Simple, parameter-free and adaptive OPTIMIZATION with a MINIMAL local smoothness assumption

Peter Bartlett, Victor Gabillon, Michal Valko

ALT - March 23, 2019

Black box optimization

Also called zero-order optimization.

(before discussing the minimal assumptions, let us set the) Setting

Goal: Maximize $f : \mathcal{X} \to \mathbb{R}$ given a budget of *n* evaluations.

Challenges: First, f has an unknown smoothness,

Later, f is stochastic with unknown noise range b.

Protocol: At round *t*, select x_t , observe y_t such that

$$\mathbb{E}[y_t|x_t] = f(x_t) \qquad |y_t - x_t| \le oldsymbol{b}$$

After *n* rounds, return x(n).

Loss:
$$r_n \triangleq \sup_{x \in \mathcal{X}} f(x) - f(x(n))$$
 (simple regret)

Minimal assumptions

• We want minimal assumptions.

 The smoothness *d* of the function *f* is defined with respect to a fixed and given partitioning *P* of the search space *X*.

Minimal assumptions . Step 1 . Partitioning

- For any **depth** h, \mathcal{X} is partitioned in K^h cells $(\mathcal{P}_{h,i})_{0 \leq K^h-1}$.
- *K*-ary tree \mathcal{T} where depth h = 0 is the whole \mathcal{X} .

An example of partitioning in one dimension with K = 3.

Tree search

Optimizing becomes a **tree search** on the partition \mathcal{P} .

How to explore the tree smartly? (Track x^* as deep as possible)

The assumption and the smoothness

Assumption (on the local smoothness around x^*)

For some global optimum x^* , there exists $\nu > 0$ and $\rho \in (0, 1)$ such that $\forall h \in \mathbb{N}$, $\forall x \in \mathcal{P}_{h, i_h^*}$,

$$f(x) \geq f(x^*) - \frac{\nu \rho^h}{\nu \rho^h}.$$

- The smoothness is local, around a x^* .
- This guarantees that the algorithm will not under-estimate by more than νρ^h the value of optimal cell P_{h,i^{*}_h} if it observes f(x) with x ∈ P_{h,i^{*}_h}.
- Now for the opposite question: How much non-optimal cells have values $\nu \rho^h$ -close to optimal and therefore indiscernible from it? Let us **count** them!

The smoothness and the near-optimal dimension

Lets us bound $\mathcal{N}_h(3\nu\rho^h)$ as a function of the depth *h*.

- $d' > 0 \rightsquigarrow$ controls how $\mathcal{N}_h(3\nu\rho^h)$ explodes with h.
- $d' = 0 \iff$ bounded by a constant $\forall h$.

Definition

For any $\nu > 0$, C > 1, and $\rho \in (0, 1)$, the **near-optimality dimension** $d(\nu, C, \rho)$ of f with respect to the partitioning \mathcal{P} , is

$$\boldsymbol{d}(\boldsymbol{\nu},\boldsymbol{C},\boldsymbol{\rho}) \triangleq \inf \Big\{ \boldsymbol{d}' \in \mathbb{R}^+ : \forall h \geq 0, \ \mathcal{N}_h(3\boldsymbol{\nu}\boldsymbol{\rho}^h) \leq \boldsymbol{C}\boldsymbol{\rho}^{-\boldsymbol{d}'\boldsymbol{h}} \Big\},\$$

where $\mathcal{N}_h(\varepsilon)$ is the number of cells $\mathcal{P}_{h,i}$ of depth h such that $\sup_{x \in \mathcal{P}_{h,i}} f(x) \ge f(x^*) - \varepsilon$.

Previous work

Previous and our new approaches under similar assumptions:

smoothness	deterministic $\mathbf{b} = 0$	stochastic b > 0	
(u, ho) known	D00	Zooming, HOO	
(u, ho) unknown	DiRect, SOO, <mark>SequOOL</mark>	StoSOO, POO, <mark>StroquOOL</mark>	

- We tackle **unknown** smoothness (ν, ρ) .
- Let us first consider b = 0 and see how our new SequOOL improves upon SOO.

The SOO algorithm (Munos 2012)

Idea: Open *simultaneously* the cell with highest value at each depth h

The SOO algorithm (Munos 2012)

Idea: Open *simultaneously* the cell with highest value at each depth h

The SOO algorithm (Munos 2012)

Idea: Open *simultaneously* the cell with highest value at each depth h

The S00 algorithm (Munos 2012)

Idea: Open *simultaneously* the cell with highest value at each depth h

Why simultaneous? Why not sequential? Are all depths equal?

The sequential approach

- New approach: First opens cells at depth h and then at depth h+1 and so on, without coming back to lower depths.
- Why? Notice that: the location of the exploration at depth h+1 is based on the exploration at depth h.
- So: Explore depth *h* as best as you can before starting exploring depth *h* + 1.

Don't be simultaneous, be sequential: Let us introduce SequOOL.

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Zipf exploration: Open best $\frac{n}{h}$ cells at depth h

Limited budget n

Let us count the number of **openings** performed by SequOOL by summing over depths h.

$$n+\frac{n}{2}+\frac{n}{3}+\ldots+\frac{n}{h}+\ldots+1\approx n\log n$$

So instead of $\frac{n}{h}$ lets open $\frac{n}{h \log n}$ at each depth h.

The SequOOL algorithm

 Parameters: $n, \mathcal{P} = \{\mathcal{P}_{h,i}\}$

 Initialization: Open $\mathcal{P}_{0,1}$. $h_{\max} \leftarrow \lfloor n/\overline{\log}(n) \rfloor$.

 <u>For</u> h = 1 to h_{\max}
 \triangleright Open $\lfloor h_{\max}/h \rfloor$ cells $\mathcal{P}_{h,i}$ of depth h with largest values $f_{h,j}$.

 Output $x(n) \leftarrow \underset{x_{h,i}:\mathcal{P}_{h,i} \in \mathcal{T}}{\operatorname{arg max}} f_{h,i}$.

Simple and parameter free (doubling trick to forget n).

Simple regret r_n analysis

	d > 0	d = 0
SequOOL	$\left(\frac{\log(n)}{n}\right)^{\frac{1}{d}}$	$e^{-\frac{n}{\log(n)}}$
SOO(ε)	$\left(\frac{1}{n}\right)^{\frac{1-\varepsilon}{d}}$, for any $\varepsilon > 0$	$e^{-\sqrt{n}}$
D00	$\left(\frac{1}{n}\right)^{\frac{1}{d}}$	e ⁻ⁿ

- The improvement is in gray (and exponential).
- We argue d = 0 is common and d > 0 needs an engineer.
- DOO knows the smoothness (ν, ρ) (Munos 2012).

Main idea in the proof

- When d = 0 there are (at most) C near optimal cells at each depth h.
- Recursively, to track x^* at depth h: Be sure to open more than the best C cells at each depth h.
- Oracle solution: If C was known, just open the best C nodes until depth n/C.
- With Zipf: Ok as long as $n/(hlog(n)) \ge C \Rightarrow h \approx n/(Clog(n)).$
- Only lose a log factor.
- Intuition: find an integrable function with the heaviest tail.

(Find a function that stays as long as possible above C and integrates to n without knowing C)

Some experiments

We play with one dimensional benchmarks.

Sequ00L: Truly exponential rates

We play with 1 dimension benchmarks.

Noisy case

- Needs to pull more each x to limit uncertainty.
- **Tradeoff:** the more you pull each *x* the less deep you can explore.

Noisy case: StroquOOL

- Idea: Launch parallel SequOOL (m) with m = 1, 2, 4, 8, ..., n where in SequOOL (m) each cell is pulled m times and the deepest explored h_{max} ≈ n/m.
- **Rephrased as:** At depth *h* order the cells by decreasing value and open the *i*-th best cell with $m = \frac{n}{hi}$ estimations.

Simple regret $\mathbb{E}r_n$ analysis

- No use of UCB in StroquOOL! No need to know the range of noise b! POO(b) needs to use b.
- If $\tilde{\boldsymbol{b}} >> \boldsymbol{b} > 0$, StroquOOL improves upon POO $(\tilde{\boldsymbol{b}})$.
- For b = 0, the improvement is in gray.
- We adapt to noise and recover almost the results of SequOOL when b = 0.

Thank you!