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ABSTRACT
Numerical differentiation is undoubtedly a fundamental problem in signal processing and control engi-
neering, due to its countless applications. The goal of this paper is to address this question within an alge-
braic framework. More precisely, we consider a noisy signal and its orthogonal polynomial series expansion.
Through the algebraic identification of the series coefficients, we then propose algebraic differentiators for
the signal. Examples based on Hermite and Laguerre polynomials illustrate these algebraic differentiators.

1. Introduction
Numerical differentiation is certainly a fundamental topic in sig-
nal processing and control engineering. It emerges in numer-
ous problems concerning the reconstruction of a noisy signal,
parameter estimation, state observation, and so on, this list
being extensively long. In this way, numerical differentiation has
been the subject of countless research works.

To solve this sort of estimation problems, most classical
methods involve usually statistical approaches, for instance,
the minimum least squares method (Duncan, Mandl, & Psik-
Duncan, 1996) or the maximum likelihood for parameter esti-
mation in sinusoidal signals (Edmonson, Lee, & Anderson,
1995). Nevertheless, ingenious new deterministic methods have
appeared in last decades providing robustness to noise results.
In this context, we may cite Levant (1998, 2003) where deriva-
tives were estimated using sliding-mode tools and (Efimov &
Fridman, 2011) where a higher order sliding-mode-based dif-
ferentiator is proposed. In Perruquetti, Floquet, and Moulay
(2008), homogeneous-based tools were used to design finite-
time observers. The reader may refer to the many subse-
quent papers using these three works. These differentiators
were also applied in practical domains in different contexts. For
instance, algebraic and homogeneous-based numerical differ-
entiations were used in Ahmed, Ushirobira, Efimov, Tran, and
Massabuau (2015) to estimate the velocity of valve movement
in marine bivalve mollusks for water quality surveillance. They
were also applied to a fault detection-like problem in Ahmed
et al. (2016) to detect the spawning time of the bivalve mol-
lusks. Very recently, Ushirobira, Efimov, Casiez, Roussel, and
Perruquetti (2016) used these deterministic differentiators in a
forecasting algorithm for the latency compensation in indirect
human–computer interactions.

In the early 2000s, an algebraic framework began to be
widespread, notably in the study of parameter identification. An
important work in this subject is Fliess and Sira-Ramírez (2003)
where the authors introduce a closed-loop parametric identifi-
cation procedure for continuous-time constant linear systems.
Algebraic strategies are generally based on differential algebra
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concepts, operational calculus and module theory. The book
(Sira-Ramírez, Rodríguez, Romero, & Juárez, 2014) contains a
recent survey on algebraic identification. Several applications
in various different problems using the algebraic approach can
be found in Mboup (2012), Mboup (2009), Perruquetti, Bon-
net, Mboup, Ushirobira, and Fraisse (2012), Cortés-Romero,
García-Rodríguez, Luviano-Juárez, and Sira-Ramírez (2011),
Menhour, d’Andrea Novel, Boussard, Fliess, and Mounier
(2011), Ushirobira, Perruquetti, Mboup, and Fliess (2011), and
Ushirobira, Perruquetti, and Mboup (2016a).

Parallel to the numerical differentiation issue, there is the
essential problem of the reconstruction of a signal from a noisy
measurement. A common approach to this problem is to use a
Taylor series expansion of the signal. In simple words, the idea
is to approximate the signal by a truncation of its Taylor series
expansion. It is mostly in this way that numerical differentia-
tion has been the centre of attention in many papers. The alge-
braic approach in this context started with the noteworthy paper
(Mboup, Join, & Fliess, 2009) which inspired the present work
and many others(see, for instance, Liu, Gibaru, & Perruquetti,
2011a, 2011b; Mboup, 2009).

An alternativemethod for numerical differentiation is to con-
sider the series expansion of the signal in a different basis. For
example, in signal processing, a common signal decomposition
is provided by a series expansion in an orthogonal polynomial
basis (i.e. the signal is written as an infinite sum of orthogonal
polynomials). The goal in this case is to identify the coefficients
in this series expansion. In Ushirobira and Quadrat (2016), the
algebraic framework within this context started to be studied
and the results in the present paper are in part based on this
former work. In Ushirobira and Quadrat (2016), the authors
also studied dynamical systems described by some particular
second-order ordinary differential equation (ODE)with orthog-
onal polynomials as solutions.

The algebraic method proposed in this paper is greatly
based on the structural properties of theWeyl algebra. A major
advantage in this sense is to obtain closed formulas for the
differentiators. Similar approaches can be found in Ushirobira,
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Perruquetti, Mboup, and Fliess (2012) and Ushirobira,
Perruquetti, Mboup, and Fliess (2013).

2. General problem
All through this paper:

� K denotes a field of characteristic zero (e.g. K = Q,
R or C);

� for a set S , the algebraic extension of K by S is denoted by
K(S ).

2.1 Orthogonal polynomials expansion
In this section, the algebraic-based reconstruction of a signal via
orthogonal polynomials is presented. Let us consider a signal x
to be recovered from a noisy signal y defined by

y(t ) = x(t ) + �(t ),

where ϖ(t) is a zero-mean noise.1
We denote by G the basis formed by generic classical orthog-

onal polynomials gn, G = {
gn(t ), 〈·, ·〉

}
n≥0 where 〈 ·, ·〉 denote

the scalar product on the gn with a corresponding weight func-
tionw (see the Appendix). The expansion of a continuous signal
y in G can be described by

y(t ) =
∑
n≥0

λn gn(t ), (1)

where λn ∈ R corresponds to the projection of y onto the
orthogonal basis G :

λn = 〈y(t ), gn(t )〉
〈gn(t ), gn(t )〉 =

∫
R
y(t ) gn(t )w(t )dt∫
R
gn(t )2 w(t )dt

. (2)

The expansion (1) is to be considered as a formal series. The con-
vergence of (1) to y(t) at a time t in a given interval I where the
functions of G remain bounded for n → � depends uniquely
upon the nature of the signal y(t) in the neighbourhood of t.
All classical orthogonal polynomials are uniformly bounded in
the orthogonality interval. More details can be found in Shohat
(1935).

Remark that some parametersmight appear in the polynomi-
als gn, for example α, β > −1 in the Jacobi polynomials P(α,β)

n or
α > −1 in the Laguerre polynomials �

(α)
n (more details in Szegö,

1975).
To reconstruct the signal x, the whole family of parame-

ters {λn}n∈N would have to be estimated. However, for a good
approximation, itmight be enough to estimate only a finite num-
ber of these parameters. Moreover, notice that y will often rep-
resent the measured signal from a signal x with some negligible
noise, so we may consider only y. Hence, based on the similar
case of the Taylor expansion (see e.g. Mboup et al., 2009), an
approximation of y will be given by a truncated series:

y(t ) ≈ yN (t ) =
N∑

n=0

λn gn(t ), (3)

for some N > 0. The idea is then to identify the coefficients
λ0,… , λN. It is worth to notice that in Mboup et al. (2009), the
authors establish the strong connection between numerical esti-
mators proposed in that work and Jacobi orthogonal polynomi-
als.

In this work, the algebraic estimationmethod is proposed via
computations in the operational domain. In other words, a pas-
sage is required from the time domain to the Laplace domain
via the Laplace transform L . Let us recall the action of L on a
continuous function f with support in R+ given by

L
(
f
)
(s) =

∫ +∞

0
e−s t f (t ) dt,

where s denotes the Laplace variable. Then, L applied on (3)
yields

YN (s) =
N∑

n=0

λn L
(
gn

)
(s), (4)

where YN denotes the Laplace transform of yN. Our goal is then
to estimate the constants λi, i = 0,… , N.

Prior to summarising the estimation method, we recall the
definition of the inverse Laplace transform that allows the return
to the time domain from the Laplace domain:

L −1
(

1
sm

dpY (s)
dsp

)
= (−1)p

(m − 1)!

∫ t

0
vm−1,p(τ ) y(τ )dτ (5)

with Y denoting the Laplace transform of y and

vm,p = (t − τ )m τ p,∀ p,m ∈ N,m ≥ 1. (6)

The steps of the algebraic method proposed in this paper are
schematised below:

� conversion of the truncated time-dependent orthogonal
expansion to an algebraic finite sum in the Laplace domain;

� for each λi, gradual elimination of other parameters
through the action of differential operators called annihi-
lators;

� return to the time domain through the action of the inverse
Laplace transform, providing closed formulas for λi.

Proposition 2.1 gives the well-known properties of the
Laplace transform that will be useful in the sequel:

Proposition 2.1: Let F be the Laplace transform of a continuous
function f. Then,

(1) L
(
dn f
dtn

)
(s) = sn F(s) − ∑n−1

i=0 sn−i−1 di f
dti (0).

(2) L
(
tn f

)
(s) = (−1)n dn

dsn F(s).
(3) For all a ∈ K, L (a) = a

s .

2.2 Orthogonal differentiators
The numerical differentiation problem can be addressed in
this orthogonal series expansion framework in the following
manner. In the previous subsection, an algebraic estimation
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approach was sketched to estimate the parameters appearing in
the expansion. To approximate derivatives by integrals, for given
orthogonal polynomials gn, wewill start by defining constants hn
and kn as in Diekema and Koornwinder (2012) by

hn :=
∫
R

gn(t )2w(t )dt and

gn(t ) = kntn + terms of degree less than n

wherew is the weight function corresponding to gn. The follow-
ing Lemma is straightforward (Diekema &Koornwinder, 2012):

Lemma 2.1: We have
∫
R
tn gn(t )w(t )dt = hn

kn
.

Examples 2.1: For instance, these constants are

(1) in the case of Hermite polynomials:

hn = √
π 2n n!, kn = 2n.

(2) in the case of Laguerre polynomials:

hn = 	 (n + α + 1)
n!

, kn = (−1)n

n!
.

The relation between the coefficients of the orthogonal poly-
nomials series expansion that were named λn and estimate
derivatives of the signal y are expressed in Theorem 2.1:

Theorem 2.1: Consider a signal y as in the previous subsection
and its expansion in (1), (3). Then, the nth-order time-derivative
estimate ŷ(n) of y is given by

ŷ(n)(t ) = n! kn λn (7)

Proof: The Taylor series expansion of y is given by the following
expression:

y(t ) =
∑
i≥0

ai
i!
t i

where the terms ai are the unknown constant coefficients that
represent the derivatives of the signal y. Assume that the deriva-
tive estimation can be done on a moving time window of length
T > 0, so ai = y(i)(t), for all t > T. Using a truncation of order
n of this expansion (3), the orthogonal expansion in (3) and (2),
we obtain

〈yn(t ), gn(t )〉 =
∫
R

yn(t ) gn(t )w(t )dt

=
∫
R

n∑
i=0

ai
i!
t i gn(t )w(t )dt

By orthogonality and from Lemma 2.1, that provides

〈yn(t ), gn(t )〉 = an
n!

∫
R

tn gn(t )w(t )dt = hn
kn

an
n!

Using now the orthogonal series decomposition of y on the basis
G and also (2), we obtain

an ≈ n! 〈gn(t ), gn(t )〉 kn
hn

λn = n! kn λn

That finishes the proof. �

Therefore, Theorem 2.1 provides a useful formula for differ-
entiators by linking the orthogonal coefficients projections and
the derivative estimations.

3. Illustrating examples

3.1 Hermite polynomials
We start by considering a particular type of orthogonal poly-
nomials, Hermite polynomials hn. They form an orthogonal set
for t ∈ R with respect to the weight function e−t2 (see the
Appendix). Given a continuous function y, its Hermite expan-
sion can be written as

y(t ) =
∑
n≥0

λn hn(t ), (8)

where

λn = 1
2n n!

√
π

∫ ∞

−∞
y(τ ) hn(τ ) e−τ 2

dτ.

An approximation of the function y is provided by selecting a
constant N > 0 and it follows from (4)

YN (s) =
N∑

n=0

λn Hn(s), (9)

where YN denotes the Laplace transform of yN and Hn the
Laplace transform of hn. From the definition of Hermite poly-
nomials (see the Appendix), it follows

hn(t ) = 2ntn + hen(t ) = 2ntn + ηn,n−2tn−2 + · · · + ηn,mtm

withm = nmod 2 (i.e.m = 0 if n is even andm = 1 if n is odd).
Writing n = 2j or n = 2j + 1, it results that

Hn(s) := L (hn) (s) = 2n
n!
sn+1 +

j∑
k=1

ηn,n−2k
(n − 2k)!
sn−2k+1 .

Eliminating denominators in (9) provides

sN+1YN (s) = λN

(
2NN! +

j∑
k=1

ηN,N−2k(N − 2k)! s2k
)

+
N−1∑
n=0

λnsN+1Hn(s). (10)

In this work, we denote the set of parameters to be estimated
by

� := {λ0, λ1, . . . , λN}.
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Our goal here is the individual identification of these parame-
ters, starting with the dominant coefficient λN. Let us adopt the
notation �est = {λN}.

The expression obtained in (10)may be rewritten as a relation
denoted by (R):

(R) P (s)YN (s) + Q(s) + Q(s) = 0, (11)

where P ∈ R�

[
s, d

ds

]
(i.e. P is a differential operator on the

Laplace variable s with coefficients in the field R� := R (�)),
Q ∈ R

�est
[s] (i.e. Q is a polynomial in s with coefficients in

R�est := R (�est)) , and Q ∈ R
�
[s] (i.e. Q is a polynomial in s

with coefficients in R�):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(s) = sN+1,

Q(s) = −λN sN+1HN (s),

Q(s) = −
N−1∑
n=0

λn sN+1Hn(s).

To obtain an expression from (11) that involves only the param-
eter λN, the polynomial Q must somehow be eliminated. It is
through the action of differential operators that this elimination
is realised. These operators are called annihilators and their goal
is to provide an expression containing onlyλN,YN and its deriva-
tives. The definition of annihilators will be given in the next sec-
tion. A time-domain closed formula is obtained by applying the
inverse Laplace transform on the resulting equation.

When N = 2 for instance, it follows from (10) that

s3YN (s) − s2 λ0 − 2 s λ1 + 2
(
s2 − 4

)
λ2 = 0. (12)

Set �est = {λ2} to obtain

P(s) = s3, Q(s) = 2
(
s2 − 4

)
λ2,

Q(s) = −s2 λ0 − 2 s λ1. (13)

3.2 Laguerre polynomials
(Generalised) Laguerre polynomials �

(α)
n are another type of

classical orthogonal polynomials. The weight function w(t ) =
tα−1 e−t (α > −1) provides the orthogonality of the family
{�(α)

n } with respect to the scalar product defined by w(t). See the
Appendix for more details on Laguerre polynomials.

The Laguerre expansion of a continuous function y has a sim-
ilar expression as in (1), (8) and its truncated approximation is
then

yN (t ) =
N∑

n=0

μn �(α)
n (t ), (14)

for some constant N > 0 and where

μn = 1(n+α

n

)
	 (α + 1)

∫ ∞

−∞
y(τ ) �n(τ ) τα−1 e−τ dτ.

Now, it follows from (14):

YN (s) =
N∑

n=0

λn L(α)
n (s), (15)

where L(α)
n the Laplace transform of �

(α)
n . From the closed for-

mula for Laguerre polynomials in (A1) (see the Appendix), it
results that

L(α)
n (s) := L

(
�(α)
n

)
(s) =

n∑
i=0

(−1)i
(
n + α

n − i

)
1
si+1 .

Eliminating denominators in (15) provides

sN+1YN (s) = λN

(
(−1)N +

N−1∑
k=1

(−1)k
(
n + α

n − k

)
sN−k

)

+
N−1∑
n=0

λnsN+1L(α)
n (s). (16)

As in the case of Hermite polynomials, we proceed to the
identification of the dominant coefficient λN and fix �est =
{λN}. Similarly to (11), there is a relation (R):

(R) P (s)YN (s) + Q(s) + Q(s) = 0, (17)

where P(s) = sN + 1, Q(s) = −λN sN + 1LN(s), Q(s) =
−∑N−1

n=0 λn sN+1Ln(s).
In the case α = 0 and N = 3, the corresponding polynomi-

als are P(s) = s4, Q(s) = ( − s3 + 3s2 − 3s + 1)λ3 and Q(s) =
−s3 λ0 − (−s3 + s2

)
λ1 + (−s3 + 2s2 − s

)
.

In the next section, we introduce useful concepts in the alge-
braic method, such as annihilators and estimators, as well prop-
erties used to design these differential operators.

Remark 3.1: The algebraic method proposed in this paper is
inspired by the parameter estimation algebraic methods initi-
ated some years ago, for instance, in Fliess and Sira-Ramírez
(2003). Some works on the identification of amplitudes, phases
and frequencies can be found in Ushirobira et al. (2012, 2013)
and Ushirobira, Perruquetti, and Mboup (2016b) and the case
of parameters of an ODE in Ushirobira and Quadrat (2016).

4. Annihilators
To simplify this section, we consider K = Q or R. In the
Appendix or in McConnell and Robson (2000), the reader may
find more details on the algebraic structural properties used
here.

Let B denote the polynomial ring on d
ds with coefficients in

K (s) (s denotes the Laplace variable). It is well known that B is
a left principal domain.

Definition 4.1: Let R ∈ K�[s]. A R-annihilator with respect to B
is an element of AnnB(R) = {F ∈ B | F (R) = 0}.

The ideal AnnB(R) is left principal ideal, that means it is gen-
erated by a unique �min ∈ B, up to multiplication by a nonzero
polynomial in B. So AnnB(R) = B�min. The operator�min is a
minimal Q-annihilator with respect to B. Notice that AnnB(R)
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contains annihilators in finite integral form, i.e. differential
operators with coefficients in K

[ 1
s

]
. The following lemmas are

useful:
Lemma4.1: Consider R= sn for n ∈ N. Aminimal R-annihilator
is given by �n = s d

ds − n.

Form, n ∈ N, the operators�m and�n commute and so the
following Lemmas are valid:

Lemma 4.2: Let R1, R2 ∈ K�[s]. Let Fi be a Ri-annihilator for
i = 1, 2, such that F1 F2 = F2 F1. Then, F1 F2 is a (μR1 + η R2)-
annihilator for all μ, η ∈ K�.

Lemma 4.3: Let R ∈ K�[s]. Then, a minimal R-annihilator with
respect to B�est is given by �min = R d

ds − dR
ds .

To avoid the complete elimination by a Q-annihilator of all
terms in the relationR (see (3.1)) (hence of all parameters to be
estimated), it is necessary to define an estimator.

Definition 4.2: An estimator� ∈ B is aQ-annihilator satisfying
coeffs (� (R)) ∩ K� = ∅, where coeffs( · ) denotes the coeffi-
cients of a given polynomial.

For instance, from (13), we have

Q(s) = −s2 λ0 − 2 s λ1 and Q(s) = 2
(
s2 − 4

)
λ2.

The differential operator � = d3
ds3 is clearly an Q-annihilator

(since the degree of Q in s is equal to 2). However, the action of
� on (R) defined by (12) also annihilates Q, which is the poly-
nomial containing the parameter to be identified. Hence, � is
not an estimator.

From Lemma 4.1, it follows a minimal Q-annihilator for s2:

π1 = s
d
ds

− 2.

Next, to complete eliminate Q, we can apply π2 = s d
ds − 1 on

π1
(
Q

)
. That gives aQ-annihilator written in the canonical form

(see the Appendix):

π = π2 π1 = s2
d2

ds2
− 2

d
ds

+ 2

which is also an estimator since π(Q) � 0 as we will analyse in
the following section.

5. Examples

5.1 Example 1: Hermite expansion series of x
To illustrate ourmethod, in this subsection,weworkwith a trun-
cate Hermite series expansion of order 2 and estimating λ2.

From (12), we have

P(s) = s3, Q(s) = (
2 s2 − 8

)
λ2, Q(s) = −λ0 s2 − 2 λ1 s.

We begin by eliminating the highest degree term in s in Q, that
is the term that contains λ0. As we have just seen, Lemma 4.1

provides two annihilators π1 and π2 whose product is

π = π2 π1 = s2
d2

ds2
− 2

d
ds

+ 2

written in the canonical form (A2). So, π annihilates Q, but its
action on Q is given by

π (Q) = −16λ2.

Applying π on (12) yields

s3
(
2 + 4 s

d
ds

+ s2
d2

ds2

)
YN (s) − 16 λ2 = 0. (18)

With the help of the inverse Laplace transform, the above equa-
tion can be brought to the time domain. For that, we multiply
(18) by 1

s4 and apply the transform (5) giving∫ t

0
(t − τ )2 y (τ ) dτ − 4

∫ t

0
τ (t − τ ) y (τ ) dτ

+
∫ t

0
τ 2y (τ ) dτ − 2

15
λ2 t5 = 0. (19)

Solving (19) with respect to λ2 gives

λ2 = 1
t5

∫ t

0

(
v2,0 − 4 v1,1 + v0

)
y (τ ) dτ (20)

where the notation in (6) is used.
We illustrate this example with the signal y(t) = cos (2t) +

ϖ(t) where the noise is ϖ(t) = 2.102. sin (1010 t). Its Hermite
expansion series truncated at N = 2 is: y(t) � 0.3678794412 −
0.1839397206 h2(t). From (20), an estimate of λ2 is obtained.
Then, by Theorem 2.1, the second derivative of y can be esti-
mated. In Figure 1, we show the comparison between this esti-
mate of̂̈y(0) and the real value of ÿ(0) which is −4.

The coefficient λ3 was estimated in Ushirobira and Quadrat
(2016) using the present algebraic method.

5.2 Example 2: Laguerre expansion series of x
In the case of generalised Laguerre polynomials, we illustrate in
this subsection how to estimate λ3 in a truncated series expan-
sion of order 3 as in (14), using the proposed algebraic tech-
nique. In this sense, we consider the relation (R) obtained in
(17) when α = 0 and N = 3:⎧⎪⎨⎪⎩
P(s) = s4,
Q(s) = (−s3 + 3s2 − 3s + 1

)
λ3,

Q(s) = −s3 λ0 − (−s3 + s2
)

λ1 + (−s3 + 2s2 − s
)
.

(21)

We start the elimination of Q by annihilating λ0. For that,
Lemma 4.1 is used to obtain π1 = s d

ds − 3 whose action on Q
and Q results

π1
(
Q

) = −s2λ1 + (−2 s2 + 2 s
)
λ2,

π1 (Q) = (−3 s2 + 6 s − 3
)
λ3.
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Figure . Comparison between̂̈y(0) and ÿ(0).

Since the degree of π1
(
Q

)
is 2, using Lemma 4.1 once more, we

apply π2 = s d
ds − 2 on π1

(
Q

)
and π1(Q). That gives

π2
(
π1

(
Q

)) = −2 sλ2, π2 (π1 (Q)) = −6 (s − 1) λ3.

One last time, Lemma 4.1 helps to find π3 = s d
ds − 1 to com-

pletely annihilate Q. The resulting Q-annihilator π = π3 π2 π1
is also an estimator since π(Q)= −6λ3 � 0. Moreover, it can be
rewritten in the canonical form (A2) as follows:

π = s3
d3

ds3
− 3 s2

d2

ds2
+ 6 s

d
ds

− 6.

We apply π on (16) and it follows

−6 λ3 +
(
18 s5

d
ds

+ 9 s6
d2

ds2
+ s7

d3

ds3
+ 6 s4

)
YN (s) = 0.

The inverse Laplace transform (5) helps to return to the time
domain:

−λ3 t7

840
− 9

∫ t

0
τ (t − τ )2 y (τ ) dτ + 9

∫ t

0
τ 2 (t − τ ) y (τ ) dτ

−
∫ t

0
τ 3y (τ ) dτ +

∫ t

0
(t − τ )3 y (τ ) dτ = 0. (22)

Finally, solving (22) with respect to λ3 and using the notation
(6), we obtain

λ3 = −840
t7

∫ t

0

(
9v2,1 − 9v1,2 + v0,3 − v3,0

)
y(τ ) dτ. (23)

Figure . Comparison between ŷ(3)(0) and y()().

This example is illustrated with the signal y(t) = sin (t) + ϖ(t)
where the noise is ϖ(t) = 2.102. sin (1010 t). Its Laguerre expan-
sion series truncated at N = 3 is

y(t ) ≈ 0.5 �0(t ) + 4.10−22 �1(t ) − 0.25 �2(t ) − 0.25 �3(t ).

From (23), we obtain an estimate of λ3. Hence, Theorem 2.1
states that the third derivative of y can be estimated from it.
In Figure 2, we show the comparison between this estimate of
ŷ(3)(0) and the real value of y(3)(0) which is −1.

6. Conclusion
Numerical derivation is an important issue often arising in sev-
eral problems in signal processing and control engineering. The
approach presented in this paper is of algebraic flavour and it
is based on the orthogonal polynomials series expansion of a
given signal. Estimation of its derivatives is deduced from the
estimates of the series expansion coefficients. The computations
are performed in the Laplace operational domain, so using alge-
braic expressions. closed-form estimates are obtained, thanks to
structural algebraic properties of the differential operators act-
ing on these expressions. The choice of the differential oper-
ators is a critical step in the algebraic method proposed here;
it permits a better-posed problem, and, so, better estimates. In
addition, the integrals providing the estimation serve as filters
for the noise in the signal. The cases of Hermite and Laguerre
orthogonal polynomials were chosen to demonstrate our alge-
braicmethod. Two examples are given to illustrate our approach.
Future work should include errors analysis, notably from the
truncation of the series expansion.

Note
1. The noise here is interpreted as a fast oscillation and it does not depend

on any probabilistic modeling, as in (Fliess 2006, 2008).
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Appendix
A.. Classical orthogonal polynomials
The definition of some classical orthogonal polynomials is
recalled in this part. General properties ofHermite and Laguerre
polynomials are provided. The reader may check for more
details at Abramowitz and Stegun (1964) or Szegö (1975).

A.1.1. Hermite polynomials. The definition of Hermite poly-
nomials is given by

hn(t ) = (−1)n et
2 dn

dtn
e−t2 .

Hermite polynomials of even degree are even functions and
those of odd degree are odd functions. Thus, we can write

hn(t ) = 2n tn + hen(t ),

where hen(t) is a polynomial with non-zero coefficients for all
even powers of t smaller than n if n is even and for all odd powers
if n is odd. Hermite polynomials are orthogonal with respect to
the scalar product defined by the weight functionw(t ) = e−t2 :

〈hn(t ), hm(t )〉 =
∫ ∞

−∞
hm(τ ) hn(τ )w(τ ) dτ = √

π 2n n δmn.

2088

https://doi.org/10.1002/acs.2688


A.1.2. (Generalised) Laguerre polynomials. An explicit repre-
sentation of generalised Laguerre polynomials is given by

�(α)
n (t ) =

n∑
i=0

(
n + α

n + i

)
(−t )i

i!
. (A1)

The analogue of Rodrigues’ formula is

e−t tα �(α)
n (t ) = 1

n!
dn

dtn
(
e−t tn+α

)
.

They are orthogonal with respect to the weight functionw(t ) =
e−t tα , the scalar product defined by

〈�(α)
n (t ), �(α)

m (t )〉 =
∫ ∞

−∞
�(α)
n (τ ) �(α)

m (τ )w(τ ) dτ = 0, m 
= n.

A.. TheWeyl Algebra: basic notions

Definition A.1: Let K be a field of characteristic zero. Let k ∈
N \ {0}. TheWeyl algebraAk = Ak(K) is the freeK-algebra gen-
erated by p1, q1,… , pk, qk satisfying the relations

1 ≤ i, j ≤ k, [pi, q j] = δi j, [pi, p j] = [qi, q j] = 0,

where [u, v] � uv − vu is the commutator defined by for all u,
v ∈ Ak(K) and δij is the Kronecker function, i.e. δij = 1, if i = j
and 0, if i � j.

The Weyl algebra Ak is commonly realised as the K-algebra
of polynomial differential operators on K[s1, . . . , sk] such that
pi := ∂

∂si
is the derivative with respect to si and qi := si × repre-

sent the multiplication operator, for 1 � i � k.
As a consequence, we can write

Ak = K[q1, . . . , qk][p1, . . . , pk]

= K[s1, . . . , sk]
[

∂

∂s1
, . . . ,

∂

∂sk

]
.

Remark A.1: The same notation is used for the variable si and
for the operator ‘multiplication by si’.

A closely related algebra to Ak(K) is defined as the differen-
tial operators on K[s1, . . . , sk] with coefficients in the rational

functions field K(s1, . . . , sk). We denote it by Bk(K), or Bk for
short. We can write

Bk := K(q1, . . . , qk)[p1, . . . , pk]

= K(s1, . . . , sk)
[

∂

∂s1
, . . . ,

∂

∂sk

]
.

Proposition A.1: A basis for Ak is given by
{
qI pJ | I, J ∈ Nk},

where qI := qi11 . . . qikk and pJ := pj1
1 . . . pjk

k if I = (i1,… , ik) and
J= (j1,… , jk). So an operator F ∈ Ak can bewritten in a canonical
form

F =
∑
I,J

λIJqI pJ with λIJ ∈ K. (A2)

Example A.1: We need later the following useful identity:

pnqm = qmpn +
n∑

k=1

(
n
i

)(
m
i

)
i!qm−i pn−i

An element F ∈ Bk can be similarly written in a canonical
form:

F =
∑
I

λI GI(s) pI, where GI(s) ∈ K(s1, . . . , sk).

The order of an element F ∈ Bk, F = �I GI(s) pI is defined as
ord(F ) := max{[I| | GI(s) 
= 0}. The same definition holds for
the Weyl algebra Ak since Ak ⊂ Bk. Some properties of Ak and
Bk are given by the following propositions:

Proposition A.2: The algebra Ak is a domain. Moreover, Ak is a
simple algebra (i.e. it contains no nontrivial ideals) and also a left
Noetherian ring (i.e. every left ideal is finitely generated). These
properties are shared by Bk.

Furthermore, Ak is neither a principal right domain, nor a
principal left domain, while this is true for Bk:

Proposition A.3: B1 admits a left division algorithm, that is,
if F, G ∈ B1, then there exists Q, R ∈ B1 such that F = QG + R
and ord(R) < ord(G). So B1 is a principal left domain.
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