R: Higher-order functions and their types

Sławek Staworko

Univ. Lille 3

2018

Outline

What is functional programming?

Functions in R

Use case: Map/Reduce

Type systems

How to type functions?

Functional programming paradigm

Functional programming

A style of writing programs that views computation as an evaluation of an expression with functions (mathematical)

- side-effect free - function returns the same result for the same arguments (no change in the state of the environment)
- immutable data structure - once created cannot be modified (but a modified "copy" can be created)
- function are first-class citizens - functions can be arguments of other functions and can be returned as results

Typically, FP has extensive support for list processing

```
quicksort [] = []
quicksort (x:xs) = quicksort small ++ [x] ++ quicksort large
    where small = [y | y <- xs, y <= x]
    large = [y | y <- xs, y > x]
```

Université
R is not purely functional
R combines elements of declarative and imperative programming

- functions are first-class citizens
- data is immutable but functions may have side-effects

Declarative programming

The output of a program is specified using expressions that specify what the output should be

+ Less programming errors
+ No concurrency issues (multi-processor environments)
Imperative programming
The output of program is specified using instructions that specify how the output should be calculated
+ Efficient code is easier to write

Variables in R

Variables

A variable is a name with an associated value (an object).
Example
We define a variable by assigning a value to it

- $\mathrm{x} \leftarrow 2$
$-\mathrm{y} \leftarrow \mathrm{x}+3$
And we can then use it in other expressions
- $\mathrm{x} * \mathrm{y} \mapsto 2+5 \mapsto 10$

We have to use only variables that have already been defined

- x + z \mapsto error

What is a function?

Function

is an object that takes an object and returns another object.
Example

- sqrt(2.0) \mapsto 1.414214...
- substr("John Smith",6,10) \mapsto "Smith"
- $\operatorname{sort}(\langle 1,3,1,2\rangle) \mapsto\langle 1,1,2,3\rangle$
- unique $(\langle 1,3,1,2\rangle) \mapsto\langle 1,3,2\rangle$
- paste("John","Smith") \mapsto "John Smith"
- nchar("Smith") $\mapsto 5$
- nchar(substr(paste("John","Smith"),6,10)) $\mapsto 5$

Functions in R

Defining a function on the spot
function (vars) expr
Example

- square \leftarrow function (x) $x^{\wedge} 2$
- volume \leftarrow function ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) $\mathrm{a} * \mathrm{~b} * \mathrm{c}$

Function application (calling a function)
Substitute the arguments by supplied values

- square (3) \mapsto 3^2 $\mapsto 9$
- volume $(2,3,5) \mapsto 2 * 3 * 5 \mapsto 30$
- (function (x) x+2) (4) $\mapsto 4+2 \mapsto 6$

Number of arguments must agree with the definition

- volume $(2,3) \mapsto$ error

Functions as first-class citizens

Higher-order function

A higher-order function (a.k.a functor) is a function that takes another function as an argument or returns a function.

Example

A function that takes another function as an argument

- apply \leftarrow function ($\mathrm{f},\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$) $\langle\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}), \mathrm{f}(\mathrm{z})\rangle$
- apply (square, $\langle 1,3,2\rangle$) $\mapsto\langle 1,9,4\rangle$
- apply (function (x) $x+1,\langle 1,3,2\rangle$) $\mapsto\langle 2,4,3\rangle$
- apply(nchar, \langle "Hello","Ah","Boom"〉) $\mapsto\langle 5,2,4\rangle$

Functions as first-class citizens

Example

A function that returns a function

- add \leftarrow function (x) $\{$ function (y$) ~\{\mathrm{x}+\mathrm{y}\}\}$

This function can be used to generate other functions

- succ $\leftarrow \operatorname{add}(1)$ ($=$ function (y) $1+y$)
- pred $\leftarrow \operatorname{add}(-1)$ ($=$ function (y) $-1+\mathrm{y}$)

Which can be used independently
$-\operatorname{succ}(2) \mapsto 1+2 \mapsto 3$

- $\operatorname{prec}(3) \mapsto-1+3 \mapsto 2$

We can also call add as follows

- $\operatorname{add}(2)(3) \mapsto$ (function $(y) 2+y)(3) \mapsto 2+3 \mapsto 5$

But not like this

- $\operatorname{add}(2,3) \mapsto$ error

Deferred computation

Curried functions

Sometimes it is more useful to work with functions that take their arguments one by one rather than functions that take all arguments at once.

Example

- apply \leftarrow function (f) function ($\langle x, y, z\rangle$) $\langle f(x), f(y), f(z)\rangle$
- inc_triple \leftarrow apply(function (x) $x+1$)
- inc_triple($\langle 3,1,2\rangle) \mapsto\langle 4,2,3\rangle$
- square_triple \leftarrow apply(square)
- square_triple $(\langle 3,1,2\rangle) \mapsto\langle 9,1,4\rangle$

Currying

There is a function that transforms a function taking a pair to its curried version

```
curry }\leftarrow\mathrm{ function (f) {
    function (x) {
        function (y) {
        f(x,y)
        }
    }
}
```

Example

- plus \leftarrow function (x, y) $\mathrm{x}+\mathrm{y}$
- add \leftarrow curry (plus)

$$
\text { (add }=\text { function (} x \text {) function (} y \text {) } x+y \text {) }
$$

Uncurrying

The conversion in the other direction is also possible

```
uncurry }\leftarrow\mathrm{ function (f) {
    function (x,y) {
        f(x)(y)
    }
}
```


Example

- add \leftarrow function (x) function (y) $x+y$
- plus \leftarrow uncurry(plus)

$$
\text { (plus }=\text { function }(x, y) x+y)
$$

Use case: Map/Reduce

Université

Type system associates with every object a property called type.
Example
2.5 is a number, "abc" is a string (of characters), \exp is a function that takes a number and returns a number.

Type errors

Errors caused by the discrepancy between the types of data as opposed to the types expected by a function (logic errors).

Example

$\exp (2.5)$ is error-free while $\exp (" a b c ")$ has a type error because it uses a string where a number is expected.

Function type
Elementary knowledge of what the function does

R is dynamically but not statically typed

Static typing

- every object (including functions) has a type
- types might be inferred or may need to be declared
- type enforcement at compile time guarantees an error-free execution (strong type safety)
- type conversions often need to be explicit

Dynamic typing

- types of functions is not check at compile time so there is no need to declare them
- run time errors are raised if a function is called with the wrong type of an argument
- correctness of code is verified using test cases (unit testing)
- type conversions may implicit

Functions and types

Function type

1. what kind of objects a function takes
2. what kind of object it produces

Example

- sqrt(2.0) $\mapsto 1.414214 .$.
- substr("abcdef",2,4) \mapsto "bcd"
- unique $(\langle 1,3,1,2\rangle) \mapsto\langle 1,3,2\rangle$
- substr takes a string and two integers and returns a string
- sqrt takes a real number and returns a real number
- unique takes a list of numbers and return a list of numbers

ML-like type system for R

Atomic types

log logical - two Boolean values FALSE and TRUE
num numeric - floating-point numeric values, $0.1, \sqrt{2}, \pi$; (the default computational data type, in double precision)
int integer - positive and negative integers $0,1,2, \ldots,-1,-2, \ldots$
In R we need to use L prefix to force it e.g., -30L.
chr character - characters and strings
raw raw - binary objects of arbitrary size

ML-like type system for R

Structural types

Université
tuples a sequence of elements of various types

- chr \times int \times int - triples of one string and two integers
- complex $=$ num \times num - complex numbers, where $\pi+\sqrt{2} i$ is represented as $\langle\pi, \sqrt{2}\rangle$.
vectors collections of the same type of a arbitrary length
- int* - vectors of integers
- chr* - vectors of strings

Tuples as fixed-size vectors
int $^{3}=$ int \times int \times int is the type of

- triples of integers
- integer vectors of length 3

In general,

$$
\text { int }^{*}=\text { int }^{0} \cup \text { int }^{1} \cup \text { int }^{2} \cup \text { int }^{3} \cup \ldots
$$

ML-like type system for R

Function f has type $T \rightarrow S$ if
is takes an object of type T and returns an object of type S
Example

- sqrt(2.0) $\mapsto 1.414214 .$.
- substr("abcdef",2,4) \mapsto "bcd"
- unique $(\langle 1,3,1,2\rangle) \mapsto\langle 1,3,2\rangle$
- sqrt : num \rightarrow num
- substr : chr \times int \times int $\rightarrow \mathrm{chr}$
- unique : num* \rightarrow num*
\rightarrow is right-associative (grouped from the right)
$X \rightarrow Y \rightarrow Z$ is $X \rightarrow(Y \rightarrow Z)$ and $\operatorname{not}(X \rightarrow Y) \rightarrow Z$

ML-like type system for R

Example

Some functions

- $\operatorname{sum}(\langle 3,2,5,7,2,5,8\rangle) \mapsto 32$
- 2.1 + $3.2 \mapsto 5.3$
- floor (2.8) $\mapsto 2$
- paste("John","Smith") \mapsto "John Smith"
- nchar("John") $\mapsto 4$
and their types
- sum : num ${ }^{*} \rightarrow$ num
- '+' : num \times num \rightarrow num
- floor : num \rightarrow int
- paste : chr $\times \mathrm{chr} \rightarrow \mathrm{chr}$
- nchar : chr \rightarrow num

ML-like type system for R

Identity function

- id \leftarrow function (x) x

It takes an object and returns an object of precisely the same type
Polymorphic types $\alpha, \beta, \gamma, \ldots$
If nothing is known about a type, we can use universal types to constraint the types

$$
\text { id }: \alpha \rightarrow \alpha
$$

While we do not know anything about the type α, we know that id returns an object or precisely the same type it takes as an argument:

- id(1.0) $\mapsto 1.0$
- id("abc") \mapsto "abc"

ML-like type system for R

A function that reverses a vector

- $\operatorname{rev}(\langle 1,2,3\rangle) \mapsto\langle 3,2,1\rangle$
- $\operatorname{rev}(\langle " a ", " b ", " c ", " d "\rangle) \mapsto\langle " d ", " c ", " b ", " a "\rangle$

A function that returns the first element of a vector

- head ($\langle 1,2,3\rangle$) $\mapsto 1$
- head($\langle " a ", " b ", " c ", " d "\rangle) ~ \mapsto ~ " a "$

A function that measures the length of a vector

- length $(\langle 1,2,3\rangle) \mapsto 3$
- length(〈"a","b","c","d"〉) 4

Their types are:

- rev: $\alpha^{*} \rightarrow \alpha^{*}$
- head: $\alpha^{*} \rightarrow \alpha$
- length : $\alpha^{*} \rightarrow$ int

Typing functions from definition

Given the following type assertions

- sum : num* \rightarrow num
- head : $\alpha^{*} \rightarrow \alpha$
- paste : chr $\times \mathrm{chr} \rightarrow \mathrm{chr}$
- '+' : num \times num \rightarrow num
find the type of the functions defined as follows
- shout \leftarrow function (x) paste ($x, "!")$
- $f \leftarrow$ function (x, y) $x+\operatorname{sum}(y)$
- $\mathrm{g} \leftarrow$ function (x, y) paste(head(x), y)

The function types are

- shout : chr $\rightarrow \mathrm{chr}$
- f : num \times num* \rightarrow num
$-\mathrm{g}: \mathrm{chr}^{*} \times \mathrm{chr} \rightarrow \mathrm{chr}$

Typing higher-order functions

Given the following type assertions

- sum : num* \rightarrow num
- length : $\alpha^{*} \rightarrow$ int
- '/' : num \times num \rightarrow num
- nchar : chr \rightarrow int
infer the type of the functions
- $F \leftarrow$ function (f, x) sum (x)/f(x)
- $\mathrm{G} \leftarrow$ function $(\mathrm{g}, \mathrm{x}) \operatorname{sum}(\mathrm{g}(\operatorname{len}(\mathrm{x}))$
- $\mathrm{H} \leftarrow$ function (h, x) h(nchar(x))/2

The function types are

- F : $\left(\right.$ num $^{*} \rightarrow$ num $) \times$ num ${ }^{*} \rightarrow$ num
- G : $\left(\right.$ num \rightarrow num $\left.^{*}\right) \times$ num $^{*} \rightarrow$ num
- H : (int \rightarrow num $) \times \mathrm{chr} \rightarrow$ num

Typing higher-order functions (contd.)

Example

```
power }\leftarrow\mathrm{ function (y) function (x) x^y
square }\leftarrow\mathrm{ power(2)
cube }\leftarrow\mathrm{ power(3)
square(2) \mapsto4
cube(2) \mapsto 8
```

What is the type of power?
square : num \rightarrow num
cube : num \rightarrow num
power : num \rightarrow num \rightarrow num

Typing higher-order functions (contd.)

Typing curried apply function

- apply \leftarrow function (f) function $(\langle x, y, z\rangle)\langle f(x), f(y), f(z)\rangle$
- square_triple \leftarrow apply (square)
- square_triple $(\langle 3,1,2\rangle) \mapsto\langle 9,1,4\rangle$
- nchar_triple \leftarrow apply(nchar)
- nchar_triple(("Hello", "Ah", "Boom" $) \mapsto\langle 5,2,4\rangle$

The types are

- square : num \rightarrow num
- nchar : chr \rightarrow int
- square_triple : num ${ }^{3} \rightarrow$ num 3
- nchar_triple : chr ${ }^{3} \rightarrow$ int 3
- apply : $(\alpha \rightarrow \beta) \rightarrow \alpha^{3} \rightarrow \beta^{3}$

Typing higher－order functions（contd．）

Recall the apply function

- apply \leftarrow function（f，$\langle x, y, z\rangle$ ）$\langle f(x), f(y), f(z)\rangle$
－apply（id，$\langle 3,2,5\rangle) \mapsto\langle 3,2,5\rangle$
－apply（square，$\langle 3,2,5\rangle$ ）$\mapsto\langle 4,9\rangle$
－shout \leftarrow function（s）paste（s，＂！＂）
－apply（shout，〈＂a＂，＂b＂，＂c＂〉）$\mapsto\langle " \mathrm{a}$ ！＂，＂b ！＂，＂c ！＂〉
－apply（nchar，\langle＂Hello＂，＂Ah＂，＂Boom＂\rangle ）$\mapsto\langle 5,2,4\rangle$
Its type is
－apply ：$(\alpha \rightarrow \beta) \times \alpha^{3} \rightarrow \beta^{3}$

What is the type of the curry function

```
curry }\leftarrow\mathrm{ function (f) {
    function (x) {
        function (y) {
        f(x,y)
        }
    }
}
```

curry : $(\alpha \times \beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \beta \rightarrow \gamma$

Typing higher-order functions (contd.)

And the uncurry function

```
uncurry }\leftarrow\mathrm{ function (f) {
    function (x,y) {
    f(x)(y)
    }
}
```

uncurry : $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \alpha \times \beta \rightarrow \gamma$

Types in Map/Reduce

General schema

$$
\begin{gathered}
\text { reduce }\left(\operatorname{map}\left(\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\rangle, \mathrm{f}\right), \text { add }, 0\right) \\
I \\
\text { reduce }\left(\left\langle\mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{n}\right)\right\rangle, \operatorname{add}, 0\right) \\
I
\end{gathered}
$$

Types are

- map : $\alpha^{*} \times(\alpha \rightarrow \beta) \rightarrow \beta^{*}$
- reduce : $\beta^{*} \times(\gamma \times \beta \rightarrow \gamma) \times \gamma \rightarrow \gamma$

