Maximum Entropy Semi-Supervised Inverse Reinforcement Learning

Julien Audiffren and Michal Valko and Alessandro Lazaric and Mohammad Ghavamzadeh

CMLA, ENS CACHAN and INRIA and ADOBE RESEARCH

Contribution

MESSI (Maximum Entropy Semi-Supervised Inverse Reinforcement Learning)

- is a novel algorithm exploiting unsupervised trajectories in apprenticeship learning.
- is a principled integration between MaxEnt-IRL and semi-supervised learning techniques.
- improves the performance of MaxEnt-IRL and other SSL baselines.
- is robust to different choices of similarity function and relatively poor quality unsupervised trajectories.

SSL Apprenticeship Learning

semi-supervised inverse RL

undirected RL

imitation learning

trajectory trajectories

- Problem: expert trajectories are expensive to get or not available

- Solution: learn also from unsupervised trajectories and use the structure in the feature counts.

Background

- Markov decision process (MDP) \((S, A, r, p) \)
 - \(S \) state space
 - \(A \) action space
 - \(r: S \rightarrow \mathbb{R} \) state reward function
 - \(p: S \times A \rightarrow \Delta(S) \) the stochastic-dynamics

- Stochastic Policy \(\pi: S \rightarrow \Delta(A) \)

- Trajectory \(\zeta = (s_0, a_0, \ldots, s_{T-1}, r_T) \) is sequence of states encountered by an agent in a given interval of time.

- Features \(f: S \rightarrow \mathbb{R}^k \)

- Feature count of a trajectory \(\zeta \) is \(f(\zeta) = \sum_{i=1}^T f(s_i) \)

- Linear reward \(r^\pi(\zeta) \) such that \(r(s) = \theta(f(s)) \).

- Expert trajectories \(\Sigma^* = \{\zeta^*\} \) from expert.

- Use a similarity function \(s \) to measure the distance \(s(\zeta, \zeta') \) between any pair of trajectories \(\{\zeta, \zeta'\} \).

- Use the pairwise penalty forces similar trajectories to have similar rewards

\[
R(\theta(\Sigma^*)) = \frac{1}{2(1+\nu)} \sum_{\zeta \in \Sigma^*} s(\zeta, \zeta^*) (\theta(f(\zeta^*)) - \theta(f(\zeta)))^2
\]

- New optimization problem penalizes the likelihood of \(\theta \) by the similarity in unsupervised trajectories

\[
\theta^* = \arg \max \left(L(\theta(\Sigma^*)) - \lambda R(\theta(\Sigma^*)) \right)
\]

MESSI

- Integration of unsupervised trajectories in MaxEnt-IRL using a penalty function reflecting the geometry of the trajectories, similar to [Erikan and Altun, 2009], but on the dual problem to preserve a low computational complexity.

- Set of expert trajectories \(\Sigma^* = \{\zeta^*_i\} \) and unsupervised trajectories \(\Sigma = \{\zeta_i\}_{i=1}^T \).

- Use a similarity function \(s \) to measure the distance \(s(\zeta, \zeta') \) between any pair of trajectories \(\{\zeta, \zeta'\} \).

- Use the pairwise penalty forces similar trajectories to have similar rewards

\[
R(\theta(\Sigma^*)) = \frac{1}{2(1+\nu)} \sum_{\zeta \in \Sigma^*} s(\zeta, \zeta^*) (\theta(f(\zeta^*)) - \theta(f(\zeta)))^2
\]

- New optimization problem penalizes the likelihood of \(\theta \) by the similarity in unsupervised trajectories

\[
\theta^* = \arg \max \left(L(\theta(\Sigma^*)) - \lambda R(\theta(\Sigma^*)) \right)
\]

Experimental settings

- Two Benchmarks: Grid World [Abbeel and Ng, 2004] and Highway Driving [Szydlo et al., 2008].

- Unlabeled trajectories are drawn from three different distributions over policies
 - \(P_r = P(\theta^*) \) (expert)
 - \(P_l = P(\theta_l) \) (average quality)
 - \(P_d = P(\theta_d) \) (very different reward)

- MESSIMAX: MESSI with only near expert unlabeled trajectories (upper bound for MESSI performance).

- Parameters: MESSI is evaluated with respect to \(\theta_{max} \)

Results

- Number of iterations. MESSI improves at each iteration (unlike SSIRL). Advantage of MESSIMAX is clear starting from the beginning.

- Proportion of good unsupervised trajectories. Non-relevant distribution (as \(P_\mu \)) make MESSI performs worse than MaxEnt-IRL. However, improves quickly with even a few worthy trajectories.

Comparison with EM baseline

- SSIRL Cannot be compared to SSIRL [Valko et al., 2012] because it does not have a stopping criterion.

- EM Comparison to semi-supervised baseline inspired by EM [Zhu, 2005].

Discussion

- Not semi-supervised classification: Unsupervised trajectories come from the expert herself, another expert(s), near-expert, by agents maximizing different reward functions, or noisy data.

- Similarity functions are more efficient when hand-crafted to fit the problem, but still works for baseline like RBF.

- Improves MaxEnt IRL when the similarity function is meaningful and the distribution of unsupervised trajectories is informative.

References

