R : Data Visualization with ggplot2

Sławek Staworko

Univ. Lille 3
2018

Working example

Young people survey

- 1010 participants of Slovakian nationality (aged 15-30)
- 150 questions, some categorical but most on scale of 1 to 5 , covering
- Music and movies preferences
- Hobbies and interests
- Phobias, habits, and personality traits
- demographic information

Obtaining data
Available at Kaggle:
https://www.kaggle.com/miroslavsabo/young-people-survey
local copy can be found on the page
http://researchers.lille.inria.fr/~staworko/r18.html
we assume survey data is loaded and assigned to a variable $\mathrm{df} \leftarrow$ read.csv('responses.csv', na.strings='')

The ggplot2 library

- Comprehensive plotting system for R
- Based on a grammar of graphics
- Loaded with library (ggplot2)
- installation might be necessary with the command install.packages("ggplot2")
- Full documentation on http://ggplot2.tidyverse.org/index.html
- Reference index http://ggplot2.tidyverse.org/reference/index.html
- Gallery http://www.ggplot2-exts.org/gallery/

Grammar of graphics

Components of plot language

ggplot creates new plot (and loads data)
aes defines aesthetic mappings of variables
geom_. . . defines a layer of geometric objects (lines, bars, etc.)
scale_... controls how values are translated to visual properties of displayed objects
coord_. . . determines how values of x and y are translated to positions in the plot
facet_... generates multiple small plots
annotate_... creates a separate layer of annotations

+ combines components of a plot
ggsave saves a plot to a file

Example of layered plot

1. Data and main aesthetics layer ggplot(df,aes(x=Weight, $y=$ Height))

Example of layered plot

2. Geometry layer
ggplot(df,aes(x=Weight, $y=H e i g h t)) ~+$ geom_point()

Example of layered plot

Université de Lille
2. Parameterized geometry layer
ggplot(df,aes(x=Weight,y=Height)) + geom_point(color="red")

Example of layered plot

Université de Lille
2. Variable geometry layer
ggplot(df,aes(x=Weight, $y=H e i g h t)) ~+$ geom_point(aes(color=Gender))

Example of layered plot

Université de Lille
3. Label/title layer

```
ggplot(df,aes(x=Weight,y=Height)) +
geom_point(aes(color=Gender)) +
labs(title="Height/Weight",x="Weight (kg)",y="Height (cm)")
```


Example of layered plot

4. Data filter/manipulation layer
ggplot(df,aes(x=Weight, $y=H e i g h t)) ~+$ geom_point(aes(color=Gender)) +
labs(title="Height/Weight", x="Weight (kg)", y="Height (cm)") + coord_cartesian $(x \lim =c(40,120)$, $y l i m=c(150,200))$

Honeycomb density plots

ggplot(df,aes(x=Weight, $y=H e i g h t)) ~+~ g e o m _h e x() ~$ $+$ lims $(y=c(125,200))+$ scale_fill_gradientn(colors=c("skyblue", "skyblue3"))

Histograms

ggplot(df,aes(x=Age)) + geom_histogram(binwidth=1)

Histograms

```
ggplot(df,aes(x=Age)) +
geom_histogram(aes(fill=Gender),binwidth=1)
```


Histograms

Université de Lille
3 sciences humaines
ggplot(df,aes(x=Age)) + geom_bar()

Histograms

ggplot(df[!is.na(df\$Gender),], aes(x=Age)) + geom_bar(aes(fill=Gender), position=position_dodge(width=0.75))

Whisker plots

$\operatorname{ggplot}(d f, \operatorname{aes}(x=$ ' , ,y=Height)) + geom_boxplot()

Whisker plots

ggplot (df, aes (x=Age)) + geom_boxplot(aes(y=Weight,group=Age))

Whisker plots

```
ggplot(df,aes(x=Age)) + labs(y='') +
geom_boxplot(aes(fill='green',y=Weight,group=Age)) +
geom_boxplot(aes(fill='magenta',y=Height,group=Age)) +
scale_fill_discrete(name='',labels=c('Weight (kg)','Height (cm)'))
```


Violin (density) plots

```
ggplot(df,aes(x=Gender)) +
geom_violin(aes(y=Height)) +
lims(y=c(140,200)) + coord_flip()
```


Line plots

ggplot(data.frame(x=seq(-pi,pi,0.01)),aes(x)) + geom_line(color='green', aes ($\mathrm{y}=\sin (\mathrm{x})$)) + geom_line(color='red', aes ($\mathrm{y}=\cos (\mathrm{x})$))

Interpolations plots

Université de Lille

```
ggplot(df[!is.na(df$Gender),],aes(x=Weight,y=Height)) +
geom_point(aes(color=Gender)) +
geom_smooth(aes(color=Gender)) + lims(y=c(150,210))
```


Scatter plots

ggplot(melt(aggregate (cbind(Dance, Folk, Country, . .) ~Gerider, df, mean aes(x=value, y=variable)) +
geom_point(size=5,aes(color=Gender)) +
labs(title="Comparison of music preferences", $x=$ ' , , $y=$ ' ')

Comparison of music preferences

Faceting plots

ggplot(df[!is.na(df\$Gender)\&!is.na(df\$Smoking), aes ($\mathrm{x}=$ Weight, $\mathrm{y}=\mathrm{Height})$) +
geom_point() + lims (x=c $(40,120), y=c(150,215))+$ facet_grid(Gender~Smoking)

Saving plots to a file

- ggsave("filename.ext") saves the last plot to the given file name in the format indicated with the file extension
- supported file formats are "eps", " ps", "tex" (pictex), "pdf', "jpeg", "tiff", "png", "bmp", and "svg".
- the width, height, and resolution can be additionally specified with parameters

Example

$\mathrm{p} \leftarrow \operatorname{ggplot}(\mathrm{df}, \operatorname{aes}(\mathrm{x}=$ Weight, $\mathrm{y}=$ Height $))+$ geom_point(aes(color=Gender))
ggsave('plot.png', plot=p,width=10,height=7)

