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Black box optimization

fx y

Also called zero-order optimization.
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(before discussing the minimal assumptions, let us set the) Setting

Goal: Maximize f : X → R given a budget of n evaluations.

Challenges: First, f has an unknown smoothness,

Later, f is stochastic with unknown noise range b.

Protocol: At round t, select xt , observe yt such that

E[yt |xt ] = f (xt) |yt − xt | ≤ b

After n rounds, return x(n).

Loss: rn , supx∈X f (x)− f (x(n)) (simple regret)
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Minimal assumptions

• We want minimal assumptions.

• The smoothness d of the function f is defined with respect
to a fixed and given partitioning P of the search space X .
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Minimal assumptions . Step 1 . Partitioning

• For any depth h, X is partitioned in Kh cells (Ph,i )0≤Kh−1.

• K -ary tree T where depth h = 0 is the whole X .

h=0

h=1

h=2

An example of partitioning in one dimension with K = 3.
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Tree search

Optimizing becomes a tree search on the partition P.

h=0

h=1

h=2

h=3

explored
partition

How to explore the tree smartly? (Track x? as deep as poosible)
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The assumption and the smoothness

Assumption (on the local smoothness around x?)

For some global optimum x?, there exists ν > 0 and ρ ∈ (0, 1)
such that ∀h ∈ N, ∀x ∈ Ph,i?h ,

f (x) ≥ f (x?)− νρh.

• The smoothness is local, around a x?.

• This guarantees that the algorithm will not under-estimate by
more than νρh the value of optimal cell Ph,i?h if it observes
f (x) with x ∈ Ph,i?h ,.

• Now for the opposite question: How much non-optimal cells
have values νρh-close to optimal and therefore indiscernible
from it? Let us count them!
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The smoothness and the near-optimal
dimension

Lets us bound Nh(3νρh) as a function of the depth h.

• d ′ > 0  controls how Nh(3νρh) explodes with h.

• d ′ = 0  bounded by a constant ∀h.

Definition

For any ν > 0, C > 1, and ρ ∈ (0, 1), the near-optimality
dimension d (ν,C , ρ) of f with respect to the partitioning P, is

d (ν,C , ρ) , inf
{
d ′ ∈ R+ : ∀h ≥ 0, Nh(3νρh) ≤ Cρ−d

′h
}

,

where Nh(ε) is the number of cells Ph,i of depth h such that
supx∈Ph,i

f (x) ≥ f (x?)− ε.
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Previous work

Previous and our new approaches under similar assumptions:

smoothness deterministic b = 0 stochastic b > 0

(ν, ρ) known DOO Zooming, HOO
(ν, ρ) unknown DiRect, SOO, SequOOL StoSOO, POO, StroquOOL

• We tackle unknown smoothness (ν, ρ).

• Let us first consider b = 0 and see how our new SequOOL
improves upon SOO.
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The SOO algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each
depth h

h=0

h=1

h=2

h=3

h=4

h=5

Why simultaneous? Why not sequential? Are all depths equal?
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The sequential approach

• New approach: First opens cells at depth h and then at
depth h + 1 and so on, without coming back to lower depths.

• Why? Notice that: the location of the exploration at depth
h + 1 is based on the exploration at depth h.

• So: Explore depth h as best as you can before starting
exploring depth h + 1.

Don’t be simultaneous, be sequential: Let us introduce SequOOL.
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Zipf exploration: Open best n
h

cells at depth h

h=0

h=1

...
...
...
...

...
n

h
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Zipf exploration: Open best n
h

cells at depth h

h=0

h=1

...
...
...

...

...
n

h

Conservative: ≈ n cells opened at the beginning

Daring:  explore until depth ≈n  
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Limited budget n

Let us count the number of openings performed by SequOOL by
summing over depths h.

n +
n

2
+

n

3
+ . . .+

n

h
+ . . .+ 1 ≈ n log n

So instead of n
h lets open n

h log n at each depth h.
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The SequOOL algorithm

Parameters: n, P = {Ph,i}
Initialization: Open P0,1. hmax ←

⌊
n/log(n)

⌋
·

For h = 1 to hmax

I Open bhmax/hc cells Ph,i of depth h with largest values fh,j .

Output x(n)← argmax
xh,i :Ph,i∈T

fh,i .

Simple and parameter free (doubling trick to forget n).
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Simple regret rn analysis

d > 0 d = 0

SequOOL
(
log(n)

n

) 1
d

e
− n

log(n)

SOO(ε)
(
1
n

) 1−ε
d , for any ε > 0 e−

√
n

DOO
(
1
n

) 1
d e−n

• The improvement is in gray (and exponential).

• We argue d = 0 is common and d > 0 needs an engineer.

• DOO knows the smoothness (ν, ρ) (Munos 2012).
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Main idea in the proof

• When d = 0 there are (at most) C near optimal cells at each
depth h.

• Recursively, to track x? at depth h: Be sure to open more
than the best C cells at each depth h.

• Oracle solution: If C was known, just open the best C nodes
until depth n/C .

• With Zipf: Ok as long as
n/(hlog(n)) ≥ C ⇒ h ≈ n/(Clog(n)).

• Only lose a log factor.
• Intuition: find an integrable function with the heaviest tail.

C

n

h log(n)

h*

(Find a function that stays as long
as possible above C and integrates
to n without knowing C )
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Some experiments

We play with one dimensional benchmarks.
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SequOOL: Truly exponential rates

We play with 1 dimension benchmarks.
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Noisy case

• Needs to pull more each x to limit uncertainty.

• Tradeoff: the more you pull each x the less deep you can
explore.
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Noisy case: StroquOOL

• Idea: Launch parallel SequOOL (m) with m = 1, 2, 4, 8, . . . , n
where in SequOOL (m) each cell is pulled m times and the
deepest explored hmax ≈ n/m.

• Rephrased as: At depth h order the cells by decreasing value
and open the i-th best cell with m = n

hi estimations.
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Simple regret Ern analysis

b > 0
b = 0

d > 0 d = 0
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• No use of UCB in StroquOOL! No need to know the range of
noise b! POO(b̃) needs to use b̃.

• If b̃ >> b > 0, StroquOOL improves upon POO (b̃).

• For b = 0, the improvement is in gray .

• We adapt to noise and recover almost the results of SequOOL
when b = 0 .
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Thank you!
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