# R: Data structures 

Sławek Staworko

Univ. Lille 3
2018, January

## Atomic values

Literals

- TRUE, FALSE, T, F : logical
- 1L, -20L : integer
- 10, 10.1, -3.14 : numerical
- 2+2i : complex
- "abc", "", "John Smith" : character

Big literals

- $1.51 .5 \mathrm{e} 2 \equiv 1.5 * 10^{2}$ : numerical
- $-2 e 3 L \equiv-2000 \mathrm{~L}$ : integer


## Type hierarchy and coercion



## Type coercion (contd.)

The class of an object

- class(TRUE) $\mapsto$ "logical"
- class(1L) $\mapsto$ "integer"
- class(1) $\mapsto$ "numeric"
- class(1.0) $\mapsto$ "numeric"
- class(1+1i) $\mapsto$ "complex"

Not exactly the same as the type

- typeof(1.0) $\mapsto$ "double"
- typeof(1L) $\mapsto$ "integer"
- typeof(TRUE) $\mapsto$ "logical"


## Type coercion (contd.)

## Explicit coercion

- as.integer (TRUE) $\mapsto 1 \mathrm{~L}$
- as.character(TRUE) $\mapsto$ "TRUE"

Implicit coercion

- $1+2 \mapsto 3$ : numerical
- 1L + 2L $\mapsto$ 3L : integer
- 1L + $2 \mapsto 3$ : numerical
- TRUE + 2L $\mapsto$ 3L : integer
- 3 * FALSE $\mapsto 0$ : numerical
- paste("Jean","Dubois") $\mapsto$ "Jean Dubois" : character
- paste("abc", 2, F) $\rightarrow$ "abc 2 FALSE" : character


## Vectors

vector is a sequence (ordered sequence) of elements of the same atomic type.

Is it horizontal or vertical?
Most operations interprets vectors in a flexible way: when $R$ displays $1.5-0.54 .1$ the vector can be viewed as

$$
\left[\begin{array}{c}
1.5 \\
-0.5 \\
4.1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1.5 & -0.5 & 4.1
\end{array}\right]
$$

Building block of all expressions in R!
A singular value is a vector consisting of one element:
1.25 interpreted by R is essentially
[ 1.25 ]

## Combining contents of several vectors

The function c
Collates the contents of any number of given vectors

$$
\begin{gathered}
c(1.5,-0.5,4.1) \mapsto\left[\begin{array}{c}
1.5 \\
-0.5 \\
4.1
\end{array}\right] \text { : numerical } \\
c(-2 \mathrm{~L}, 3 \mathrm{~L}, 7 \mathrm{~L}) \mapsto\left[\begin{array}{c}
-2 \mathrm{~L} \\
3 \mathrm{~L} \\
7 \mathrm{~L}
\end{array}\right] \text { : integer }
\end{gathered}
$$

## Combining contents of several vectors (contd.)

Implicit type coercion

$$
\begin{aligned}
& \mathrm{x} \leftarrow \mathrm{c}(1.5,-0.5,4.1) \\
& \mathrm{y} \leftarrow \mathrm{c}(-2 \mathrm{~L}, 3 \mathrm{~L}, 7 \mathrm{~L}) \\
& \mathrm{c}(\mathrm{x}, \mathrm{y}) \mapsto\left[\begin{array}{c}
1.5 \\
-0.5 \\
4.1 \\
-2.0 \\
3.0 \\
7.0
\end{array}\right]: \text { numerical }
\end{aligned}
$$

## Is c associative?

Associative operations $\oplus$
The order of evaluation does not matter i.e,

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

and therefore we can forgo the parentheses and simply write

$$
a \oplus b \oplus c
$$

The function $c$ does seem to be associative Both $c(c(1,2), 3)$ and $c(1, c(2,3))$ yield

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]: \text { numerical }
$$

## Is c associative? (contd.)

However, implicit type coercion complicates things

$$
\begin{aligned}
& c(c(\text { TRUE }, 2), " 3 ") \mapsto\left[\begin{array}{c}
" 1 " \\
" 2 " \\
" 3 "
\end{array}\right]: \text { character } \\
& c\left(\text { TRUE }, c\left(2, " 3^{\prime \prime}\right)\right) \mapsto\left[\begin{array}{c}
" \text { TRUE" } \\
" 2 " \\
" 3 "
\end{array}\right]: \text { character }
\end{aligned}
$$

## Creating vectors

Using atomic type constructor

- integer (5) $\mapsto 00000$
- character (3) ↔ "" "" ""

Using the repetition function rep

- rep $(1,4) \mapsto 1111$
- $\operatorname{rep}(c(2,6), 3) \mapsto 262626$

Regular sequences generation

- $1: 5 \mapsto 12345$ : integer
- $\operatorname{seq}(1,10,2) \mapsto 13579$ : numerical

Getting the size of a vector

- length(c("a",TRUE,2)) $\mapsto 3$


## Missing values

NA is a special (logical) constant indicating a missing values
Most functions are sensitive to missing data

- $\operatorname{sum}(c(1,2, N A)) \mapsto N A: n u m e r i c a l$
- TRUE \&\& NA $\mapsto$ NA
- TRUE \|\| NA $\mapsto$ TRUE

It can be basically coerced into any atomic type


## Point-wise operations

Arithmetic operations are performed point-wise

- $c(3,5,7)+c(1,3,5) \mapsto 4812$

Standard coercion rules apply

- c(3,5,7) * c(1L,3L,5L) $(31535$ : numerical

Point-wise Boolean operators
The short operators I (or), \& (and), and ! (negation)

- $c$ (TRUE,FALSE) $\mid c(F A L S E, F A L S E) \mapsto$ TRUE FALSE

Long Boolean operators
The operators || and \&\& evaluate on the first element only

- $c$ (TRUE,FALSE) \| $\|$ (FALSE,FALSE) $\mapsto$ TRUE
- $c$ (TRUE,FALSE) \&\& $c(F A L S E, F A L S E) \mapsto$ FALSE


## Recycling

What happens if the operands are of different length?

- The shorter is REpeated in CYCLE
- $c(3,6,9,12)+c(2,4) \equiv$
$c(3,6,9,12)+c(2,4,2,4) \mapsto 5101116$

Length should be compatible

- A warning is raised if the length of one vector is not a multiple of the length of the other.
- $c(3,6,9,12,15)+c(2,4) \equiv$ $c(3,6,9,12,15)+c(2,4,2,4,2) \mapsto 510111617$


## Addressing and slicing vector

Using indices and ranges
$-\mathrm{v} \leftarrow \mathrm{c}(1,3,5,7,9)$

- $\mathrm{v}[2] \mapsto 3$
- v[c(1,3,4)] $\rightarrow 157$
- v[2:4] $\mapsto 37$
- $\mathrm{v}[1] \leftarrow 0$ changes v to 03579
- $\mathrm{v}[2: 5] \leftarrow c(2,4)$ further changes v to 02424 (recycling)

Elementary access functions

- $\mathrm{v}[2]$ is equivalent to ' $[$ ' $(\mathrm{v}, 2)$
- $\mathrm{v}[1] \leftarrow 0$ is equivalent to ' $[\leftarrow '(\mathrm{v}, 1,0)$


## Matrices

Matrix is internally represented as a vector

$$
\mathrm{m} \leftarrow\left[\begin{array}{cccc}
0 & 6 & 12 & 18 \\
2 & 8 & 14 & 20 \\
4 & 10 & 16 & 22
\end{array}\right]
$$

is represented as

$$
\begin{array}{llllllllllll}
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22
\end{array}
$$

Matrix can be addressed as a vector or array

- $\mathrm{m}[4] \mapsto 6$
- $m[2,3] \mapsto 14$
- $\mathrm{m}[1: 3] \equiv \mathrm{m}[, 1] \mapsto 024$
- $\mathrm{m}[\mathrm{seq}(1,12,3)] \equiv \mathrm{m}[1,] \mapsto 061218$
$-m[1: 2,2: 4] \mapsto\left[\begin{array}{lll}6 & 12 & 18 \\ 8 & 14 & 20\end{array}\right]$


## Matrix creation

From a vector

- matrix $(1: 6$, nrow $=2$, ncol $=3) \mapsto\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$
- matrix $(1: 6$, nrow $=2$, ncol $=3$, byrow $=T R U E) \mapsto\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

By column/row addition

- $\operatorname{rbind}(1: 3,4: 6) \mapsto\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
- $\operatorname{cbind}(1: 2,3: 4,5: 6) \mapsto\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$


## Matrix operations

Point-wise operations

- both arrays must have the same dimensions
- $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] *\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right] \mapsto\left[\begin{array}{ccc}1 & 6 & 15 \\ 8 & 20 & 36\end{array}\right]$

Vectors can be recycled
$-\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] * c(0,1) \mapsto\left[\begin{array}{lll}0 & 0 & 0 \\ 4 & 5 & 6\end{array}\right]$

- vector is interpreted column-wise.

Matrix multiplication

$$
\bullet\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \% * \%\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \mapsto\left[\begin{array}{ll}
22 & 49 \\
28 & 64
\end{array}\right]
$$

## Decorating vectors and matrices

Giving names to columns and rows

- demand $\leftarrow c(2,5)$
- names(demand) $\leftarrow c($ ("Apples", "Oranges")
- price $\leftarrow$ matrix $(c(1,1.25,2.75,3), 2,2)$
- colnames(price) $\leftarrow c(" A p p l e s ", ~ " O r a n g e s ") ~$
- rownames $(m) \leftarrow c($ Carrefour", "Monoprix")

Names are preserved by most of operations

$$
\begin{array}{cr}
\text { price } \% * \% & \text { demand } \\
I & \\
& {[, 1]} \\
\text { Carrefour } & 15.75 \\
\text { Monoprix } & 17.50
\end{array}
$$

## Multi-dimensional arrays

Arrays are generalizations of matrices

- may have more than two dimensions
- but are still represented with a vector, and consequently,
- all of its elements are of the same atomic type

Example

$$
a=\operatorname{array}(1: 24, \operatorname{dim}=c(4,3,2)): \text { integer }^{4 \times 3 \times 2}
$$

$$
\left[\begin{array}{lll}
a_{1,1,1}=1 & a_{1,2,1}=5 & a_{1,3,1}=9 \\
a_{2,1,1}=2 & a_{2,2,1}=6 & a_{2,3,1}=10 \\
a_{3,1,1}=3 & a_{3,2,1}=7 & a_{3,3,1}=11 \\
a_{4,1,1}=4 & a_{4,2,1}=8 & a_{4,3,1}=12
\end{array}\right]\left[\begin{array}{lll}
a_{1,1,2}=13 & a_{1,2,2}=17 & a_{1,3,2}=21 \\
a_{2,1,2}=14 & a_{2,2,2}=18 & a_{2,3,2}=22 \\
a_{3,1,2}=15 & a_{3,2,2}=19 & a_{3,3,2}=23 \\
a_{4,1,2}=16 & a_{4,2,2}=20 & a_{4,3,2}=24
\end{array}\right]
$$

## Lists

Data type for collections of values of different types

- $1 \leftarrow$ list(name="John Smith", salary=30000)

Convenient addressing

- ordered and labeled (labels can be repeated) l[[1]] $\mapsto$ "John Smith"
$1 \$$ salary $\mapsto 30000$
- allows sublisting
l[1] $\mapsto$ list (name="John Smith")

Concatenation with the function c

- c(list(name="John", age=35),list(city="NYC"))
list(name="John", age=35, city="NYC")


## Factors

## Categorical variables

Variable that takes a limited number of possible values (called levels). The set of possible values may be (linearly) ordered. E.g.,

- gender (unordered): M (male), F (female), F2M (female-to-male), M2F (male-to-female), I (intersex), A (agender)
- education (ordered): P (primary school), HS (high school), B (bachelor), M (master), D (doctorate)


## factor is a enumerated data type

a specialization of a vector, typically of atomic character type.
Example

```
list(gender=factor(c('M','F','M','F2M')),
    edu=factor(c('M','M','D','B'), ordered=TRUE,
        levels=c('P','HS','B','M','D')),
    income=c(65000, 25000, 30000, 55000))
```


## Data frames

data.frame specialized list for representing tabular database

- its components (columns) are vectors of the same length
- character vectors are by default coerced to factors

```
Example
data.frame (income \(=c(30000,20000)\), list(edu=c('HS','M'), gender=c('F', 'M')),
matrix(c(1.0,1.2,0.75,0.76,0.99,0.81),2,3))
```

I

| income | edu | gender | X1 | X2 | X3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 30000 | HS | F | 1.0 | 0.75 | 0.99 |
| 20000 | M | M | 1.2 | 0.76 | 0.81 |

