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Black box optimization

_

X —>Hi y

Also called zero-order optimization.



Goal:

Challenges:

Protocol:

Loss:

(before discussing the minimal assumptions, let us set the) Settlng

Maximize f : X — R given a budget of n evaluations.

First, f has an unknown smoothness,

Later, f is stochastic with unknown noise range b.

At round t, select x;, observe y; such that
Elye|xe] = f(xt) lye — x| < b

After n rounds, return x(n).

rn = supyey f(x) — f(x(n)) (simple regret)



Minimal assumptions

e We want minimal assumptions.

e The smoothness d of the function f is defined with respect
to a fixed and given partitioning P of the search space X.
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Minimal assumptions . Step 1 . Partitioning

e For any depth h, X is partitioned in K" cells (Pp,;)o<n_1-

e K-ary tree 7 where depth h = 0 is the whole X.

An example of partitioning in one dimension with K = 3.

X

22



Tree search

Optimizing becomes a tree search on the partition P.
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How to explore the tree smartly? (Track x* as deep as poosible)



The assumption and the smoothness

Assumption (on the local smoothness around x*)

For some global optimum x*, there exists v > 0 and p € (0, 1)
such that Vh € N, Vx € Ppjr,

f(x) > f(x*) = vp.

e The smoothness is local, around a x*.

e This guarantees that the algorithm will not under-estimate by
more than 1//)’7 the value of optimal cell Ph,,-; if it observes
f(X) with x € Ph’,';,.

e Now for the opposite question: How much non-optimal cells
have values v/p"-close to optimal and therefore indiscernible
from it? Let us count them!



The smoothness and the near-optimal
dimension

Lets us bound N;,(31p") as a function of the depth h.
. - ~~ controls how N, (3vp") explodes with h.

o - ~+ bounded by a constant Vh.
Definition

Forany v >0, C > 1, and p € (0, 1), the near-optimality
dimension d(v, C, p) of f with respect to the partitioning P, is

d(v,C,p) £ inf{d/ eRT:Vh>0, Nh(3l/ph) < Cpfd'h},

where N,(¢) is the number of cells Py, ; of depth h such that
Supxep,, f(x) = f(x*) —e.



Previous work

Previous and our new approaches under similar assumptions:

smoothness deterministic b =0

stochastic b > 0

(v, p) known

(v,p) unknown DiRect, S00, SequOOL StoS00, P00, StroquOOL

D00

Zooming, HOO

e We tackle unknown smoothness (v, p).

e Let us first consider b = 0 and see how our new Sequ0O0L

improves upon S00.



The S00 algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each
depth h

h=0 | | X

>
Il

=
®

10/22



The S00 algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each
depth h
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The S00 algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each
depth h
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The S00 algorithm (Munos 2012)

Idea: Open simultaneously the cell with highest value at each
depth h
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Why simultaneous? Why not sequential? Are all depths equal?
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The sequential approach

e New approach: First opens cells at depth h and then at
depth h -+ 1 and so on, without coming back to lower depths.

e Why? Notice that: the location of the exploration at depth
h+ 1 is based on the exploration at depth h.

e So: Explore depth h as best as you can before starting
exploring depth h + 1.

Don't be simultaneous, be sequential: Let us introduce SequOOL.
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Zipf exploration: Open best ; cells at depth h
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Zipf exploration: Open best ; cells at depth h
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Conservative: = n cells opened at the beginning

: explore until depth =n
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Limited budget n

Let us count the number of openings performed by SequO0L by
summing over depths h.

n . n
n+-+-+...+

> T3 +...+1=nlogn

>3

So instead of 7 lets open #gn at each depth h.
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The Sequ00L algorithm

Parameters: n, P = {P,;}
Initialization: Open Py 1. hmax < Ln/@(n)J

@ h=1to hmax
Open | hax/h] cells Py, ; of depth h with largest values f, ;.

Output x(n) < argmax fp ;.
Xh7,-:'Ph’,'€7—

Simple and parameter free (doubling trick to forget n).



Simple regret r, analysis

d>0 d=20

l n
SequO0L <M) I e log(n)
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e The improvement is in gray (and exponential).

e We argue d = 0 is common and d > 0 needs an engineer.
e DOO knows the smoothness (v, p) (Munos 2012).
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Main idea in the proof

When d = 0 there are (at most) C near optimal cells at each
depth h.

Recursively, to track x* at depth h: Be sure to open more
than the best C cells at each depth 5.

Oracle solution: If C was known, just open the best C nodes
until depth n/C.

With Zipf: Ok as long as

n/(hlog(n)) > C = h ~ n/(Clog(n)).

Only lose a log factor.

Intuition: find an integrable function with the heaviest tail.

n
hlog(n)

(Find a function that stays as long
€ aspossible above C and integrates

S~ to n without knowing C)
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Some experiments

We play with one dimensional benchmarks.
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We play with 1 dimension benchmarks.
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Noisy case

- %

e Needs to pull more each x to limit uncertainty.

e Tradeoff: the more you pull each x the less deep you can
explore.
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Noisy case: Stroqu0OOL

e ldea: Launch parallel Sequ0OL (m) with m=1,2,4,8,...,n
where in SequOOL (m) each cell is pulled m times and the
deepest explored hmax =~ n/m.

¢ Rephrased as: At depth h order the cells by decreasing value
and open the i-th best cell with m = /- estimations.

h
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Simple regret Er, analysis

b>0 7570 b=0 %
Stroqu0OL (b@) @ <'°gi(n)>5 o T
P00 (b) (5@) 7z (|0gn(n)) Ee (logn(n)) 3
Sequ0OL (Iogi(n))clf T

No use of UCB in StroquOOL! No need to know the range of

noise b! POO(b) needs to use b.
If b>> b >0, StroquO0L improves upon P00 (B)
For b =0, the improvement is in gray .

We adapt to noise and recover almost the results of SequO0OL
when b=0.
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Thank youl!



