
ICML, June 2019

Gaussian Process Optimization
with Adaptive Sketching: Scalable and No Regret

Daniele Calandriello, Luigi Carratino,
Alessandro Lazaric, Michal Valko, Lorenzo Rosasco



Black-box / Bayesian / Bandit Optimization

Given A alternatives

For t = 1, . . . ,T
(1) Select alternative
(2) Receive noisy feedback
(3) Improve for next time

Main scientific challenges:
exploration vs exploitation
scalability
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Gaussian Process Optimization:
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: no-regret [Srinivas et al., 2010]

but O(t2) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees

BKB (Budgeted Kernelized Bandits):
no-regret: only O(log(t)) more than GP-UCB
scalable: near-constant per-step complexity
no variance starvation, interpretable, extensible, . . .
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Gaussian Process Optimization: no-regret and scalable
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Black-box / Bayesian / Bandit Optimization (rigorous)

Set of arms A = {xi}A
i=1 with xi ∈ Rd and |A| = A

Similarity (kernel) k(·, ·) and RKHS H

For t = 1, . . . ,T
(1) Select xt

(2) Receive noisy feedback yt = f (xt) + ηt

(3) Improve for next time

Assumptions: f ∈ H arbitrary but ‖f ‖ ≤ F (frequentist/bandit regret)
Goal: minimize regret w.r.t. x∗ = argmaxxi∈A f (xi)

RT =
T∑

t=1
f (x∗)− f (xt)
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GP-UCB [Srinivas et al., 2010]

Select xt+1 = argmaxx∈XA
ut(x)

ut(x) = µt(x) + βtσt(x),

µt(x) = kt(x)T(Kt + λI)−1yt

O(t)

σ2
t (x) = 1

λ

(
k(x, x)− kt(x)T(Kt + λI)−1kt(x)

)

O(t2)

Too slow: O(At2) per step
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Sparse GP

Choose subset of m inducing points S = {xj}m
j=1 (a.k.a. dictionary)

Replace k(xi , xj) with approximate k̃(xi , xj)

k̃(xi , xj) = kS(xi)
TK+
SkS(xj)

= z(xi)
Tz(xj),

z(·) ,
(

K1/2
S

)+
kS(·) : Rd → Rm

,

Zt , [z(x1), . . . , z(xt)]
T ∈ Rt×m
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Deterministic Training Conditional (DTC) sparse GP-UCB
[Seeger et al., 2003]

Select x̃t+1 = argmaxx∈XA
ũt(x)

ũt(x) = µ̃t(x) + β̃t σ̃t(x),

µ̃t(x) , k̃t(x)T(K̃t + λI)−1yt

= z(x)T(ZT
t Zt + λI)−1ZT

t yt ,

O(m)

σ̃2
t (x) , 1

λ

(
k(x, x) − k̃t(x)T(K̃t + λI)−1k̃t(x)

)
= 1

λ

(
k(x, x) − z(x)T ZT

t Zt(ZT
t Zt + λI)−1

m × m matrix

z(x)
)
,

O(m2)

Efficient: O(Am2 + m3) per step

How to choose S for good accuracy?
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ũt(x)
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Budgeted Kernelized Bandits

Xt changes over time
St must change with t

Accuracy-efficiency tradeoff of m
adaptively resize St

σ2
t (·) captures informative arms

include xi with large σ2
t (xi)

Greedy inclusion hard to analyze
random inclusion pt,i ∝ σ2

t (·)

σ2
t (·) expensive to compute

approximate σ2
t (·) ≈ σ̃2

t (·)

Algorithm 1: BKB
Data: Arm set A, q, {βt}T

t=1
Result: Arm choices DT ← {(x̃t , yt)}
Select uniformly at random x1;
Observe y1;
Initialize S1 ← {x1};

for t = {1, . . . ,T − 1} do
Compute µ̃t(xi ) and σ̃2

t (xi ) for all xi ∈ A;
Select x̃t+1 ← argmaxxi∈A ũt(xi );

for i = {1, . . . , t + 1} do
Set p̃t+1,i ← q · σ̃2

t (x̃i );
Draw qt+1,i ∼ Bernoulli (p̃t+1,i ) ;
If qt+1 = 1 then include x̃i in St+1 ;

end

end
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Measuring the complexity of GP optimization

Maximum information gain [Srinivas et al., 2010]

γT , max
D⊂A:|D|=T

1
2 log det(KD/λ+ I).

Effective dimension (a.k.a effective rank) [Alaoui and Mahoney, 2015]

deff(λ, X̃T ) ,
∑T

i=1
σ2

T (x̃i) = Tr(KT (KT + λI)−1)

From γT to deff(λ, X̃T ) [Calandriello et al., 2017]

log det (KT/λ+ I) ≤ 2deff(λ, X̃T ) log (T/λ)� 2γT log(T/λ).
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Accuracy and computational guarantees

Theorem
With probability 1− δ, for all t ∈ [T ] and all x ∈ A, we have

σ2
t (x)/2 ≤ σ̃2

t (x) ≤ 2σ2
t (x) and |St | ≤ O(deff(λ, X̃t) log(t/δ)).

Note that deff ≤ γT , when γT � T
Time: near-constant Õ(Ad2

eff + d3
eff) ≤ Õ(Aγ2

T + γ3
T ) per-step

Space: near-constant Õ(d2
eff) ≤ Õ(γ2

T )

σ̃t(·) always close to σt(·): no variance starvation
previously only k stationary and |St | ≈ O(log(t)d)� O(deff log(t))

Proof: σt(xi) is the λ-ridge leverage score of xi w.r.t. k(·, ·) and Xt
we can leverage literature on leverage score sampling
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Variance starvation

Problem: hard to judge negative correlation far from S [Wang et al., 2018]

Fixed-rank sparse GPs become overconfident when n� m

Prior approaches to avoid variance starvation:
[Huggins et al., 2019; Mutny and Krause, 2018]

Require stationary k and/or additive kernel
Build ε-grid of the space, exp{d} dependencies
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Variance starvation

Solution: BKB adaptively matches sparse GP rank and deff
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DTC approximation also crucial to be accurate RLS estimator

No need for ε-grid, focus on essential parts of Xt
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Regret guarantees

Theorem

If we run BKB with β̃t , 2ξ
√(∑t

s=1 σ̃
2
t (x̃s)

)
log(t) + log(1/δ) + 3

√
λF ,

then, with probability of at least 1− δ,

RBKB
T ≤ 32

√
T
(
ξdeff log(T ) +

√
λF 2deff log(T ) + ξ log(1/δ)

)

RBKB
T ≤ 16RGP-UCB

T log(T ) : no-regret

β̃t computable in Õ(Ad2
eff) time

No assumptions on k, A
DTC is not a GP (not consistent), but now a justified heuristic
No free lunch : learning complexity is computational complexity
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Related results

Same regret as GP-UCB, but improve from Õ(At2) time to Õ(Ad2
eff)

Vs. methods without regret guarantees:
[Huggins et al., 2019; Wilson and Nickisch, 2015]

same sparsity level Õ(deff) ≈ Õ(γT ) for generic k

Vs. scalable methods with regret guarantees:
Thompson sampling with quadrature RFF (GP-Opt) [Mutny and Krause, 2018]

small d : same sparsity level and regret, generic k
large d : no need for ε-grid, no exp{d} dependency

OFUL with Frequent Direction sketch (Linear Bandit) [Kuzborskij et al., 2019]
same sparsity level and lower regret

QFF/VI based methods can exploit kernel additivity:[Huggins et al., 2019]
TS-QFF can optimize exactly posterior for small d
can BKB for small m do the same?
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eff)

Vs. methods without regret guarantees:
[Huggins et al., 2019; Wilson and Nickisch, 2015]

same sparsity level Õ(deff) ≈ Õ(γT ) for generic k

Vs. scalable methods with regret guarantees:
Thompson sampling with quadrature RFF (GP-Opt) [Mutny and Krause, 2018]

small d : same sparsity level and regret, generic k
large d : no need for ε-grid, no exp{d} dependency

OFUL with Frequent Direction sketch (Linear Bandit) [Kuzborskij et al., 2019]
same sparsity level and lower regret

QFF/VI based methods can exploit kernel additivity:[Huggins et al., 2019]
TS-QFF can optimize exactly posterior for small d
can BKB for small m do the same?

Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret ICML 2019 - 14/17



Related results

Same regret as GP-UCB, but improve from Õ(At2) time to Õ(Ad2
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Proof sketch

DTC is also known as projected process approximation
show equivalence to projected OFUL [Abbasi-Yadkori et al., 2011]

Orthogonal projection Pt on Span(St) regularizes
reduces variance but introduces extra bias ‖(I− Pt)K1/2

t f ‖2

Lemma
When St sampled according to RLS I− Pt � (1 + ε)λ(Kt + λI)−1

self-normalized bias

‖(I− Pt)K1/2
t f ‖2 ≤ (1 + ε)λ‖(Kt + λI)−1/2K1/2

t f ‖ ≤ (1 + ε)λ‖f ‖
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Proof sketch

BKB is not simply a GP-UCB approximation

Confidence intervals

Ct = [µt(x)± βtσt(x)],

C̃t = [µ̃t(x)± β̃t σ̃t(x)]

Ct 6⊂ C̃t , C̃t 6⊂ Ct
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Experiments
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Dataset: Cadata (A ≈ 104), Kernel: RBF with σ2 = 5
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