IMPROVED LARGE-SCALE GRAPH LEARNING THROUGH RIDGE SPECTRAL SPARSIFICATION

DANIELE CALANDRIELLO1,2, IOANNIS KOUTIS3, ALESSANDRO LAZARIC4, MICHAL VALKO1
1SEQUEL TEAM, INRIA LILLE - NORD EUROPE. 2 LCSL-IIIT/MIT. 3 NEW JERSEY INSTITUTE OF TECHNOLOGY. 4 FACEBOOK AI RESEARCH PARIS.

RIDGE SPECTRAL SPARSIFIERS

Definition 1. A (γ, ϵ)-spectral sparsifier of G is a re-weighted subgraph $H \subseteq G$ whose Laplacian L_H satisfies

$$(1 - \epsilon)L_G - \gamma I \preceq L_H \preceq (1 + \epsilon)L_G + \gamma I,$$

Spectrum is preserved with mixed multiplicative/additive error $1 - \epsilon |\lambda_i(L_G) - \gamma| \leq |\lambda_i(L_H) - (1 + \epsilon)| \lambda_i(L_G) + \epsilon |\lambda_i(L_G)|$.

Preserves all directions larger than γ.

An (ϵ, γ)-spectral sparsifier is a traditional ϵ-sparsifier.

Proposition 1. [Informal]. Starting from the empty graph, construct H by adding each edge in G to H independently with probability $p = (3/2 + \epsilon)\lambda + 2\epsilon |\lambda(L_G)|$. Then, with $p = 1 - \epsilon$, H is an (ϵ, γ)-sparsifier with $\lambda(L_H) \leq \kappa L_G$ edges.

Computing $\lambda(\gamma)$ requires $O(n)$ time/space and multiple passes over the graph. Can we do better?

DISTRIBUTED SEQUENTIAL SPARSIFICATION

Algorithm 1 DiSpRe algorithm.

1. Input: $G = (V, E)$. Output: (γ, ϵ)-sparsifier H_G.
2. Partition G into k sub-graphs H_1, \ldots, H_k.
3. Initialize set $S_i = \emptyset$ for all $i \in [k].$
4. For $h = 1, \ldots, k$ do
5. Pick two sparsifiers H,h_r.
6. Add h_r to S_i for all $i \in [k].$
7. End.
9. The last sparsifier in S_k.

Theorem 1. If $c(\cdot)$ is an (\cdot, γ)-sparsifier of G, then with probability $1 - \delta$:

- Each sub-graph H_i has an (\cdot, γ)-sparsifier G_i.
- If $|\lambda(\gamma)|$ is the sparsifying parameter λ.

$$\text{SSL with DiSpRe}$$

Setting. The labels are bounded $|y_i(x)| \leq c$ and x is the set of centered functions such that $f(x) = (x) \leq 2c$.

Theorem 2. If the labels y_i are centered then, w.p. $1 - \delta$, \hat{y}_i computed on a (\cdot, γ)-sparsifier H satisfies

$$b(\hat{y}_i, y_i) \leq b(\hat{y}_i, y_i) + \beta \leq \beta(\epsilon, \gamma) = \sum_{i=1}^{n} \left(\frac{2}{\epsilon^2} \left(\frac{1 + \epsilon}{1 - \epsilon} \right) \left(1 + \frac{\epsilon}{1 - \epsilon} \right) \right)^\gamma.$$

LapSpMo with DiSpRe

Theorem 3. Let \hat{y} be the LatStap solution computed using L_G and \hat{y} the solution computed using L_H. Then,

$$b(\hat{y}, y) \leq b(\hat{y}, y) + \beta \leq \beta(\epsilon, \gamma) = \sum_{i=1}^{n} \left(\frac{2}{\epsilon^2} \left(\frac{1 + \epsilon}{1 - \epsilon} \right) \left(1 + \frac{\epsilon}{1 - \epsilon} \right) \right)^\gamma.$$

EXPERIMENTS

Dataset: Amazon co-purchase graph from https://snap.stanford.edu/data/com-Amazon.html (Yang and Leskovec, 2012).

$\mathbb{L}_1 = 0.7$, 2, 163 nodes, natural, artificially sparse (true graph known only to Amazon).

Target: For \mathbb{L}_0 sparsification and smallest edge weight L_0, for SSL sign(y).

$\mathbb{L}_0 = 0.7$, 2, 163 nodes, natural, artificially sparse (true graph known only to Amazon).

CONCLUSION

- New sparsification techniques that achieve better approximation guarantees.

REFERENCES

