 1, we have deff(αL)/deff(L) ≥ α ≥ deff(αL)/tr(L).

Applied to αmax, we obtain αmax ≤ deff(αmaxL)/deff(L) ≤ O(k/deff(L)), giving us the final
runtime of Õ

(
(min{k2κ2/deff(L), 1}nk6 + k9) ·

√
k
)

reported in Theorem 1.
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Figure 1: Small scale experiment
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4 Experiments
In this section, we evaluate our α-DPP sampler on a benchmark2 introduced by [13] (see Appendix D).
The benchmark uses subsets of the infinite MNIST dataset [33] with d = 784 and n varying up to
106. All experiments are executed on a 28 core Xeon E5-2680 v4. Each experiment is repeated
multiple times, and we report mean values and a 95% confidence interval.

Baselines: we compare α-DPP with DPP-VFX [13], an MCMC sampler [3] and a sampler based
on eigendecompositions [25, 22]. All algorithms are implemented in python as part3 of DPPy [20].
Due to their similar input, we use the same oversampling parameters (see Appendix D) for α-DPP
and DPP-VFX. We run the MCMC sampler for O(nk) iterations to guarantee mixing [3]. For more
details on hyperparameter tuning we refer to Appendix D.

Results We begin by reporting results on a smaller subset of data (Figure 1) where even the non-
efficient samplers can be run. We use an rbf similarity with σ =

√
3d, and set k = 10 to match

the number of digit classes in MNIST. Note that for n = 70000 BLESS-I estimates deff(L) ≈ 300,
validating our assumption of deff(L) � k. Thanks to this mismatch, we can see how α-DPP
maintains a constant runtime as n grows, and increasingly matches or outpaces competing baselines
as n grows. In particular, it becomes faster than the eigendecomposition based sampler (which cannot
scale beyond n = 24000) or the MCMC sampler. However, the gap is still sufficiently small that
DPP-VFX, the previously fastest k-DPP sampler available, remains competitive. Note that, unlike
the MCMC and eigendecomposition based samplers, α-DPP and DPP-VFX sample from a k-DPP
by repeatedly sampling from a random-size DPP until they generate a sample with size exactly k.
While our theory ensures that this will happen after only a small number of rejections, this creates
some overhead cost relative to the other two methods, which is noticeable for small values of n.

For larger datasets we consider only the scalable samplers, α-DPP and DPP-VFX. We consider
again an rbf similarity, but this time we choose n up to 106 and σ =

√
10. This further increases the

gap between k and deff(L), with BLESS-I estimating deff(L) ≈ 1000. We report results in Figure 2,
with runtime shown in log-scale. In this regime, the gap between DPP-VFX and α-DPP widens, as
DPP-VFX cannot use rescaling to reduce the final dictionary size from deff(L) to deff(α̂L) ≈ k, and
has to compute n marginal probabilities since it does not leverage uniform intermediate subsampling.
In particular, thanks to the uniform sampling step, we see that α-DPP’s runtime does not grow as n

2https://github.com/LCSL/dpp-vfx
3Our implementation of α-DPP is included in the supplementary material, and it is also available in DPPy.
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grows, since all the expensive computations are performed in the small intermediate subset which is
hardly sensitive to n. We note that, due to using a smaller dictionary, α-DPP requires about 2-5x
more trials in the rejection sampling step, which leads to larger variance in the runtime.
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Figure 3: Fraction of items observed by α-DPP.

In Figure 3, we report the fraction of data that is ob-
served by α-DPP in the large scale experiment. This
quantity, denoted as β in Theorem 1, is responsible for
much of the computational gains of the algorithm over
DPP-VFX, reported in Figure 2. Note that the remain-
ing 1− β portion of the data does not ever need to be
loaded into the program’s memory, which leads to a
significant reduction in memory accesses. We observe
that as the data size increases, the fraction of items
observed by α-DPP goes down to as little as 1% for
n = 106, which is why the runtime of α-DPP stays
roughly flat, whereas the runtime of DPP-VFX grows.

Broader impact

DPPs were discovered in the 70s by Odile Macchi to model repulsion of particle distributions in
fermions, so improvements in samplers may help in modelling physical simulations. In bringing
faster DPP samplers to machine learning we aim to enable a better handling of diversity through this
rigorous theoretical framework.
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[15] Michał Dereziński, Burak Bartan, Mert Pilanci, and Michael W Mahoney. Debiasing distributed
second order optimization with surrogate sketching and scaled regularization. arXiv preprint
arXiv:2007.01327, 2020. Accepted for publication, Proc. NeurIPS 2020.
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A Correctness and efficiency of α-DPP (Algorithm 1)

In this section we prove the theorems stated in Sections 2 and 3 claiming the correctness and efficiency
of DPP-VFX. In particular, we split Theorem 2 into two parts.

Lemma 6. Given any psd matrix L, dictionary D, positive weights W, r ≥ 1, and positive α > 0,
α-DPP returns S ∼ DPP(αL).

Lemma 7. If r ≥ deff(αL) ≥ 1/2, D and W are (1/deff(αL), α)-accurate, D satisfies |D| ≤
10deff(αL), and deff(αL̂) ≤ 10deff(αL), then with probability 1− δ, α-DPP (Algorithm 1) runs in
time

O
( [

min{ακ2deff(αL), 1} · n · deff(αL)6 log2(n/δ) + deff(αL)9 log3(n/δ)
]
· log(1/δ)

)
.

A.1 Notation

We start by introducing some additional notation. First, let us describe the so-called kernel-based
view of DPPs. We associate with our similarity matrix L a similarity function or a kernel4 function
K(·, ·) : [n]× [n]→ R such that K(i, j) is equal to the (i, j)-th entry of L.

We also generalize the notation just defined in a way that given multi-setsA andB,K(A,B)
def
= LA,B

returns the matrix containing the corresponding rows and columns of L. Note that if A or B contains
duplicates (e.g., the i-th index appears twice in A) the matrix K(A,B) will consequently contain
duplicate rows and columns. Finally, note that in this notation the original matrix can be written as
L = K([n], [n]).

We also denote with ϕ(·) : [n]→ RD the so-called feature map associated with L and K(·, ·) such
that K(i, j) = ϕ(i)>ϕ(j), where D can be arbitrarily large or infinite.5 Just as with K, we also
extend ϕ(·) to operate on multi-set, such that given A = {i1, . . . , im} (potentially with duplicates
ij = il), we have ϕ(A) = [ϕ(i1), . . . , ϕ(im)]> ∈ Rm×D.

Using the above notation, we have L = K([n], [n]) = ϕ([n])ϕ([n])>. Note also that the corre-
sponding operator ϕ([n])>ϕ([n]) can be decomposed as a sum of outer products ϕ([n])>ϕ([n]) =∑n
i=1 ϕ(i)ϕ(i)>.

We also use the following notation to indicate common sampling distributions:

• u ∼ Poisson(λ) as a non-negative integer sampled from a Poisson distribution with intensity 0 < λ;

• ρ ∼ Uniform(u, [n]) as a set of size u sampled uniformly i.i.d. with replacement from [n]; i.e.,
ρ = (ρ1, . . . , ρu)

i.i.d.∼ (1/n, . . . , 1/n).

• z ∼ Bernoulli(p) as the {0, 1} r.v. sampled from a Bernoulli distribution w.p. 0 ≤ p ≤ 1;

• s ∼ Binomial(k, p) as the non-negative integer in the range [0, k] sampled from a Binomial
distribution with 0 ≤ k Bernoulli repetitions each with probability 0 ≤ p ≤ 1

• (s1, . . . , sn) ∼ GenBinomial(k, {pi}ni=1) as the vector of positive integers [0, k]n with 0 ≤ k
sampled according to P ((s1, . . . , sn)) = n!∏n

i=1 si!

∏n
i=1 p

si
i such that

∑n
i=1 si = k.

• σ ∼ Multinomial(k, {pi}ni=1) as a set of size k sampled i.i.d. with replacement from [n] according
to probabilities 0 ≤ pi ≤ 1 with

∑n
i=1 pi = 1, i.e., σ = (σ1, . . . , σk)

i.i.d.∼ (p1, . . . , pn).

4Note that we are defining the kernel K as a function on indices, but since we focus on DPPs defined on PSD
matrices, everything can be immediately extended to any standard PSD kernel K(·, ·) : X ×X → R defined on
an arbitrary input space X .

5Again we focus on a feature map from indices to a finite dimensional space. All the results can be
immediately extended to a feature map ϕ(·) : X → H that maps from an arbitrary input space into a reproducing
kernel Hilbert space, e.g., Gaussian kernel and Gaussian feature maps. Notice that in our setting given a PSD
matrix L the eigenspace of L suffices to construct an appropriate feature map ϕ(·) : [n] → Rn with D = n.
In particular, we have an explicit expression for ϕ(·) based on the eigendecomposition L = UΣU> of L.
Since L is psd, Σ is a diagonal matrix with non-negative entries, and we can define Σ+/2 as the square root of

its pseudo-inverse. Then the feature map becomes ϕ(·) def
= Σ+/2U>K([n], ·). A similar argument can be made

using the Cholesky decomposition of L.
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A.2 Proof of Lemma 6 (exact sampling)

To prove that α-DPP is an exact sampler we show that σ is sampled according to an appropriate
R-DPP, and that therefore we can invoke Proposition 1.

Proof of Lemma 6. Given the approximate marginals li from Equation 1, let us denote with
d̃eff(αL)

def
=
∑n
i=1 li their sum, or approximate effective dimension. Note that Algorithm 1 never

computes d̃eff(αL) explicitly, nor does it compute all approximate marginals li. Nonetheless, our
first claim is that the inner loop of α-DPP is proposing a candidate σ sampled according to the
approximate marginals li even without computing them all.

Lemma 8. The set σ generated by Algorithm 1 before Line 11 is distributed as

σ = {σ1, . . . , σt}
i.i.d.∼ (l1/d̃eff(αL), . . . , ln/d̃eff(αL)), t ∼ Poisson

(
re1/rd̃eff (αL)

)
.

Then, we show that the rejection sampling step of Line 11 is valid.

Lemma 9. Given any psd matrix L, dictionary D, positive weights W, r ≥ 1, and positive α > 0,

the acceptance probability edeff(αL̂) det(I+αL̃σ)

et/r det(I+αL̂)
≤ 1 is valid.

Let σ̃ denote the random variable distributed as σ is after exiting the repeat loop. Combining Lemma 9
with the fact that t ∼ Poisson(re1/rd̃eff(αL)) is a Poisson r.v. it follows that

Pr(σ̃ ∈ A) ∝ Eσ
[
1[σ∈A]

edeff(αL̂) det(I + L̃σ)

et/r det(I + L̂)

]
∝
∞∑
t=0

(r e1/rd̃eff(αL))t

er e1/r d̃eff(αL) t!
· e−t/r Eσ

[
1[σ∈A] det(I + L̃σ) | t

]
∝ Et′

[
Eσ
[
1[σ∈A] det(I + L̃σ) | t = t′

]]
for t′ ∼ Poisson(rd̃eff(αL)),

which matches the numerator of Definition 1 for a R-DPP
rd̃eff(αL)

{li/d̃eff(αL)}ni=1

. All that remains is to show

that the distribution integrates properly, i.e., the denominator also matches. We do this by generalizing
a determinantal equality to our modified reweighting.

Proposition 2 ([10]). If t ∼ Poisson(rd̃eff(αL)) and (σ1, . . . , σt)
i.i.d.∼
(

l1
d̃eff(αL)

, . . . , ln
d̃eff(αL)

)
then

Et,σ
[
det
(
I + L̃σ

)]
= det (I + L) .

This shows that σ̃ ∼ R-DPP
rd̃eff(αL)

{li/d̃eff(αL)}ni=1

. The claim follows from Proposition 1. �

Proof of Lemma 8. Before starting, we will use two well known connections of the Poisson distribu-
tion with GenBinomial and Binomial r.v. [27]. The first useful Poisson property is that for any set of
positive weights {λi}ni=1 the random variables X1 ∼ Poisson(λ1), . . . , Xn ∼ Poisson(λn) and the
random variables

k ∼ Poisson
(∑n

i=1 λi
)
, {X1, . . . , Xn}|k ∼ GenBinomial

(
k, λi∑n

i=1 λi

)
are equally distributed. Note that for this identity to hold we do not need to explicitly compute∑n
i=1 λi, as we can simply sample n Poisson r.v.-s and obtain the normalization effect in the

GenBinomial sample for free using the conditioning on k. The second useful Poisson property we
will use is that if k ∼ Poisson(λ) and Y |k ∼ Binomial(k, p) then Y ∼ Poisson(λ · p).
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Algorithm 3 α-DPP reformulation in terms of ui and si
Input: α, L, an m-element dictionary D, weight matrix W ∈ Rm×m, r ≥ 1

1: Set L̂ = W1/2LD,DW
1/2 ∈ Rm×m

2: repeat
3: for i = {1, . . . , n} do
4: Sample ui ∼ Poisson(re1/rακ2)
5: if ui > 0 then
6: Compute li using Equation 1
7: Sample si ∼ Binomial(ui, li/(ακ2))
8: else
9: Set si = 0

10: end if
11: Add si copies of i to σ
12: end for
13: Set t = |σ|, [L̃σ]ij = 1

r
√
lσi lσj

[L]σiσj

14: Sample Acc ∼Bernoulli
(

edeff(αL̂)−t/r det(I + αL̃σ)/det(I + αL̂)
)

15: until Acc = true
16: Sample S̃ ∼ DPP

(
αL̃σ

)
17: return S = {σi : i∈ S̃}

Let us denote with ui =
∑u
j=1 I{ρj = i} the multiplicity of index i in ρ, such that we have a set

of n random variables {ui}ni=1 and that u =
∑n
i=1 ui. Then, from the previous relationship, we can

instantly see that sampling ui ∼ Poisson(re1/rb) is equivalent to sampling

u ∼ Poisson
( n∑
i=1

re1/rακ2
)

= Poisson(re1/rnακ2),

{u1, . . . , un}|u ∼ GenBinomial
(
u, re

1/rακ2

re1/rnακ2

)
= GenBinomial

(
u,
{

1
n

})
·

We can now connect ui and ρ. In particular sampling ρ|u ∼ Uniform(u, [n]) is equivalent to sampling
{u1, . . . , un}|u

i.i.d.∼ GenBinomial
(
u,
{

1
n

})
and then adding ui copies of i to ρ|u for each i ∈ [n].

Starting from this characterization, let us now denote with si =
∑t
j=1 I{σj = i} the multiplicity

of index i in σ, such that we have a set of n random variables {si}ni=1 and that t =
∑n
i=1 si. We

can now formally describe Line 7 of Algorithm 1 as a binomial sampling step: first we sample ui ∼
Poisson(re1/rακ2), and then we sample si|ui ∼ Binomial(ui, li/(ακ2)). To see this, we can just
sum over all zj that correspond to the i-th element, of which we have exactly ui, and remember that a
sum of i.i.d. Bernoulli is a Binomial. We also have to take care of the fact that the Binomial probability
is well defined, i.e., smaller than 1, but it is easy to see that li ≤ α[L]i,i ≤ ακ2 and li/(ακ2) ≤ 1.
We can now use the second fact about Poissons, namely that sampling ui ∼ Poisson(re1/rb) and then
si|ui ∼ Binomial(ui, lib ) is equivalent to sampling si ∼ Poisson(re1/rb · lib ) = Poisson(re1/rli).

Finally we can once again use the equivalence between Poisson and GenBinomial sampling to see
that sampling si ∼ Poisson(re1/rli) for each i ∈ [n] is equivalent to sampling

t ∼ Poisson
(∑n

i=1 qli
)

= Poisson(re1/rd̃eff(αL)), {s1, . . . , sn}|t ∼ GenBinomial
(
t, li
d̃eff(αL)

)
,

which in turn implies that by adding si copies of the index i to σ, which is what Algorithm 1 is doing,
we are sampling according to

σ = {σ1, . . . , σt}
i.i.d.∼ (l1/d̃eff(αL), . . . , ln/d̃eff(αL)), t ∼ Poisson(re1/rd̃eff(αL)),

without ever explicitly computing d̃eff(αL).

For completeness, we also include the two implicit reformulations of Algorithm 1 that we just
described as Algorithm 3 and Algorithm 4. Note that all three algorithms are strictly equivalent, but
depending on the actual implementation they have different complexities. For example, Algorithm 4
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Algorithm 4 α-DPP reformulation in terms of si
Input: α, L, an m-element dictionary D, weight matrix W ∈ Rm×m, r ≥ 1

1: repeat
2: for i = {1, . . . , n} do
3: Compute li using Equation 1
4: Sample si ∼ Poisson(re1/rli)
5: Add si copies of i to σ
6: end for
7: Set t = |σ|, [L̃σ]ij = 1

r
√
lσi lσj

[L]σiσj

8: Sample Acc ∼Bernoulli
(

edeff(αL̂)−t/r det(I + αL̃σ)/det(I + αL̂)
)

9: until Acc = true
10: Sample S̃ ∼ DPP

(
αL̃σ

)
11: return S = {σi : i∈ S̃}

needs to compute all marginals in advance. We chose to include Algorithm 1 in the main paper as the
version that more clearly highlights the uniform sampling step. �

Proof of Lemma 9. The first reason we introduced the kernel-based DPP notation is to be able to
succinctly use Sylvester’s identity to equate determinants in the matrix and feature view of the DPP,
i.e.,
det (I + L) = det (I + ϕ([n])ϕ([n])>) = det (I + ϕ([n])>ϕ([n])) = det (I +

∑n
i=1 ϕ(i)>ϕ(i)) ,

where the size of the identity matrix6 I is either n or D and it is clear from the context. Similarly, the
denominator det(I + αL̂) = det(I + αW1/2LD,DW

1/2) in the rejection loop becomes

det(I + αW1/2LD,DW
1/2) = det(I + αW1/2ϕ(D)ϕ(D)>W1/2) = det(I + αϕ(D)>Wϕ(D)).

Finally, given σ let us denote with ϕ̃(i) = 1√
rli
ϕ(i) a rescaled feature map, where once again we

extend ϕ̃(σ) = Diag( 1√
rlσi

)mi=1ϕ(σ) to multi-sets. Then the numerator in the rejection loop becomes

det(I + αL̃σ) = det(I + αϕ̃(σ)ϕ̃(σ)>)

= det(I + αϕ̃(σ)>ϕ̃(σ)) = det
(
I + α

∑t

j=1

1
rlσj

ϕ(σj)ϕ(σj)
>
)
.

The second reason we introduce this notation is that the formulation of the approximate marginals li
is much simplified and becomes (see [5, 37] for details)
li = α[L− αL>[n],D(αLD,D + W−1)−1L[n],D]i,i = αϕ(i)>(I + αϕ(D)>Wϕ(D))−1ϕ(i). (2)

Using the kernel-based view of DPPs and the reformulation of most quantities, we can now move
from characterizing the distribution of σ, to computing the final acceptance probability P(Acc|σ). In
particular, to guarantee correctness we must guarantee that the rejection step is valid, i.e., that the
acceptance probability is bounded by 1. For this we rewrite the acceptance condition as

det(I + αL̃σ)

det(I + αL̂)
=

det(I + αϕ̃(σ)>ϕ̃(σ))

det(I + αϕ(D)>Wϕ(D))
·

Similarly to [13], we can use the inequality det(I + A) ≤ exp{tr(A)}, which follows immediately
by applying the bound 1 + x ≤ ex to each singular value of A. We obtain

det(I + αϕ̃(σ)>ϕ̃(σ))

det(I + αϕ(D)>Wϕ(D))

= det
(
(I + αϕ̃(σ)>ϕ̃(σ))(I + αϕ(D)>Wϕ(D))−1

)
= det

(
I + (αϕ̃(σ)>ϕ̃(σ)− αϕ(D)>Wϕ(D))(I + αϕ(D)>Wϕ(D))−1

)
≤ exp

{
tr
(
(αϕ̃(σ)>ϕ̃(σ)− αϕ(D)>Wϕ(D))(I + αϕ(D)>Wϕ(D))−1

)}
= exp{tr

(
αϕ̃(σ)>ϕ̃(σ)(I + αϕ(D)>Wϕ(D))−1

)
(a)

− tr
(
αϕ(D)>Wϕ(D)(I + αϕ(D)>Wϕ(D))−1

)
(b)

}.

6Or an identity operator on an RKHS in general
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For (b), we can see that by definition tr
(
αϕ(D)>Wϕ(D)(I + αϕ(D)>Wϕ(D))−1

)
= deff(αL̂).

For (a), we have

(a) = tr
(
αϕ̃(σ)>ϕ̃(σ)(I + αϕ(D)>Wϕ(D))−1

)
= tr

(
αϕ̃(σ)(I + αϕ(D)>Wϕ(D))−1ϕ̃(σ)>

)
=

t∑
j=1

αϕ̃(σj)
>(I + αϕ(D)>Wϕ(D))−1ϕ̃(σj) =

t∑
j=1

1

rlσj
αϕ(σj)

>(I + αϕ(D)>Wϕ(D))−1ϕ(σj)

=

t∑
j=1

1

rlσj
lσj =

t

r
.

Putting (a) and (b) together we have

P(Acc = true|σ) =
det(I + αϕ̃(σ)>ϕ̃(σ))

det(I + αϕ(D)>Wϕ(D))
· exp

{
deff(αL̂)− t

r

}
≤ exp

{
t

r
− deff(αL̂)

}
· exp

{
deff(αL̂)− t

r

}
= e0 = 1.

�

Proof of Proposition 2. We first rewrite the equality as

Et,σ
[

det
(
I +

t∑
j=1

1

rlσj
ϕ(σj)ϕ(σj)

>
)]

= det
(
I +

n∑
i=1

ϕ(i)ϕ(i)>
)
·

Dereziński [10] showed the following identity when sampling t ∼ Poisson(r) and then sampling a
multi-set σ with t elements i.i.d. from any arbitrary distribution,

Et,σ [det (I + ϕ(σ)>ϕ(σ))] = det (I + rEσ1
[ϕ(σ1)ϕ(σ1)>]) .

Applying this to our t ∼ Poisson(rd̃eff(αL)) and the distribution of σ we have

Et,σ
[

det
(
I +

t∑
j=1

1

rlσj
ϕ(σj)ϕ(σj)

>
)]

= det
(
I + rd̃eff(αL)Eσ1

[ϕ(σ1)ϕ(σ1)>]
)

= det
(
I + rd̃eff(αL)

n∑
i=1

li

d̃eff(αL)

1

rli
ϕ(σi)ϕ(σi)

>
)

= det
(
I +

n∑
i=1

ϕ(i)ϕ(i)>
)
.

�

A.3 Proof of Lemma 7 (efficiency)

Proof of Lemma 7. We need to lower bound the acceptance probability P(Acc|σ). Note that this is
equivalent to lower bounding E[Acc = true] since it is a {0, 1} random variable.

P(Acc = true) = Eσ,t

[
edeff(αL̂) det(I + αϕ̃(σ)>ϕ̃(σ))

et/r det(I + αL̂)

]
=

edeff(αL̂)

det(I + αL̂)
Eσ,t

[
det(I + αϕ̃(σ)>ϕ̃(σ))

et/r

]

=
edeff(αL̂)

det(I + αL̂)
·
∞∑
t=0

Eσ
[

det(I + αϕ̃(σ)>ϕ̃(σ))| t
]

1
et/r

(re1/r d̃eff(αL))
t

t!·ere1/rd̃eff(αL)
,

where we expanded the expectation with respect to t ∼ Poisson(re1/rd̃eff(αL)). Focusing on the last
term we have

1

et/r

(
re1/rd̃eff(αL)

)t
t! · ere1/r d̃eff(αL)

. =
1

et/r
rtet/rd̃eff(αL)t

t! · ere1/r d̃eff(αL)
=

rtd̃eff(αL)t

t! · ere1/r d̃eff(αL)
=

(rd̃eff(αL))t

t! · erd̃eff(αL)

erd̃eff(αL)

ere1/r d̃eff(αL)
.
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Recognizing that (rd̃eff(αL))t

t!·erd̃eff(αL)
is the density of a t ∼ Poisson(rd̃eff(αL)), we can apply Proposition 2,

P(Acc = true) =
edeff(αL̂)

det(I + αL̂)
·
∞∑
t=0

Eσ
[

det(I + αϕ̃(σ)>ϕ̃(σ))| t
]

1
et/r

(re1/r d̃eff(αL))
t

t!·ere1/rd̃eff(αL)

=
edeff(αL̂)

det(I + αL̂)

erd̃eff(αL)

ere1/r d̃eff(αL)
·
∞∑
t=0

Eσ
[

det(I + αϕ̃(σ)>ϕ̃(σ))| t
] (rd̃eff(αL))t

t! · erd̃eff(αL)

=
edeff(αL̂)

det(I + αL̂)

erd̃eff(αL)

ere1/r d̃eff(αL)
· det(I + αϕ([n])>ϕ([n]))

=
edeff(αL̂)erd̃eff(αL)

ere1/r d̃eff(αL)

det(I + αϕ([n])>ϕ([n]))

det(I + αϕ(D)>Wϕ(D))
·

To lower bound this quantity we will again upper bound the inverse det(I+αϕ(D)>Wϕ(D))
det(I+αϕ([n])>ϕ([n]))

as follows

det(I+αϕ(D)>Wϕ(D))
det(I+αϕ([n])>ϕ([n]))

≤ exp
{

tr
(
(αϕ(D)>Wϕ(D)− αϕ([n])>ϕ([n]))(I + αϕ([n])>ϕ([n]))−1

)}
= exp

{
tr
(
αϕ(D)>Wϕ(D)(I + αϕ([n])>ϕ([n]))−1

)
− deff(αL)

}
.

Inverting the relationship and putting it all together we have

P(Accσ = true)

≥ exp
{
deff(αL̂) + rd̃eff(αL)− re1/rd̃eff(αL) + deff(αL)− tr

(
αϕ(D)>Wϕ(D)(I + αϕ([n])>ϕ([n]))−1

)}
.

Using the bound e1/r ≤ 1 + 1/r + 1/r2 for r ≥ 1 we simplify

rd̃eff(αL)− re1/rd̃eff(αL) ≥ rd̃eff(αL)− rd̃eff(αL)− d̃eff(αL)− d̃eff(αL)/r ≥ −d̃eff(αL)− d̃eff(αL)/r

and obtain the final

P(Accσ = true)

≥ exp
{
deff(αL̂)− d̃eff(αL) + deff(αL)− tr

(
αϕ(D)>Wϕ(D)(I + αϕ([n])>ϕ([n]))−1

)
− d̃eff(αL)/r

}
.

Using the definition of (ε, α)-accuracy, we have

d̃eff(αL) =

n∑
i=1

αϕ(i)>(I + αϕ(D)>Wϕ(D))−1ϕ(i)

= tr
(
αϕ([n])(I + αϕ(D)>Wϕ(D))−1ϕ([n])>

)
≤ 1

1−ε tr
(
αϕ([n])(I + αϕ([n])>ϕ([n]))−1ϕ([n])>

)
= 1

1−εdeff(αL) = (1 + ε
1−ε )deff(αL),

and therefore −d̃eff(αL) + deff(αL) ≥ ε
1−εdeff(αL). On the other side

tr
(
αϕ(D)>Wϕ(D)(I + αϕ([n])>ϕ([n]))−1

)
≤ 1

1−ε tr
(
αϕ(D)>Wϕ(D)(I + αϕ(D)>Wϕ(D))−1

)
= 1

1−εdeff(αL̂) = (1 + ε
1−ε )deff(αL̂),

and therefore d̃eff(αL̂)− tr
(
αϕ(D)>Wϕ(D)(I + αϕ([n])>ϕ([n]))−1

)
≥ ε

1−εdeff(αL̂). Putting it

all together, we obtain our result P(Accσ = true) ≥ exp{−(ε(deff(αL)+deff(αL̂))+ d̃eff(αL)/r))}.
To bound εdeff(αL) we simply use the fact that the dictionary is 1/deff(αL) accurate. Secondly to
bound d̃eff(αL)/r we use the fact that by Equation 2 and Proposition 5

d̃eff(αL) =

n∑
i=1

li =

n∑
i=1

αϕ(i)>(I + αϕ(D)>Wϕ(D))−1ϕ(i)

≤ 1

1− ε

n∑
i=1

αϕ(i)>(I + αϕ([n])>ϕ([n]))−1ϕ(i) =
1

1− ε

n∑
i=1

`i(αL) =
deff(αL)

1− ε
.
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Combining this with the fact that ε ≤ 1/2 and that r ≥ deff(αL) we have that d̃eff(αL)/r ≤ 2.

Finally, to bound εdeff(αL̂), first we bound

deff(αL̂) = tr(αW1/2LDW
1/2(αW1/2LDW

1/2 + I)−1)

= tr(αW1/2ϕ(D)ϕ(D)>W1/2(αW1/2ϕ(D)ϕ(D)>W1/2 + I)−1)

= tr(αϕ(D)>W1/2W1/2ϕ(D)>(αϕ(D)>W1/2W1/2ϕ(D)> + I)−1)

= tr(αWϕ(D)>(αϕ(D)>Wϕ(D)> + I)−1ϕ(D)>)

=

m∑
j=1

[W]j,jαϕ(Dj)>(I + αϕ(D)>Wϕ(D))−1ϕ(Dj)

≤
m∑
j=1

[W]j,j
1

1−εαϕ(Dj)>(I + αϕ([n])>ϕ([n]))−1ϕ(Dj) =

m∑
j=1

[W]j,j
1

1−ε`Dj (αL)

where the last inequality used again Equation 2 and Proposition 5. To continue we have to use the
following result for BLESS, the specific dictionary construction algorithm used by α-DPP, which
follows immediately from Proposition 4 in Appendix C.

Proposition 3. For some α′ ≥ α, letD be a dictionary generated using BLESS-I ran with parameter
q ≥ 54κ2 (2ε+1)2

ε2 log(12n2/δ) and ε ≤ min{1/2, 1/deff(α
′L)}. Then w.p. 1− δ

• the dictionary and weights are (ε, α′)-accurate,

• the weights W obtained satisfy [W]j,j ≤ max{ 1
1−ε

1
q`Dj (α′L) , 1},

• the size of the dictionary m = |D| is bounded as m/q ≤ 2deff(α
′L).

Applying this to the previous bound, and using the (1/deff(αL), α)-accuracy, ε ≤ 1/2 and the fact
that `Dj (αL) ≤ `Dj (α′L) for α′ ≥ α we obtain

m∑
j=1

[W]j,j
1

1−ε`j(αL) ≤
m∑
j=1

max{ deff(α
′L)

deff(α′L)−1
1

deff(α′L)2`Dj (α′L) , 1}2`Dj (αL)

= 2

m∑
j=1

max{ deff(α
′L)

deff(α′L)−1
1

deff(α′L)2
`Dj (αL)

`Dj (α′L) , `Dj (αL)}

≤ 2

m∑
j=1

max{ deff(α
′L)

deff(α′L)−1
1

deff(α′L)2 , `Dj (αL)}

≤ 2

m∑
j=1

(
deff(α

′L)
deff(α′L)−1

1
deff(α′L)2 + `Dj (αL)

)
.

To conclude, we have that since BLESS does not include duplicates in D,

m∑
j=1

`Dj (αL) ≤
n∑
i=1

`i(αL) = deff(αL).

Now using the second result from Proposition 3 on m we have

m∑
j=1

deff(α
′L)

deff(α′L)−1
1

deff(α′L)2 = m deff(α
′L)

deff(α′L)−1
1

deff(α′L)2 ≤ 2deff(α
′L) deff(α

′L)
deff(α′L)−1

1
deff(α′L)2 ≤ 2.

�
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B Proofs for the binary search algorithm

In this section we present omitted proofs for the binary search algorithm. The key properties of a
Poisson Binomial which we will use are summarized in the following two lemmas.
Lemma 10. Let p : Z≥0 → R≥0 be a Poisson Binomial distribution. Then:

1. p is unimodal, i.e., if k∗ is the mode of p, then p(1) ≤ ... ≤ p(k∗) ≥ p(k∗ + 1) ≥ ...;

2. p is log-concave, i.e., log(p) is a concave function over the support of p;

3. the median of p is one of k∗ − 1, k∗ and k∗ + 1.

Lemma 11 ([9]). Given a Poisson Binomial with mean k̄ and mode k∗, let k
def
= bk̄c. Then:

k∗ =


k if k ≤ k̄ < k + 1

k+2
,

k or k + 1 if k + 1
k+2 ≤ k̄ ≤ k + 1− 1

n−k+1
,

k + 1 if k + 1− 1
n−k+1 < k̄ ≤ k + 1.

Note that these statements are independent of how we break ties in the definitions of the mode and
the median, but for the sake of concreteness, suppose that we round down when choosing between a
pair of (consecutive) mode/median candidates.
Lemma 3 (restated). Let p : Z≥0 → R≥0 be a Poisson Binomial distribution, and let k ≥ 1 satisfy
p(k) < c

12
√

3(k+1)
, where c comes from Lemma 2. Then, P<k =

∑
i<k p(k) and P>k =

∑
i>k p(k)

satisfy:
1. if the mode of p is less than k, then P>k ≤ 1

2 −
c
12 ;

2. if the mode of p is greater than k, then P<k ≤ 1
2 −

c
12 ·

Proof of Lemma 3. Let k∗ be the mode of p and let p∗ denote p(k∗). From Lemma 10 it follows that
k 6= k∗. Suppose that k∗> k (which implies that k∗≥ 2) and define:

t
def
= min

{
i ∈ {1, ..., k∗} subject to p(k∗− i) < p∗

(1 + βp∗)i

}
,

where β = 2 + c/2.5 is chosen so that the following inequalities (used later) hold: (a) 1
β ≤

1
2 −

c
12 ,

(b) 1
(1+β)2 ≥

1
12 and (c) eβ ≤ 12. If no i exists satisfying the above constraint, then we let t = k∗+1

and use p(−1) = 0 for convenience. We consider two cases.

Case 1: t ≤ dc/p∗e + 1. Since p∗ ≥ c√
k∗+1

, it follows that t ≤
⌈√

k∗+ 1
⌉

+ 1. Note that if

k > k∗ − t then k + 1 ≥ k∗+ 1 −
⌈√

k∗+ 1
⌉
≥ (k∗+ 1)/3 and p(k) ≥ p∗(1 + βp∗)−1/p∗ >

c
eβ
√
k∗+1

≥ c

12
√

3(k+1)
which is a contradiction, so we must have k ≤ k∗ − t. Furthermore, using

the definition of t as well as unimodality and log-concavity of p, for any i ≥ t we have:

p(k∗− i+ 1)

p(k∗− i)
≥ p(k∗− t+ 1)

p(k∗− t)
≥ 1 + βp∗.

Thus, p(k∗− i) < p∗

(1+βp∗)i for all i ≥ t and it follows that:

P<k ≤
∑
i>t

p(k∗− i) ≤ p∗

(1 + βp∗)t

∑
i≥1

1

(1 + βp∗)i
≤ p∗

(1 + βp∗)t
1

βp∗
≤ 1

β
≤ 1

2
− c

12
.

Case 2: t > dc/p∗e+1. This implies that for any i ≤ dc/p∗ewe have p(k∗−i) ≥ p∗(1+βp∗)−c/p
∗
>

c

12
√

3(k+1)
> p(k) so k ≤ k∗ − dc/p∗e − 1. Note that the median of p is no less than k∗− 1 so:

P<k ≤
∑

i<k∗−1

p(i)︸ ︷︷ ︸
≤1/2

−
dc/p∗e+1∑
i=2

p(k∗− i)︸ ︷︷ ︸
B

.
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If p∗ ≥ c
2β , then it suffices to note that

B ≥ p(k∗− 2) ≥ p∗

(1 + βp∗)2
≥ min

{ c/(2β)

(1 + c/2)2
,

1

(1 + β)2

}
≥ c

12
,

whereas if p∗ < c
2β , then, we have:

B = p∗
(

1− (1 + βp∗)−dc/p
∗e−1

1− (1 + βp∗)−1
− 1− (1 + βp∗)−1

)
=

1

β

(
1− (1 + βp∗)−dc/p

∗e
)
− p∗

1 + βp∗

≥ 1

β

(
1− 2−βc − c/2

)
≥ 1

β

(
1− (1− βc/3)− c/2

)
=
c

3
− c

2β
>

c

12
,

which completes the proof when k∗ > k, and the case of k∗ < k follows analogously. �

We are now ready to establish the correctness of the binary search procedure that is used to prove
Lemma 1, with pseudo-code given in Algorithm 2. In the proof we will use the following standard
form of the Chernoff bound.

Lemma 12 (Chernoff bound). Let X1, ..., Xt be independent Bernoulli variables and let X̄ =
1
t

∑
iXi. Then, for any 0 < ε ≤ 1, we have:

Pr
(
|X̄ − E[X̄]| ≥ ε · E[X̄]

)
≤ 2e−ε

2tE[X̄]/3.

Lemma 1 (restated). Suppose that we are given an integer k, a range I = [αmin, αmax] where
αmax = γαmin, and access to an oracle which, for any α ∈ I , returns S ∼ DPP(αL). If there exists
α? ∈ I such that k is the mode of |S| for S ∼ DPP(α?L), then using O

(√
k log2(k log(γ)/δ)

)
calls

to the oracle we can find α̂ ∈ I such that with probability 1− δ we have

Pr(|S| = k) = Ω
(

1√
k

)
, for S ∼ DPP(α̂L).

Proof of Lemma 1. Let PB(αL) denote the size distribution of DPP(αL). Since the binary search
is performed in the log-scale, it takes at most O(log(k log(γ))) steps to reduce the interval ratio αmax

αmin

from γ to 1 + 1
(k+3)2 . We first establish concentration of P̂k around its mean E[P̂k] = Pr(|S1| =

k) = p(k), where p is the probability function of PB(ᾱL). Define f(x) = Pr(X̄ ≥ q/2) where
X̄ = 1

t

∑t
i=1Xi and Xi are drawn i.i.d. from Bernoulli(x), with q = c

12
√

3(k+1)
. Lemma 12

implies that, choosing a sufficiently large constant C in Algorithm 2, we have:

max
{
f(q/4), 1− f(q)

}
≤ 2e−tq/12 ≤ δ

4s2
,

where s is the number of the current branching step. Note that if p(k) > q then Pr(P̂k < q/2) ≤
1 − f(q) ≤ δ/(4s2) whereas if p(k) < q/4, then Pr(P̂k ≥ q/2) ≤ f(q/4) ≤ δ/(4s2), so putting
this together we conclude that:

Pr
((
P̂k ≥ q

2 ⇒ p(k) ≥ q
4

)
∧
(
P̂k <

q
2 ⇒ p(k) < q

))
= 1− Pr

((
P̂k ≥ q

2 ∧ p(k) < q
4

)
∨
(
P̂k <

q
2 ∧ p(k) ≥ q

))
≥ 1− δ

4s2
·

Thus, conditioning on the above high probability event ensures that when the if statement in Line 6 of
Algorithm 2 succeeds then α̂ satisfies the condition from Lemma 1 because p(k) ≥ q/4 = Ω( 1√

k
),

and when the if statement fails, then the assumption of Lemma 3 is satisfied because p(k) < q.

We now move on to the branching step of the binary search (Line 8). Our assumptions ensure that
the initial interval (αmin, αmax) contains an α? such that k is the mode of PB(α?L). Our goal is
to show that the branching step preserves this invariant throughout the procedure. As discussed
above, when entering the branching step, with high probability we have p(k) < q, so that we can use
Lemma 3. Note that E[P̂<k] = P<k and E[P̂>k] = P>k, as defined in the lemma, and the goal of the
branching statement is to determine whether P<k > P<k, since that tells us on which side of k is the
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mode of PB(ᾱK). Conditioned on a high probability event, we know that either P<k ≤ 1
2 −

c
12 or

P>k ≤ 1
2 −

c
12 . Suppose the former holds. Then, we have:

P>k = 1− (P<k + p(k)) ≥ 1− ( 1
2 −

c
12 + c

12
√

3
) ≥ 1

2 + c
30 ,

and an analogous bound follows for P<k in the latter case. If P>k ≥ 1
2 + c

30 (call it event E), then
we can once again apply Lemma 12 to show that (for a sufficiently large constant C),

Pr
(
P̂<k > P̂>k | E

)
≥ Pr

(
P̂<k ≥ 1

2 | E
)
≥ Pr

(
|P̂<k − E[P<k]| < c

30 | E
)

≥ 1− 2 exp
{
− ( c30 )2 1

2 t/3
}
≥ 1− δ/(4s2),

and an analogous claim follows when P>k ≤ 1
2 −

c
12 . Conditioning on this high probability event

implies (via Lemma 3) that the interval constructed after branching still satisfies the invariant. A union
bound implies that the probability that any of the events we have conditioned on fails (throughout the
algorithm) is bounded by

∑
s≥1

2δ
4s2 ≤ δ. Thus, with probability 1− δ the last interval used in the

search will still satisfy the invariant. It remains to show that when the if statement in Line 2 succeeds
then either αmin or αmax satisfies the claim of Lemma 1. To that end, since k ≥ bdeff(αminL)c, we
have:

deff(αmaxL) < deff
(
(1 + 1

(k+3)2 )αminL
)
≤
(
1 + 1

(k+3)2

)
deff(αminL)

≤ deff(αminL) +
1

bdeff(αminL)c+ 3
·

Now, there are two cases. Either bdeff(αmaxL)c = bdeff(αminL)c, in which case Lemma 11 im-
mediately implies that there are at most two possible modes of the Poisson Binomial PB(αL)
among all values of α ∈ [αmin, αmax], and they must be achieved by αmin and by αmax. If
bdeff(αmaxL)c = bdeff(αminL)c+ 1, then the same conclusion is reached by observing that:

deff(αmaxL) ≤ bdeff(αmaxL)c+
1

bdeff(αminL)c+ 3
≤ bdeff(αmaxL)c+

1

bdeff(αmaxL)c+ 2
,

so, by Lemma 11, the mode of PB(αmaxL) must be bdeff(αmaxL)c, and once again there are only
two possible modes in the interval α ∈ [αmin, αmax]. With high probability, one of these modes must
be k, which completes the proof. �

C BLESS-I algorithm

In this section we present the omitted BLESS-I algorithm with proofs of its accuracy and efficiency.
For simplicity, in the entirety of this section we will assume that k ≥ 2. Note that this can be relaxed,
at the only cost of slightly more complex constants (e.g., αinit = max{k − 1, 1}/tr(L)) instead
of αinit = (k − 1)/tr(L)). Moreover, the case k = 1 is qualitatively different, as in a 1-DPP the
marginal and joint distribution coincide, making it much simpler to sample from.

C.1 BLESS

We begin by reporting the BLESS algorithm [37] and several of its properties. Note that BLESS was
originally introduced as a ridge leverage score (RLS) sampling algorithm. However in the context
of DPPs the RLS of an item coincides exactly with its marginal inclusion probability, i.e., `i(L) is
the RLS of the i-th item. Therefore we can leverage any RLS sampler both to generate dictionaries
as well as RLS estimate for α-DPP. We choose to use BLESS as a starting point because, to our
knowledge, it is the only rescaling-aware RLS sampler existing in the literature. We report BLESS,
in its rejection sampling version, in full in Algorithm 5 with the only notational difference of using a
rescaling α ≤ 1 rather than a regularization λ, with a conversion α ≈ 1/(λn) between the two.
Proposition 4 (Thm. 1 by Rudi et al. [37]). For some α′ ≥ α, let D be a dictionary generated using
BLESS ran with parameter q ≥ 54κ2 (2ε+1)2

ε2 log(12n2/δ). Then w.p. 1− δ for all i,

• the dictionary Di and weights are (ε, αi)-accurate,
• the approximate marginals lj computed using Di satisfy 1

1+ε`j(α
i) ≤ lj ≤ 1

1−ε`j(α
i).
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Algorithm 5 BLESS (rejection-based version)

Input: L ∈ Rn×n, q > 0, k, αmax

1: Initialize i = 0, α0 = 1/tr(L), d̂eff(α
0L) = 1

2 (k − 1)

2: InitializeD0 by sampling qα0nκ2 elementsD0 i.i.d.∼ (1/n, . . . , 1/n) and weightw0
j = 1/(qα0κ2).

3: for i = {1, . . . , dlog2(αmax/α
0)e} do

4: Set αi = 2αi−1, bi = min{qαiκ2, 1}
5: for j = {1, . . . , n} do
6: Sample uij ∼ Bernoulli(bi)
7: if uij = 1 then
8: Compute li

j
using Equation 1 and Di−1

9: Sample zij ∼ Bernoulli(min{qlj , bi}/bi)
10: end if
11: end for
12: Set σi = {j ∈ [n] : zij = 1}, Di = σi, wij = 1/min{qlσij , b

i}
13: end for
14: return Dαdlog2(αmax/α

0)e

• the size of the dictionary mi = |Di| is bounded as deff(α
iL)/2 ≤ m/q ≤ 2deff(α

iL),

and the algorithm runs in O
(
(min{αmaxnκ

2, 1}deff(αmaxL)2 log(n/δ)3) log(αmaxtr(L))
)

time.

Note that all results presented in Proposition 4 are only reformulations of Theorem 1 from [37].
The only exception is the lower bound m/q ≥ deff(α

iL)/2, since the original BLESS analysis was
only interested in showing that m/q ≤ deff(α

iL)/2. However, the same concentration argument of
Lemma 6 in [37] also holds for the lower bound we report here.

C.2 Modification to BLESS

In order to use BLESS in our approach for DPP sampling, we need to make a few modifications.
Compared to BLESS, our BLESS-I (Algorithm 6):

• automatically computes an appropriate αmax rather than taking it as input;
• introduces a novel αinit to initialize α0 that both takes into account the desired DPP size k and is a

valid lower bound for the interval search;
• automatically computes an appropriate αmin rather than setting αmin = α0;
• uses the last deff(αmaxL) estimate to generate a dictionary Dαmax that is guaranteed to be

(1/deff(αmaxL), αmax)-accurate.

Lemma 5 (restated). For any matrix L and 0 < α ≤ 1, we have deff(αL)/deff(L) ≥ α ≥
deff(αL)/tr(L).

Proof of Lemma 5. From the definition deff(αL) = tr(αL(αL + I)−1). Then the first half comes
from

tr(αL(αL + I)−1) ≤ tr(αL(I)−1) = αtr(L),

while for the second half we have

tr(αL(αL + I)−1) ≥ αtr(L(L + I)−1) = αdeff(L).

�

Lemma 4 (restated). W.p. 1− δ BLESS-I runs in time Õ
(
min{αmaxκ

2, 1}nk6 + k9
)

and satisfies:

1. The interval [αmin, αmax] is bounded by 1
4 (k−1)/tr(L) ≤ αmin ≤ αmax ≤ 8(k+2)/deff(L)

2. There is α? ∈ [αmin, αmax] for which k is the mode of |S| where S ∼ DPP(α?L);
3. The dictionary Dαmax satisfies the conditions from Theorem 2 for any α ∈ [αmin, αmax].
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Algorithm 6 BLESS modified to compute the search interval (BLESS-I)

Input: L ∈ Rn×n, q > 0, k
1: Initialize i = 0, α0 = αinit = (k − 1)/(nκ2), d̂eff(α

0L) = 1
2 (k − 1)

2: InitializeD0 by sampling qα0nκ2 elementsD0 i.i.d.∼ (1/n, . . . , 1/n) and weightw0
j = 1/(qα0κ2).

3: while d̂eff(α
iL) ≤ 2(k + 2) do

4: Set i = i+ 1, αi = 2αi−1, αmax = αi, bi = min{qαiκ2, 1}
5: for j = {1, . . . , n} do
6: Sample uij ∼ Bernoulli(bi)
7: if uij = 1 then
8: Compute li

j
using Equation 1 and Di−1

9: Sample zij ∼ Bernoulli(min{qlj , bi}/bi)



Computing
approximate RLS.

10: end if
11: end for
12: Set σi = {j ∈ [n] : zij = 1}, Di = σi, wij = 1/min{qlσij , 1}
13: set d̂eff(α

iL) = |Di|/q
14: if d̂eff(α

i−1L) ≤ 1
2 (k − 1) and d̂eff(α

iL) > 1
2 (k − 1) then

15: Set αmin = αi−1

16: end if
17: end while
18: Set Dαmax = ∅, q′ = qd̂eff(α

iL)2, bmax = min{q′αiκ2, 1}
19: for j = {1, . . . , n} do
20: Sample umax

j ∼ Bernoulli(bmax)
21: if umax

j = 1 then
22: Compute lmax

j
using Equation 1 and Di



Final dictionary
construction.

23: Sample zmax
j ∼ Bernoulli(min{q′lmax

j , bmax}/bmax)

24: If zmax
j = 1, add j to Dαmax with weight wαmax

j = 1
min{q′lmax

j ,bmax}
25: end if
26: end for
27: return αmin, αmax, Dαmax

Proof of Lemma 4. Throughout the proof we will make use of Proposition 4, in particular that
1
2deff(α

iL) ≤ d̂eff(α
iL) ≤ 2deff(α

iL). Note that by inverting the relationship we also have the
reciprocal guarantee 1

2 d̂eff(α
iL) ≤ deff(α

iL) ≤ 2d̂eff(α
iL).

Claim (1): size of the interval. Applying Lemma 5 we have that αmax ≤ deff(αmaxL)/deff(L).
We need now to further upper bound deff(αmaxL) BLESS-I’s terminating condition (Line 3) only
guarantees the lower bound d̂eff(αmaxL) ≥ 2(k + 2). To this end we will use a property of RLS
(see Lemma 3 from [37]) that says that if αi > αi−1 then deff(α

iL) ≤ αi

αi−1 deff(α
i−1L). In our case,

αi/αi−1 = 2 and deff(α
iL) ≤ 2deff(α

i−1L). Now, let i be the index before the loop exit condition in
Algorithm 6 is satisfied (i.e., αmax = αi+1). Then we have d̂eff(α

iL) ≤ 2(k+2), using Proposition 4
we further bound deff(α

iL) ≤ 4(k + 2), which implies that deff(α
i+1L) = deff(αmaxL) ≤ 8(k + 2).

Going back to our bound we obtain αmax ≤ deff(αmaxL)/deff(L) ≤ 8(k + 2)/deff(L).

The side of αmin is much simpler. From Lemma 5 we have that αmin ≥ deff(αminL)/tr(L), and
from the algorithm we know that d̂eff(αminL) ≥ 1

2 (k− 1). Combining this with Proposition 4 we get

αmin ≥ deff(αminL)/tr(L) ≥ 1
2 d̂eff(αminL)/tr(L) ≥ 1

4 (k − 1)/tr(L).

Claim (2): validity of the interval. To begin, remember from Lemma 11 that the mode mα of the
sample size of DPP(αL) is bounded by bdeff(αL)c ≤ mα ≤ bdeff(αL)c + 1. To guarantee the
validity of our interval, we show that mαmin ≤ k, and mαmax ≥ k + 1. Due to the monotonicity of
the mode of a Poisson Binomial distribution (see Lemma 10) we have therefore that starting from
mαmin

the mode increases with α, until it reaches k for some α? ∈ [αmin, αmax], and then continue
increasing until it reaches k + 1 ≤ mαmax

.
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Figure 4: Fraction of items observed by α-DPP
on the small scale experiment.
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Figure 5: Large scale experiment using linear
similarity.

Concretely, we have that

mαmin

Lemma 11
≤ deff(αminL) + 1

Proposition 4
≤ 2 · d̂eff(αminL) + 1 < 2 · 1

2 (k − 1) + 1 = k,

where the last inequality is due to the condition from Line 14 in BLESS-I. Similarly

mαmax

Lemma 11
≥ deff(αmaxL)− 1

Proposition 4
≥ 1

2 · d̂eff(αmaxL)− 1 > 1
2 · 2(k + 2)− 1 = k + 1,

where this time the last inequality is due to the condition from Line 3 in BLESS-I. Finally, we have
to guarantee that αinit is also a valid lower bound, or we will never able to correctly set αmin. This is
easy to show using Lemma 5

mαinit ≤ deff(αinitL) + 1
Lemma 5
≤ αinittr(L) + 1 = tr(L)

nκ2 (k − 1) + 1 ≤ k − 1 + 1 = k,

making it a valid initialization for the lower bound.

Claim (3): quality of Dmax. At the end of the main loop, due to Proposition 4 we have that
d̂eff(α

iL) ≥ 1
2deff(α

iL), and that since αi = 2αi−1 = 2αmax, deff(α
iL) ≥ deff(αmaxL). Therefore,

setting q′ = 4d̂eff(α
iL)2q is sufficient to invoke Proposition 4 with ε = 1/deff(αmaxL) and obtain

an (1/deff(αmax), αmax)-accurate dictionary. Moreover, it is easy to see that for any α′ ≥ α and
ε′ ≤ ε, an (ε′, α′)-accurate dictionary is also an (ε, α)-accurate dictionary (see Proposition 5). Since
αmax ≥ α for the whole duration of the binary search, and therefore deff(αmaxL) ≥ deff(αL), our
Dmax dictionary is sufficiently accurate for the whole duration of the binary search. �

D Additional experimental details

Both DPP-VFX and α-DPP rely on BLESS or BLESS-I to generate their input dictionaries. For
this preprocessing phase, the major hyperparameters to tune are qBLESS and qdpp, i.e., the q and q′

parameters indicated in Algorithm 6.7

Note that theory suggests to set qBLESS ≈ O(log(n)) and qdpp ≈ O(deff(αL)2), but they can be
freely tuned since both α-DPP and DPP-VFX remain exact samplers for any hyperparameter choice.
However, qBLESS and qdpp do impact acceptance rate and runtime, and even more importantly too low
values can result in empty dictionaries which force the algorithm to be stopped.

In our case, we start with qBLESS = 2 and qdpp = 2, and increase them until the DPPy implementation
does not return an empty dictionary. We also keep the same value for α-DPP and DPP-VFX so
that for similar α they operate with similarly accurate and large dictionaries. The final values are
qBLESS = 5 and qdpp = 10 for the small scale experiment (Figure 1), and qBLESS = 4 and qdpp = 5
for the large scale experiment (Figure 2).

7Following DPPy’s API, these hyperparameters are denoted as rls_oversample_bless and
rls_oversample_dppvfx in our code.
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For completeness, in addition to the fraction of observed items in the large scale experiment (Figure 3),
we also report the fraction of observed items in the small scale experiment (Figure 4). We note that,
for the small scale experiment, until n exceeds 10000, α-DPP is still observing all items, and only
when the item collection becomes sufficiently large uniform sampling starts to play a role.

Finally, we report another experiment taken directly from the benchmark of Dereziński et al. [13]
where a linear similarity is used instead of rbf similarity. We see that in this setting deff(L) grows
slower with n, since the similarity/kernel is less expressive. As a consequence the gap between
α-DPP and DPP-VFX (i.e., the advantage of using uniform intermediate sampling) is reduced, but
remains impactful.

E Miscellaneous proofs

In this section we present omitted miscellaneous facts and proofs for completeness.
Definition 2. Given a psd matrix L, its ith ridge leverage score (RLS) `i(L) is the ith diagonal entry
of L(I + L)−1. The sum

∑n
i=1 `i(L) = deff(L) of the RLSs is equal to the effective dimension of L.

Definition 3 ([2, 5]). A dictionary D and its associated weighting matrix W are (ε, α)-accurate if
‖αL(I + αL)−1(I−W)‖ ≤ ε, where W ∈ Rn×n is diagonal with Wi,i =

∑m
j=1 wjI{Dj = i}.

Proposition 5 ([2, 5]). A dictionary D and its associated weighting matrix W are (ε, α)-accurate if

‖(I + αϕ([n])>ϕ([n]))−1/2(αϕ([n])>ϕ([n])− αϕ(D)>Wϕ(D))(I + αϕ([n])>ϕ([n]))−1/2‖ ≤ ε,

or equivalently

‖(I/α+ ϕ([n])>ϕ([n]))−1/2(ϕ([n])>ϕ([n])− ϕ(D)>Wϕ(D))(I/α+ ϕ([n])>ϕ([n]))−1/2‖ ≤ ε,

or yet equivalently

(1− ε)(I/α+ ϕ([n])>ϕ([n])) � I/α+ ϕ(D)>Wϕ(D) � (1 + ε)(I/α+ ϕ([n])>ϕ([n])).

Note that using Proposition 5 it is easy to see that for any α′ ≥ α and ε′ ≤ ε, an (ε′, α′)-accurate
dictionary is also an (ε, α)-accurate dictionary since I/α′ � I/α and therefore

‖(I/α+ ϕ([n])>ϕ([n]))−1/2(ϕ([n])>ϕ([n])− ϕ(D)>Wϕ(D))(I/α+ ϕ([n])>ϕ([n]))−1/2‖
≤ ‖(I/α′ + ϕ([n])>ϕ([n]))−1/2(ϕ([n])>ϕ([n])− ϕ(D)>Wϕ(D))(I/α′ + ϕ([n])>ϕ([n]))−1/2‖
≤ ε′ ≤ ε.

Moreover, using basic algebraic manipulation we can see that for any matrix/operator A we have

(I + AA>)−1 = I−A(I + A>A)−1A>,

which applied to A =
√
αW1/2ϕ(D) gives us the following reformulation from [5, 37]:

li = α[L− L>[n],D(αLD,D + W−1)−1L[n],D]i,i

= α[ϕ([n])ϕ([n])> − αϕ([n])ϕ(D)>(αϕ(D)ϕ(D)> + W−1)−1ϕ(D)ϕ([n])>]i,i

= α[ϕ([n])
(
I− αϕ(D)>(αϕ(D)ϕ(D)> + W−1)−1ϕ(D)

)
ϕ([n])>]i,i

= α[ϕ([n])
(
I− αϕ(D)>W1/2(αϕ(D)Wϕ(D)> + I)−1W1/2ϕ(D)

)
ϕ([n])>]i,i

= α[ϕ([n])(I + αϕ(D)>Wϕ(D))−1ϕ([n])>]i,i

= αϕ(i)>(I + αϕ(D)>Wϕ(D))−1ϕ(i).

Applying Proposition 5 to the reformulation it is easy to see that

αϕ(i)>(I + αϕ(D)>Wϕ(D))−1ϕ(i) = ϕ(i)>(I/α+ ϕ(D)>Wϕ(D))−1ϕ(i)

≤ 1
1−εϕ(i)>(I/α+ ϕ([n])>ϕ([n]))−1ϕ(i) = 1

1−εαϕ(i)>(I + αϕ([n])>ϕ([n]))−1ϕ(i) = `i(L).

Caching strategy. Note that if we invoke α-DPP multiple times for a fixed α, we do not need to
recompute all approximations li from scratch each time. Rather, we first store an eigendecomposition
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of L̂ to be able to quickly compute (αLD,D +W−1)−1 in quadratic rather than cubic time. Then, for
each item i we store a cache of the current upper bound, which is initialized to ακ2 and then lowered
to li when li is actually computed. This way we never need to recompute the same li twice, and the
runtime improves. In particular, computing a single marginal li requiresO(k6) time. So, if all li were
computed from scratch, then the inner loop of Algorithm 1 would require αmaxκ

2kn · k6 to compute
αmaxκ

2kn marginals li, one for each item in ρ. On the other hand, computing all li for all items
once and for all would require n · k6 time, and then sampling would be near-constant time using an
appropriate multinomial sampler (see [13]). In our case, using the caching strategy we can get the
best of both worlds Õ(min{αmaxκ

2k, 1} · n · k6) since we never compute any li more than once.
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