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Black-box / Bayesian / Bandit Optimization

Given A alternatives
Fort=1,...,T

(1) Select alternative

(2) Receive noisy feedback

(3) Improve for next time
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Black-box / Bayesian / Bandit Optimization

Given A alternatives
Fort=1,...,T

(1) Select alternative

(2) Receive noisy feedback

(3) Improve for next time

Main scientific challenges:

exploration vs exploitation
scalability

[9]
2073

0.72

0.70

Gaussian Process Optimization with Adaptive Sketchin

Validation ROC AUC versus Iteration

0 100 200 300 400 500

Iteration

Scalable and No Regret

search
Random
Bayesian

ICML 2019



Gaussian Process Optimization:
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Gaussian Process Optimization: no-regret
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GP-UCB : no-regret [Srinivas et al., 2010]
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Gaussian Process Optimization: no-regret or scalable
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GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space
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Gaussian Process Optimization: no-regret or scalable
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GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees
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Gaussian Process Optimization: no-regret and scalable
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GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees

BKB (Budgeted Kernelized Bandits):

Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret ICML 2019



Gaussian Process Optimization: no-regret and scalable

— —— GPucs
=5 —— e
75 4000 350

—— GPucs

3000

Sec

2000

1000

o 200 400 600 800 1000 [} 200 400 600 800 1000

GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees

BKB (Budgeted Kernelized Bandits):
no-regret: only O(log(t)) more than GP-UCB
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Gaussian Process Optimization: no-regret and scalable
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GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees

BKB (Budgeted Kernelized Bandits):

no-regret: only O(log(t)) more than GP-UCB
scalable: near-constant per-step complexity
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Gaussian Process Optimization: no-regret and scalable
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GP-UCB : no-regret [Srinivas et al, 2010] but O(t?) per-step time and space

Many approximations: sparse GPs, VI, RFF, Toeplitz [Huggins et al., 2019;
Mutny and Krause, 2018; Quinonero-Candela et al., 2007; Wilson and Nickisch, 2015],
but none or limited guarantees

BKB (Budgeted Kernelized Bandits):
no-regret: only O(log(t)) more than GP-UCB
scalable: near-constant per-step complexity

no variance starvation, interpretable, extensible, ...
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Black-box / Bayesian / Bandit Optimization (rigorous)

Set of arms A = {x;}2; with x; € R? and |A| = A
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Black-box / Bayesian / Bandit Optimization (rigorous)

Set of arms A = {x;}2; with x; € R? and |A| = A
Similarity (kernel) k(-,-) and RKHS
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Black-box / Bayesian / Bandit Optimization (rigorous)

Set of arms A = {x;}2; with x; € R? and |A| = A
Similarity (kernel) k(-,-) and RKHS

Fort=1,....T
(1) Select x;

(2) Receive noisy feedback y; = f(x;) + 1
(3) Improve for next time
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Black-box / Bayesian / Bandit Optimization (rigorous)

Set of arms A = {x;}2; with x; € R? and |A| = A
Similarity (kernel) k(-,-) and RKHS H

Fort=1,....T

(1) Select x;

(2) Receive noisy feedback y; = f(x;) + 1
(3) Improve for next time

Assumptions: f € H arbitrary but ||| < F (frequentist/bandit regret)
Goal: minimize regret w.r.t. x, = argmax, . f(x;)

T

Rr = Z (%) — (%)

t=1
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GP—UCB [Srinivas et al., 2010]

Select x¢41 = arg max,¢x, Us(x)

Ue(x) = pe(x) + Broe(x),
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GP—UCB [Srinivas et al., 2010]

Select x¢41 = arg max,¢x, Us(x)

Ue(x) = pe(x) + Broe(x),
pe(x) = ke(x)T(Ke + A1) "y,
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G P—UCB [Srinivas et al., 2010]

Select x¢41 = arg max,¢x, Us(x)

Ue(x) = pe(x) + Broe(x),
pe(x) = ke(x)"(Ky + )\I)_1

72(x) = & (K0x.x) ~ e ()" (Ke + A1) e(x))
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G P—UCB [Srinivas et al., 2010]

Select x¢41 = arg max,¢x, Us(x)

ur(x) = pe(x) + Broe(x),
pe(x) = ke(x)"(Ke + A ty, o(t)

o2(x) = & (k(x,x) ~ ke(x) (K - A) Tke(x))  O(#)

Too slow: O(At?) per step
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Sparse GP

Choose subset of m inducing points S = {x;}"; (a.k.a. dictionary)

Replace k(x;,x;) with approximate ;(x,-,xj)

k(xi,x;) = ks(x;) " Kks(x;)
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Sparse GP

Choose subset of m inducing points S = {x;}"; (a.k.a. dictionary)

Replace k(x;,x;) with approximate ;(x,-,xj)

k(x;,x;) = kg(x,-)TKEks(xj) = z(x;)"z(x;),

2() 2 (KY2) k() : B B,
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Sparse GP

Choose subset of m inducing points S = {x;}"; (a.k.a. dictionary)

Replace k(x;,x;) with approximate ;(x,-,xj)

k(x;,x;) = ks(x;)"Kiks(x;) = z(x;)"z(x;),
2() 2 (KY2) k() : B B,

Z; = [Z(X1), ey Z(Xt)]T c Rtxm
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Deterministic Training Conditional (DTC) sparse GP-UCB

[Seeger et al., 2003]

Select X;11 = arg max,cx, Us(x)

Ue(x) = fie(x) + gﬁt(x),
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Deterministic Training Conditional (DTC) sparse GP-UCB

[Seeger et al., 2003]

Select X;11 = arg max,cx, Us(x)

Ue(x) = fie(x) + @&(x),

fie(x) £ ke(x)" (K¢ + A1)y,
=2(x)"(Z;Z: + A\I) ' Z]y.,
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Deterministic Training Conditional (DTC) sparse GP-UCB

[Seeger et al., 2003]

Select X;11 = arg max,cx, Us(x)

Ue(x) = fie(x) + Et&t(x),
fie(x) 2 ke(x)"(Ke + A1)y,
= 2(0) (2120 + M) 2y,
72(x) & %(k(x, x) — Et(x)T(l'N(t + Al)*lﬁt(x)>
%(k(x X) - 2(x)" Z}Z/(ZiZ: + ) z(x)),

m X m matrix
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Deterministic Training Conditional (DTC) sparse GP-UCB

[Seeger et al., 2003]

Select X;11 = arg max,cx, Us(x)

Ue(x) = fie(x) + Et&t(x),

fie(x) £ ke(x)" (K¢ + A1)y,
=2(x)"(Z{Z; + AI) "' Z]y,, O(m)

QN
~ N
—~
X
N—r
>«\>—-

(k(x x) — ke(x)T (Rt + )\I)*lﬁt(x))
(k(x X) — 2(x)" ZIZ(Z]Ze + A1) ! 2(x )), O(m?)

m X m matrix

>/\'—‘

Efficient: O(Am? + m®) per step
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Deterministic Training Conditional (DTC) sparse GP-UCB

[Seeger et al., 2003]

Select X;11 = arg max,cx, Us(x)

Ue(x) = fie(x) + Et&t(x),

fie(x) £ ke(x)" (K¢ + A1)y,
=2(x)"(Z{Z; + AI) "' Z]y,, O(m)

QN
~ N
—~
X
N—r
>«\>—-

(k(x x) — ke(x)T (Rt + )\I)*lﬁt(x))
(k(x X) — 2(x)" ZIZ(Z]Ze + A1) ! 2(x )), O(m?)

m X m matrix

>/\'—‘

Efficient: O(Am? + m®) per step

How to choose S for good accuracy?
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Budgeted Kernelized Bandits

X: changes over time
L, S; must change with t
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Budgeted Kernelized Bandits
X: changes over time
Ls S; must change with t

Accuracy-efficiency tradeoff of m
L, adaptively resize S;
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Accuracy-efficiency tradeoff of m
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o2(-) captures informative arms
Ls include x; with large o2(x;)
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Budgeted Kernelized Bandits
X: changes over time
Ls S; must change with t

Accuracy-efficiency tradeoff of m
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Greedy inclusion hard to analyze
Ls random inclusion p; ; ox o2(-)
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Budgeted Kernelized Bandits
X: changes over time
Ls S; must change with t

Accuracy-efficiency tradeoff of m
L, adaptively resize S;

o2(-) captures informative arms
Ls include x; with large o2(x;)

Greedy inclusion hard to analyze
Ls random inclusion p; ; ox o2(-)

02(-) expensive to compute
Ls approximate o2(-) ~ 52(-)
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Budgeted Kernelized Bandits
X: changes over time
Ls S; must change with t

Accuracy-efficiency tradeoff of m
L, adaptively resize S;

o2(-) captures informative arms
Ls include x; with large o2(x;)

Greedy inclusion hard to analyze
Ls random inclusion p; ; ox o2(-)

02(-) expensive to compute
L, approximate o2(-) ~ 52(*)

Gaussian Process Optimization wi

Algorithm 6: BKB

Data: Arm set A, g, {5t}tT:1
Result: Arm choices D1 + {(Xt, y:)}
Select uniformly at random xj;

Observe yi;
Initialize S1 « {x1};
fort={1,...,T —1} do

Compute fi¢(x;) and 52(x;) for all x; € A;
Select X;41 « arg maxy. c 4 e (xi);

fori={1,...,t+1} do

Set Et+1,i —q- &?(’i,),

Draw q¢4+1,i ~ Bernoulli (Pe+1,i);

If g:+1 = 1 then include X; in S¢41;
end

end

Adaptive Sketching: Scalable an



Measuring the complexity of GP optimization

Maximum information gain [Srinivas et al., 2010]

£  max _3logdet(Kp/A+1).

YT
DCA:|D|=T
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Measuring the complexity of GP optimization

Maximum information gain [Srinivas et al., 2010]

£  max _3logdet(Kp/A+1).

YT
DCA:|D|=T

Effective dimension (a.k.a effective rank) [Alacui and Mahoney, 2015]

der(M X7) 2 3 02(%) = THK (K7 + A7)

i=1
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Measuring the complexity of GP optimization

Maximum information gain [Srinivas et al., 2010]

A 1
= = logdet(Kp /X + ).
T Dcﬂ‘:fﬁg? ogdet(Kp/A+1)

Effective dimension (a.k.a effective rank) [Alacui and Mahoney, 2015]

der(M X7) 2 3 02(%) = THK (K7 + A7)

i=1

From vt to deff()\, )A(T) [Calandriello et al., 2017]

log det (K7 /A + 1) < 2deir(A, X7) log (T/A) < 277 log(T/A).
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Accuracy and computational guarantees

With probability 1 — 6, for all t € [T] and all x € A, we have

02(x)/2 < 52(x) <202(x)  and  |S:| < O(der( N, X¢) log(t/9)).
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Accuracy and computational guarantees

With probability 1 — 6, for all t € [T] and all x € A, we have
02(x)/2 < 52(x) <202(x)  and  |S:| < O(der( N, X¢) log(t/9)).
Note that deif < v7, when v+ K T

Time: near-constant (5(Ade2ff +d3) < (5(/47%- +~3) per-step
Space: near-constant O(d%) < O(3)
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02(x)/2 < 52(x) <202(x)  and  |S:| < O(der( N, X¢) log(t/9)).

Note that deif < v7, when v+ K T
Time: near-constant (5(Ade2ff +d3) < (5(/47%- +~3) per-step
Space: near-constant O(d%) < O(3)
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Ls previously only k stationary and |S;| = O(log(t)?) > O(des log(t))
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Accuracy and computational guarantees

With probability 1 — 6, for all t € [T] and all x € A, we have

02(x)/2 < 52(x) <202(x)  and  |S:| < O(der( N, X¢) log(t/9)).

Note that deif < v7, when v+ K T
Time: near-constant (5(Ade2ff +d3) < (’3(/47%- +~3) per-step
Space: near-constant O(d%) < O(3)

o+(+) always close to o+(:): no variance starvation
Ls previously only k stationary and |S;| = O(log(t)?) > O(des log(t))

Proof: o4(x;) is the A-ridge leverage score of x; w.r.t. k(-,-) and X,
L» we can leverage literature on leverage score sampling
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Variance starvation

Problem: hard to judge negative correlation far from S [Wang et al, 2018]
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Fixed-rank sparse GPs become overconfident when n > m

Prior approaches to avoid variance starvation:
[Huggins et al., 2019; Mutny and Krause, 2018]
Require stationary k and/or additive kernel

Build e-grid of the space, exp{d} dependencies

Scalable and No Regret
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Variance starvation

Solution: BKB adaptively matches sparse GP rank and des

DTC approximation also crucial to be accurate RLS estimator

No need for e-grid, focus on essential parts of X,
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Regret guarantees

If we run BKB with B, £ 2€\/ (¢, 53(%s)) log(t) + log(1/9) + 3v/AF,
then, with probability of at least 1 — 6,

RPKB < 32T (ﬁdefflog(T) + VAF2deglog(T) + € |og(1/5)>

REKB < 16 RGP-UCB |og(T): no-regret

fB: computable in O(Ad2;) time

No assumptions on k, A

DTC is not a GP (not consistent), but now a justified heuristic

No free lunch : learning complexity is computational complexity

Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret ICML 2019 - 13/17



Related results

Same regret as GP-UCB, but improve from O(At?) time to O(AdZ)
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Related results

Same regret as GP-UCB, but improve from O(At?) time to O(AdZ)

Vs. methods without regret guarantees:
[Huggins et al., 2019; Wilson arl(/j Nickisch, 2215]
Ls same sparsity level O(desr) &~ O(~y7) for generic k
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Related results

Same regret as GP-UCB, but improve from O(At?) time to O(AdZ)

Vs. methods without regret guarantees:
[Huggins et al., 2019; Wilson arl(/j Nickisch, 2215]
Ls same sparsity level O(desr) &~ O(~y7) for generic k

Vs. scalable methods with regret guarantees:
Thompson sampling with quadrature RFF (GP-Opt) [Mutny and Krause, 2018]
L small d: same sparsity level and regret, generic k

large d: no need for e-grid, no exp{d} dependency

OFUL with Frequent Direction sketch (Linear Bandit) [Kuzborskij et al., 2019]
L same sparsity level and lower regret
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Related results

Same regret as GP-UCB, but improve from O(At?) time to O(AdZ)

Vs. methods without regret guarantees:
[Huggins et al., 2019; Wilson arl(/j Nickisch, 2215]
Ls same sparsity level O(desr) &~ O(~y7) for generic k

Vs. scalable methods with regret guarantees:
Thompson sampling with quadrature RFF (GP-Opt) [Mutny and Krause, 2018]
L small d: same sparsity level and regret, generic k

large d: no need for e-grid, no exp{d} dependency

OFUL with Frequent Direction sketch (Linear Bandit) [Kuzborskij et al., 2019]
L same sparsity level and lower regret

QFF/VI based methods can exploit kernel additivity:[Huggins et al., 2019]
Ls TS-QFF can optimize exactly posterior for small d
can BKB for small m do the same?
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Proof sketch

DTC is also known as projected process approximation
Ls show equivalence to projected OFUL [Abbasi-Yadkori et al., 2011]
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DTC is also known as projected process approximation
Ls show equivalence to projected OFUL [Abbasi-Yadkori et al., 2011]

Orthogonal projection P, on Span(S;) regularizes

Ls reduces variance but introduces extra bias ||(I — Pt)Ki/zf"H2
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Proof sketch
DTC is also known as projected process approximation

Ls show equivalence to projected OFUL [Abbasi-Yadkori et al., 2011]

Orthogonal projection P, on Span(S;) regularizes

Ls reduces variance but introduces extra bias ||(I — Pt)Ki/zf"H2

When S; sampled according to RLS | — P, < (1 + e)A(K; + Al)71
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Proof sketch

DTC is also known as projected process approximation
Ls show equivalence to projected OFUL [Abbasi-Yadkori et al., 2011]

Orthogonal projection P, on Span(S;) regularizes

Ls reduces variance but introduces extra bias ||(I — Pt)Ki/zf"H2

When S; sampled according to RLS | — P, < (1 + e)A(K; + Al)71

self-normalized bias

(1 = POKY2F|2 < (1+ 2)A|[(Ke + A)"Y2K2F)| < (1+ 2)A||f|
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Proof sketch

BKB is not simply a GP-UCB approximation

Confidence intervals

Ce = [pe(x) = Beoe(x)], 21
Co=[ax) £ Beae(x)] o

x)

G¢ G, GG

0.0 0.2 0.4 0.6 0.8 1.0
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Experiments
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Dataset: Cadata (A ~ 10%), Kernel: RBF with 02 =5
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