Simple, parameter-free and adaptive OPTIMIZATION

 with a minmal local smoothness assumptionPeter Bartlett, Victor Gabillon, Michal Valko

ALT - March 23, 2019

Black box optimization

Also called zero-order optimization.

Goal: Maximize $f: \mathcal{X} \rightarrow \mathbb{R}$ given a budget of n evaluations.

Challenges: First, f has an unknown smoothness,
Later, f is stochastic with unknown noise range b.

Protocol: At round t, select x_{t}, observe y_{t} such that

$$
\mathbb{E}\left[y_{t} \mid x_{t}\right]=f\left(x_{t}\right) \quad\left|y_{t}-x_{t}\right| \leq \boldsymbol{b}
$$

After n rounds, return $x(n)$.

Loss: $r_{n} \triangleq \sup _{x \in \mathcal{X}} f(x)-f(x(n))$ (simple regret)

Minimal assumptions

- We want minimal assumptions.
- The smoothness d of the function f is defined with respect to a fixed and given partitioning \mathcal{P} of the search space \mathcal{X}.

Minimal assumptions. Step 1 . Partitioning

- For any depth h, \mathcal{X} is partitioned in K^{h} cells $\left(\mathcal{P}_{h, i}\right)_{0 \leq K^{h}-1}$.
- K-ary tree \mathcal{T} where depth $h=0$ is the whole \mathcal{X}.

An example of partitioning in one dimension with $K=3$.

Tree search

Optimizing becomes a tree search on the partition \mathcal{P}.

How to explore the tree smartly? (Track x^{\star} as deep as poosible)

The assumption and the smoothness

Assumption (on the local smoothness around x^{\star})
For some global optimum x^{\star}, there exists $\nu>0$ and $\rho \in(0,1)$ such that $\forall h \in \mathbb{N}, \forall x \in \mathcal{P}_{h, i_{h}^{*}}$,

$$
f(x) \geq f\left(x^{\star}\right)-\nu \rho^{h} .
$$

- The smoothness is local, around a x^{\star}.
- This guarantees that the algorithm will not under-estimate by more than $\nu \rho^{h}$ the value of optimal cell $\mathcal{P}_{h, i}$ if it observes $f(x)$ with $x \in \mathcal{P}_{h, i_{h}^{*}}$,
- Now for the opposite question: How much non-optimal cells have values $\nu \rho^{h}$-close to optimal and therefore indiscernible from it? Let us count them!

The smoothness and the near-optimal dimension

Lets us bound $\mathcal{N}_{h}\left(3 \nu \rho^{h}\right)$ as a function of the depth h.

- $d^{\prime}>0 \rightsquigarrow$ controls how $\mathcal{N}_{h}\left(3 \nu \rho^{h}\right)$ explodes with h.
- $d^{\prime}=0 \rightsquigarrow$ bounded by a constant $\forall h$.

Definition

For any $\nu>0, C>1$, and $\rho \in(0,1)$, the near-optimality dimension $\boldsymbol{d}(\nu, C, \rho)$ of f with respect to the partitioning \mathcal{P}, is

$$
\boldsymbol{d}(\nu, C, \rho) \triangleq \inf \left\{d^{\prime} \in \mathbb{R}^{+}: \forall h \geq 0, \mathcal{N}_{h}\left(3 \nu \rho^{h}\right) \leq C \rho^{-d^{\prime} h}\right\}
$$

where $\mathcal{N}_{h}(\varepsilon)$ is the number of cells $\mathcal{P}_{h, i}$ of depth h such that $\sup _{x \in \mathcal{P}_{h, i}} f(x) \geq f\left(x^{\star}\right)-\varepsilon$.

Previous work

Previous and our new approaches under similar assumptions:

smoothness	deterministic $\boldsymbol{b}=0$	stochastic $\boldsymbol{b}>0$
(ν, ρ) known	DOO	Zooming, HOO
(ν, ρ) unknown	DiRect, SOO, Sequ00L	StoS00, POO, Stroqu00L

- We tackle unknown smoothness (ν, ρ).
- Let us first consider $\boldsymbol{b}=0$ and see how our new Sequ00L improves upon SOO.

The SOO algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each depth h

The SOO algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each depth h

The SOO algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each depth h

The SOO algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each depth h

Why simultaneous? Why not sequential? Are all depths equal?

The sequential approach

- New approach: First opens cells at depth h and then at depth $h+1$ and so on, without coming back to lower depths.
- Why? Notice that: the location of the exploration at depth $h+1$ is based on the exploration at depth h.
- So: Explore depth h as best as you can before starting exploring depth $h+1$.

Don't be simultaneous, be sequential: Let us introduce SequOOL.

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Limited budget n

Let us count the number of openings performed by SequOOL by summing over depths h.

$$
n+\frac{n}{2}+\frac{n}{3}+\ldots+\frac{n}{h}+\ldots+1 \approx n \log n
$$

So instead of $\frac{n}{h}$ lets open $\frac{n}{h \log n}$ at each depth h.

The Sequ00L algorithm

Parameters: $n, \mathcal{P}=\left\{\mathcal{P}_{h, i}\right\}$
Initialization: Open $\mathcal{P}_{0,1} . h_{\max } \leftarrow\lfloor n / \overline{\log }(n)\rfloor$.
For $h=1$ to $h_{\text {max }}$
\Rightarrow Open $\left\lfloor h_{\max } / h\right\rfloor$ cells $\mathcal{P}_{h, i}$ of depth h with largest values $f_{h, j}$.
Output $x(n) \leftarrow \underset{x_{h, i}: \mathcal{P}_{h, i} \in \mathcal{T}}{\arg \max } f_{h, i}$.

Simple and parameter free (doubling trick to forget n).

Simple regret r_{n} analysis

	$d>0$	$d=0$
SequOOL	$\left(\frac{\log (n)}{n}\right)^{\frac{1}{d}}$	$e^{-\frac{n}{\log (n)}}$
$\operatorname{SOO}(\varepsilon)$	$\left(\frac{1}{n}\right)^{\frac{1-\varepsilon}{d}}$, for any $\varepsilon>0$	$e^{-\sqrt{n}}$
DOO	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	e^{-n}

- The improvement is in gray (and exponential).
- We argue $d=0$ is common and $d>0$ needs an engineer.
- DOO knows the smoothness (ν, ρ) (Munos 2012).

Main idea in the proof

- When $d=0$ there are (at most) C near optimal cells at each depth h.
- Recursively, to track x^{\star} at depth h : Be sure to open more than the best C cells at each depth h.
- Oracle solution: If C was known, just open the best C nodes until depth n / C.
- With Zipf: Ok as long as
$n /(h \log (n)) \geq C \Rightarrow h \approx n /(C \log (n))$.
- Only lose a log factor.
- Intuition: find an integrable function with the heaviest tail.

(Find a function that stays as long as possible above C and integrates to n without knowing C)

Some experiments

We play with one dimensional benchmarks.

Sequ00L: Truly exponential rates

We play with 1 dimension benchmarks.

Noisy case

- Needs to pull more each x to limit uncertainty.
- Tradeoff: the more you pull each x the less deep you can explore.

Noisy case: Stroqu00L

- Idea: Launch parallel Sequ00L (m) with $m=1,2,4,8, \ldots, n$ where in SequOOL (m) each cell is pulled m times and the deepest explored $h_{\max } \approx n / m$.
- Rephrased as: At depth h order the cells by decreasing value and open the i-th best cell with $m=\frac{n}{h i}$ estimations.

Simple regret $\mathbb{E} r_{n}$ analysis

	$b>0$	$\boldsymbol{b}=0$	
		$d>0$	$d=0$
Stroqu00L	$\left(b \frac{\log ^{2}(n)}{n}\right)^{\frac{1}{d+2}}$	$\left(\frac{\log ^{2}(n)}{n}\right)^{\frac{1}{d}}$	$e^{-\frac{n}{\log ^{2}(n)}}$
POO (${ }_{\text {b }}$)	$\left(\widetilde{b} \frac{\log (n)}{n}\right)^{\frac{1}{d+2}}$	$\left(\frac{\log (n)}{n}\right)^{\frac{1}{d+2}}$	$\left(\frac{\log (n)}{n}\right)^{\frac{1}{d+2}}$
Sequ00L		$\left(\frac{\log ^{2}(n)}{n}\right)^{\frac{1}{d}}$	$e^{-\frac{n}{\log (n)}}$

- No use of UCB in Stroqu00L! No need to know the range of noise $\boldsymbol{b}!\operatorname{POO}(\widetilde{\boldsymbol{b}})$ needs to use $\widetilde{\boldsymbol{b}}$.
- If $\widetilde{\boldsymbol{b}} \gg \boldsymbol{b}>0$, Stroqu00L improves upon POO ($\widetilde{\boldsymbol{b}})$.
- For $\boldsymbol{b}=0$, the improvement is in gray .
- We adapt to noise and recover almost the results of Sequ00L when $\boldsymbol{b}=0$.

Thank you!

