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Abstract

This paper describes and motivates six principles for computational cognitive neuroscience models: biolog-
ical realism, distributed representations, inhibitory competition, bidirectional activation propagation, error-
driven task learning, and Hebbian model learning. Althoughthese principles are supported by a number of
cognitive, computational, and biological motivations, the prototypical neural network model (a feedforward
backpropagation network) incorporates only two of them, and no widely used model incorporates all of
them. This paper argues that these principles should be integrated into a coherent overall framework, and
discusses some potential synergies and conflicts in doing so.
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A number of important principles have been developed for computational neural network models of cor-
tical learning and cognitive processing. However, relatively little work has been done to try to integrate
these principles into a coherent overall framework. Integrating these principles allows one to demonstrate
the consistency of different models, capitalize on synergies between different principles, organize and con-
solidate existing findings, and generate novel insights into the nature of cognition. This paper describes and
motivates a provisional set of six principles (illustratedin Figure 1) that have proven individually useful in
a number of existing models. Despite their proven utility, most models incorporate only a small number
of these principles (e.g., the prototypical feedforward backpropagation network uses only two). Thus, this
paper attempts to highlight the potential advantages and pitfalls of using a more inclusive set of principles.

Although a specific algorithm calledLeabra has been developed to incorporate these principles (see
Box 1), the focus of this paper is on the history and importance of the principles themselves, and the
ways in which these principles interact with each other. As an important caveat, this discussion focuses
on biologically-based principles that are particularly relevant for cognition, and does not include a number
of functional and cognitive-level principles that could also be enumerated.

The proposed set of principles can be considered an extension of the GRAIN framework of McClelland
[1]. GRAIN stands for graded, random, adaptive, interactive, (nonlinear) network. This framework was
primarily motivated by (and applied to) issues surroundingthe dynamics of activation flow through a neural
network. By way of extension, the present framework emphasizes learning mechanisms and the architectural
properties that support them. Two of the key principles in GRAIN, interactivity and competition, are among
the six principles emphasized here. The other GRAIN principles (graded, nonlinear activations, graded
activation propagation, and intrinsic variability) are assumed, but not emphasized in this framework because
of their nearly ubiquitous acceptance within neural network models (but see [2] for an interesting application
of these principles to controversies in cognitive development).

The Principles

The six principles can be grouped into three categories. Thefirst principle, biological realism, is in a
category by itself, providing a general overriding constraint on the framework. The next three principles,
distributed representations, inhibitory competition, and bidirectional activation propagation (interactivity),
are concerned with the architecture of the network and the general behavior of the neuron-like processing
units within it. The final two principles, error-driven tasklearning and Hebbian model learning, govern the
way that learning occurs in the network.

1. Biological Realism

Biological realism lies at the foundation of the entire enterprise of computational modeling in cognitive
neuroscience. This approach seeks to understand how thebrain (and specifically the cortex in the present
case) gives rise to cognition, not how some abstraction of uncertain validity does so. Thus, wherever pos-
sible, computational models should be constrained and informed by biological properties of the cortex.
Moreover, computational mechanisms that violate known biological properties should not be relied upon.
This point has implications for error-driven learning, as discussed below.

Although the issue of biological realism is easy to state, itcan be difficult to apply, because the known
biology often does not provide sufficient constraints. Thus, biological realism often reduces to plausibility
arguments, which depend on things like how simple and local the mechanism in question is, and that it is
not inconsistent with known biology. Also, one can adopt a converging evidence approach, where multiple
constraints from biology, computation, and cognition converge to support a given principle. This approach
is emphasized here.
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Figure 1: Illustration of the six core principles, and their instantiation in aneural network. Biological realism (1)
is an overarching constraint. Distributed representations (2) have multiple units active, while inhibitory competition
(3, implemented via inhibitory connectivity) ensures that relatively few such units are active. Bidirectional activation
propagation (4, implemented by bidirectional connectivity) enables both bottom-up and top-down constraints to simul-
taneously shape the internal representation. Error-driven learning (5)shapes representations according to differences
between expected outputs and actual ones (represented by the error term�j). Hebbian learning (6) shapes representa-
tions according to the co-occurrence (correlation) statistics of items in the environment (represented by the product of
the sending and receiving unit activations).

Architectural Principles

2. Distributed Representations

The cortex is widely believed to use distributed representations to encode information. A distributed
representation uses multiple active neuron-like processing units to encode information (as opposed to a
single unit, localist representation), and the same unit can participate in multiple representations. Each
unit in a distributed representation can be thought of as representing a singlefeature, with information
being encoded by particular combinations of such features.Electrophysiological recordings demonstrate
that distributed representations are widely used in the cortex (e.g., [3, 4, 5]). The functional benefits of
distributed representations include greater efficiency, robustness, and accuracy, and the ability to represent
similarity relationships [6]. The efficiency of distributed representations can be appreciated by analogy
with letters. Just as different combinations of a small number of letters can represent a large number of
words, so can different combinations of a small set of units represent a large amount of information. The
robustness of distributed representations comes from the redundancy of having each item represented by
many units. Distributed representations can more accurately represent graded values throughcoarse coding,
where a value is encoded by the relative magnitudes of a number of broadly tuned units. Finally, similarity
is represented by the shared units involved in the distributed representations of different items.
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3. Inhibitory Competition

Inhibitory competition is important because it selects representations for processing and for subsequent
refinement over learning. Inhibitory competition arises when mutual inhibition among a set of units (i.e.,
as mediated by inhibitory interneurons) prevents all but a subset of them from becoming active at a time.
Roughly 20% of the neurons in the cortex are inhibitory interneurons [7], and it is clear that they control
the explosion of activation that would otherwise result from all the positive interconnectivity among cortical
pyramidal neurons (e.g., as happens in epilepsy). Inhibitory competition allows only the most strongly ex-
cited representations to prevail, with thisselectionprocess identifying the most appropriate representations
for subsequent processing. Furthermore, most learning mechanisms (including those discussed later) are
affected by this selection process such that only the selected representations are refined over time through
learning, resulting in an effective differentiation and distribution of representations [8, 9, 10, 11].

Aside from the selection and refinement of representations,another benefit of inhibitory competition
comes from the idea that, given the general structure of the environment,sparsedistributed representations
(i.e., having relatively few units active at a time) are particularly useful [12, 13]. For example, in visual
processing, a given object can be defined along a set of feature dimensions (e.g., shape, size, color, texture),
with a large number of different values along each dimension(i.e., many different possible shapes, sizes,
colors, textures, etc). Assuming that the individual unitsin a distributed representation encode these feature
values, a representation of a given object will only activate a small subset of units (i.e., the representations
will be sparse). To further substantiate this argument, Olshausen & Field [14] showed that imposing a
bias for developing sparse distributed representations can result in the development of realistic early visual
representations (oriented edge detectors) of natural visual scenes. More generally, it seems as though the
world can be usefully represented in terms of a large number of categories with a large number of exemplars
per category (animals, furniture, trees, etc.). If we againassume that only a relatively few such exemplars
are processed at a given time, a bias favoring sparse representations is appropriate.

4. Bidirectional Activation Propagation (Interactivity)

Bidirectional activation propagation is a critical principle for information flow through the network. Bidi-
rectional activation propagation (also calledinteractivityor recurrence) is the communication of activation
simultaneously in both bottom-up and top-down directions.This contrasts withfeedforwardactivation prop-
agation where information only goes in one direction (bottom-up). To enable information to flow in both
directions simultaneously in a stable and effective manner, processing must proceed in gradual, iterative
steps. Thus, a temporally-extendedsettlingprocess with many iterative steps is required for the network
to achieve an appropriate representation of a given input pattern. This is a central feature of GRAIN [1].
Bidirectional connectivity is ubiquitous in the cortex (e.g., [15, 16, 17]). An important benefit of bidirec-
tional activation propagation is powerfulconstraint satisfactionprocessing [18, 19], where both lower-level
(e.g., perceptual) and higher-level (e.g., conceptual) constraints can be simultaneously brought to bear in
interpreting and processing inputs. The importance of interactivity for understanding cognitive processing
was demonstrated in the word superiority model of McClelland & Rumelhart [9]. They showed that interac-
tivity could explain the counterintuitive finding that higher-level word processing can influence lower-level
letter perception. More recently, Vecera & O’Reilly [20] showed that bidirectional constraint satisfaction
can model people’s ability to resolve ambiguous visual inputs in favor of familiar versus novel objects [21].
They also showed that adding inhibitory competition to an interactive network significantly speeded the
settling process, and greatly reduced the number of times the network settled into bad local minima.
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Learning Principles

Learning is essential for shaping the representations of neural networks according to the structure of the
environment. A key issue is what aspects of the environmental structure should be learned, with the un-
derstanding that not everything can or should be represented. The following two learning principles exploit
two complementary aspects of environmental structure: task demands, and the extent to which different
things co-occur. The first is referred to astask learningfor obvious reasons, and the second is referred to
asmodel learningbecause the objective is to develop an internal model of the environment irrespective of
specific tasks. These two learning objectives can be achieved by two different forms of implementational
mechanisms,error-drivenandHebbianlearning, respectively.

5. Error-driven Task Learning

Error-driven learning (also called supervised learning) is important for shaping representations according
to task demands by learning to minimize the difference (i.e., the error) between a desired outcome and what
the network actually produced. This principle captures theidea that you learn what enables you to succeed
at the necessary tasks of life, without bothering to represent aspects of the environment that are not relevant
to these tasks. The widely used backpropagation learning algorithm [22] directly minimizes error through
gradient descent, and has proven to be very powerful. Although task learning is clearly psychologically
relevant, and a majority of psychological models have used this form of learning, its biological plausibility
has been widely questioned because it requires the propagation of error signals in a manner inconsistent
with known neurobiological properties (e.g., [23, 24]). Furthermore, it has not been clear where the neces-
sary “teaching” signals could plausibly come from. However, it has recently been shown that biologically
plausible bidirectional activation propagation (see principle 4) can be used to perform essentially the same
error-driven learning as backpropagation [25], using any of a number of readily available teaching signals.
The resulting algorithm generalizes the recirculation algorithm of Hinton & McClelland [26], and is thus
calledGeneRec.

The basic idea behind GeneRec is that instead of propagatingan error signal, which is a difference
between two terms, one can propagate the two terms separately as activation signals, and then take their
difference locally at each unit. This works by having two phases of activations for computing the two terms.
In theexpectationphase, the bidirectionally-connected network settles based on an input activation pattern
into a state that reflects the expected consequences or correlates of that input pattern. Then, in theoutcome
phase, the network experiences actual consequence(s) or correlate(s). The difference between outcome and
expectation is the error signal, and the bidirectional connectivity propagates this error signal throughout
the network via local activation signals. Thus, interactivity enables units everywhere in the network to
receive (possibly indirectly via hidden layers) activation signals from the layer(s) where the expectation and
outcome are represented. The remarkable thing is that the activation signals in an interactive network are
naturally propagated (even through hidden layers) in just the right way to enable the correct error gradient
to be simply and locally computed at each unit [25].

The GeneRec analysis also showed that Boltzmann machine learning and its deterministic versions
[19, 27, 28, 29] can be seen as variants of this more biologically plausible version of the backpropaga-
tion algorithm. This means that all of the existing approaches to error-driven learning using activation-based
signals converge on essentially the same basic mechanism, making it more plausible that this is the way the
brain does error driven learning. Furthermore, the form of synaptic modification necessary to implement
this algorithm is consistent with (though not directly validated by) known properties of biological synap-
tic modification mechanisms. Finally, there are many sources in the natural environment for the necessary
outcome phase signals in the form of actual environmental outcomes that can be compared with internal ex-
pectations to provide error signals [30, 25]. Thus, one doesnot need to have an explicit “teacher” to perform
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error-driven learning. Taken together, these developments make it difficult to continue to object to the use
of error-driven learning on the grounds that it is not biologically plausible.

6. Hebbian Model Learning

Model learning (also called self-organizing or unsupervised learning) is important for forming internal
representations of the general (statistical) structure ofthe environment, without respect to particular tasks.
Many versions of this general idea exist, defined by what aspects of environmental structure are deemed
important to represent, but it is generally agreed that something like correlational structure is important.
Hebbian learning mechanisms represent this correlationalstructure, encoding the extent to which different
things co-occur in the environment [31]. Biologically, Hebbian learning requires that the synaptic strength
change as a function of the co-activation of the sending and receiving neurons. NMDA-mediated long-term
potentiation (LTP) has this Hebbian property (e.g., [32]).Thus, Hebbian learning is almost universally
regarded as being biologically plausible. At a functional level, the co-occurrence of items suggests that
there might be a causal relationship between them. Furthermore, co-occurring items can be more efficiently
represented together within a common representational structure. Mathematical analyses have shown that
Hebbian learning performs something like principal components analysis [33], which extracts the principal
dimensions of covariance within the environment. An interesting demonstration of the power of this kind
of Hebbian model learning was recently provided in the form of a model that performs principal compo-
nents analysis on the co-occurrence statistics of words within large texts, yielding surprisingly powerful
representations of word meaning [34].

Interactions Among the Principles

The preceding discussion provided specific and compelling motivations for each of the individual prin-
ciples. In this section, three examples of interactions (synergies and conflicts) among the six principles will
be discussed. The first example comes from the GRAIN framework, and deals with the consequences of
interactivity and noise. The second explores the interactions between distributed representations and com-
petition, which can be at odds with each other. The last explores the interactions between error-driven and
Hebbian learning.

Interactivity and Noise

The GRAIN framework has been used to explore the implications of some of the principles on the acti-
vation dynamics of a network [1]. For example, although interactivity (bidirectional activation propagation)
is important for accounting for a range of different behavioral phenomena, it can also be problematic for
others. Specifically, interactivity interfered with the ability of a network to exhibit independent contributions
from context and stimulus strength in a stimulus identification situation [35, 36]. McClelland showed that
the use of intrinsic variability (noise) can resolve this conflict, resulting in a model that captures a wider
range of phenomena, including standard interactive phenomena (e.g., top-down effects) and the independent
contributions of context and stimuli [1].

This example illustrates a theme that emerges repeatedly when attempting to integrate different princi-
ples (see Box 1 for another example): often, subsets of principles do not work as well as a more complete
set of principles. Thus, instead of abandoning a principle (e.g., interactivity) when it appears to introduce
a problem, one should consider how other principles might beadopted that would resolve the problem.
The advantage of the integrative approach is that the resulting model then accounts for a much wider range
of phenomena, and may provide important new insights into the nature of the originally problematic phe-
nomenon. For example, the GRAIN model can explain the conditions under which you wouldnotexpect to
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find an independent contribution of stimulus and context (see [1] for details and empirical validation).

Distributed Representations and Competition

Perhaps one of the most important challenges in integratingthe six principles comes in combining dis-
tributed representations and competition, which tend to work at cross purposes. Distributed representations
require multiple active units that cooperatively represent something, whereas competition causes fewer units
to be active, and it can inhibit cooperativity. A reasonablecompromise between these two principles is the
sparse distributed representation as discussed previously. Although seemingly straightforward, achieving a
sparse distributed representation is technically challenging, primarily because this case is difficult to analyze
mathematically within a probabilistic learning framework. The problem is one of combinatorial explosion
— one needs to take into account all the different possible combinations of active and inactive units to
analyze a sparse distributed representation based on true inhibitory competition. Thus, sparse distributed
representations fall in a complex intermediate zone between two easily analyzed frameworks [37]: (a) The
winner-take-all (WTA) framework [10, 11, 38], where only one unit is allowed to be active at a time. Having
a single active unit eliminates the combinatorial problems, but this also violates principle 2 by not allow-
ing for distributed representations. (b) The independent units framework, where the units are considered
to be (conditionally) independent of each other (e.g., a standard backpropagation network). This allows
the combined probability of an activation pattern to be represented as a simple product of the individual
unit probabilities (and for distributed representations), but it also violates principle 3 because there is no
competition.

There have been a number of attempts to remedy the limitations of these two analytical frameworks,
by introducing distributed representations within a basically WTA framework, or by introducing sparseness
constraints within the independent units framework. However, the basic limitations of these frameworks
are difficult to overcome. Basically, any use of WTA preventsthe cooperativity and combinatoriality of
true distributed representations, and the need to preserveindependence among the units in the independent
units framework prevents the introduction of any true activation-based competition. After discussing these
approaches and their limitations, the more difficult to analyze approach of directly implementing sparse
distributed representations using inhibitory competition will be discussed.

The following are extensions of the WTA framework. In the mixture-of-experts framework [39], a WTA
competition takes place within a specialized “gating” network, that regulates the participation of a set of
“expert” networks, which can themselves have distributed representations. A limitation of this approach is
the coarse-grained level of the competition — whole groups of units compete, but individual units do not.
Also, multiple experts cannot easily cooperate due to the WTA limitation. The model of Dayan & Zemel
[40] uses a WTA assumption where units in the hidden layer compete to determine the value of a given unit
in the output. However, this just transfers the WTA assumption from representing the input to representing
the output, and a WTA assumption anywhere is likely to be problematic. The Dayan & Zemel model
was intended as an improvement over thenoisy-ormodel of Saund [41], which did not result in sufficient
competition. Finally, the Kohonen network [8] uses a WTA to select a single winner, but then a neighborhood
of units around that winner are also activated. Although useful for achieving topographic representations,
this kind of fixed, imposed activation state does not enable the full combinatorial representational power that
is an essential feature of true distributed representations.

Within the independent units framework, the main approach has been to introduce a sparseness constraint
that does not actually involve direct activation-based competition. This usually involves adding an extra fac-
tor to the learning rule that favors sparse representations(e.g., [42, 14, 43, 44]), or adding a sparseness bias
into the activation function itself (e.g., [37]). Thus, units are only competing over the long time-course
of learning (or against their own negative bias), and not directly with one another to represent the current
input pattern (i.e., selection). Furthermore, the dynamicthresholding behavior one achieves with activation-
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based competition (which for example makes the system robust to changes in absolute levels of excitation)
is not present in these approaches. This limitation is particularly evident in bidirectionally connected net-
works, where the need to control positive feedback requiresthe dynamic thresholding of true competition
(O’Reilly, 1996, PhD Thesis, Carnegie Mellon University).Thus, integrating all of the principles places
further demands on the competition mechanism.

It seems clear that the cortex implements inhibitory competition (and sparse distributed representations)
via inhibitory interneurons. One way of understanding the effects of this inhibitory competition is in terms of
a k-winners-take-all (KWTA) mechanism, that generalizes the WTA approach tok winners [45]. A KWTA
mechanism can enforce true competition amongst the units, while allowing for a (sparse) distributed repre-
sentation across the subset ofk units. KWTA mechanisms have been analyzed for factors such as stability
and convergence ontok units, and can be implemented with biologically-plausiblelateral inhibition mecha-
nisms [45, 46]. However, they have not been analytically treated within a probabilistic learning framework,
due to the combinatorial explosion problems. Nevertheless, a simple form of KWTA that works well in
bidirectionally connected networks has been shown to be useful for modeling a wide range of cognitive
phenomena (see Box 1).

Learning Principles

Before discussing the interactions between error-driven task learning and Hebbian model learning, the
distinction between the computational objectives of learning (i.e., task and model learning) and the im-
plementational mechanisms (i.e., error-driven and Hebbian learning) needs to be clarified. Two points of
potential confusion exist: (a) error-driven learning can be used to achieve a model-learning objective, and
(b) some error-driven learning mechanisms resemble Hebbian mechanisms. The first point of confusion
arises because one can train a network to reproduce the information in the environment using error-driven
mechanisms, resulting in a task-independent model of the environment (i.e., via an auto-encoder [47, 48, 42]
or a generative model [49, 14]). One can also learn an internal model based on error signals derived from
the mismatch between different sensory representations ofthe same underlying event [50, 51, 52]1 These
examples raise the issue of why one should use Hebbian mechanisms to implement model learning, instead
of using error-driven learning for both task and model learning. The subsequent discussion of the advantages
of combining error-driven and Hebbian learning addresses this issue.

As for the second point of confusion, a version of the GeneRecalgorithm analyzed in [25] is equivalent
to the “contrastive Hebbian learning” (CHL) algorithm of Movellan [29], which uses the difference between
two Hebbian terms. Also, other algorithms have been proposed that achieve quasi-error-driven learning with
Hebbian-like mechanisms (e.g., [53]). However, despite these apparent similarities in the surface form of the
learning rule, error-driven learning achieves a very different computational objective from simple Hebbian
learning; only error-driven learning can achieve a fully general, powerful form of task learning (i.e., that is
capable of learning arbitrary input-output mappings).

Thus, it seems clear that we should begin with the assumptionthat error-driven learning is essential for
achieving task learning. From this error-driven perspective, it would then be of interest to know if further
constraining the learning with Hebbian model learning would yield any benefits. A general framework for
understanding why this might be the case was articulated by Geman, Bienenstock, & Doursat [54]. They ar-
gued that standard neural networks (e.g., generic backpropagation networks) are typically underconstrained
by the learning task, and thus suffer from too muchvariancein solutions. This can have negative conse-
quences for generalization to novel inputs, among other things. The solution is to addbiasesto networks that
further constrain the learning by favoring particular forms of solutions (representations). To be beneficial,

1This idea can also be viewed as an instance of the GeneRec expectation-outcome framework, where each modality creates an
“expectation” about how the other modality will represent the event. The difference between this expectation and how the modality
actually represents the event constitutes the error signal.
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these biases obviously need to be appropriate — there are no generically optimal set of biases — but there
may be a set of biases that are particularly appropriate for representing the real world. Indeed, encouraging
sparse distributed representations can be seen as just sucha bias that has been justified in terms of real world
properties as discussed previously. It is likely, given thegeneral importance of correlational information
in the world (e.g., for suggesting causal relationships), that including a Hebbian bias towards representing
co-occurrence statistics would be another such generally useful bias.

Although error-driven learning can be sensitive to correlational information, Hebbian learning is directly
constrained to learn a correlation-based model because Hebbian weight changes directly reflect unit corre-
lations. Thus, Hebbian model learning can provide a distinct and useful additional bias to further constrain
error-driven task learning. This additional Hebbian bias can be thought of as a somewhat “smarter” version
of the widely-used weight decay bias (e.g., [55]). Aside from the Leabra algorithm described in Box 1, there
is at least one other example in the literature where error-driven (backpropagation) and Hebbian learning
have been combined, with the expected beneficial results [56]. In addition to the synergy between these two
forms of learning, combining both task-based and model-based learning enables one to account for phe-
nomena associated specifically with these different types of learning. For example, it seems reasonable to
assume that some kinds of learning occur as a result of mere exposure to stimuli (i.e., as would be expected
by model learning, but not task learning). However, other kinds of learning (e.g., complex input-output
mappings) clearly require task learning.

Outstanding Questions� Are there cognitive phenomena or biological facts that appear to directly contradict the core princi-
ples?� Is it possible that different parts of the cortex emphasize some principles over others? How might this
influence functional specialization in the cortex?� How many other important principles are missing from this list?� Can complex sequential cognitive processing be shown to emerge from such basic principles as those
discussed here, or does this require a whole new set of principles?� How might error-driven and Hebbian learning co-exist and interact with reinforcement learning, which
is likely to be taking place in sub-cortical structures, andpossibly the cortex?
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Box 1: The Leabra Implementation

The six principles have been implemented in an algorithm called Leabra, which is briefly presented
here. Leabra stands for “learning in an error-driven and associative, biologically-realistic algorithm” (where
associative is another term for Hebbian learning). Leabra has been used in an upcoming textbook [57]
to implement a wide range of cognitive neuroscience models.The scope of phenomena it is capable of
modeling is commensurate with the breadth of the principlesas discussed in the paper, and demonstrates
their sufficiency and mutual compatibility.

Point Neuron Activation Function

Leabra uses apoint neuronactivation function that models the electrophysiologicalproperties of real
neurons, while simplifying their geometry to a single point. This is nearly as simple computationally as
the standard sigmoidal activation function, but the more biologically-based implementation makes it con-
siderably easier to model inhibitory competition, as described below. Further, it enables cognitive models
to be more easily related to more physiologically detailed simulations, thereby facilitating bridge-building
between biology and cognition.

The membrane potentialVm is updated as a function of ionic conductancesg with reversal (driving)
potentialsE as follows: dVm(t)dt = �Xc gc(t)gc(Ec � Vm(t)) (1)

with 3 channels (c) corresponding to:e excitatory input;l leak current; andi inhibitory input. The equilib-
rium potential can be written in a simplified form by setting the excitatory driving potential (Ee) to 1 and
the leak and inhibitory driving potentials (El andEi) of 0:V1m = gegegege + glgl + gigi (2)

This shows that the neuron is computing a balance between excitation and the opposing forces of leak and
inhibition. This form of the equation can be understood in terms of a Bayesian decision making framework
[57]. Activation communicated to other cells (y) is a thresholded (�), sigmoidal function of the membrane
potential with gain parameter: yj(t) = 1�1 + 1[Vm(t)��]+� (3)

This can be convolved with Gaussian noise, producing a less discontinuous function with a softer lower
threshold.

k-Winners-Take-All Inhibition

Leabra uses a KWTA function to achieve sparse distributed representations. This function is achieved
by setting a uniform level of inhibition for all units in the layer that prevents more thank units from getting
over threshold. This inhibitory current is given by:gi = g�k+1 + q(g�k � g�k+1) (4)

whereq is typically .25, and the threshold-level inhibition termsareg� = Pc6=i gcgc(Ec��)��Ei for the units
with thek th andk + 1 th highest excitatory inputs. Activation dynamics similar tothose produced by this
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function have been shown to result from simulated inhibitory interneurons that project both feedforward and
feedback inhibition [57].

Error-Driven Learning

Error-driven learning is implemented in Leabra using a symmetric version of the biologically plausible
GeneRec algorithm [25], that is functionally equivalent tothe deterministic Boltzmann machine and con-
trastive Hebbian learning (CHL) [27, 29]. The network settles in two phases, an expectation (minus) phase
and an outcome (plus) phase, and then computes a simple difference of a pre and postsynaptic activation
product across these two phases: �wij = x+i y+j � x�i y�j (5)

for sending unitxi and receiving unityj in the two phases.

Hebbian Learning

The simplest form of Hebbian learning adjusts the weights inproportion to the product of the sending
(xi) and receiving (yj) unit activations:�wij = xiyj. The weight vector is dominated by the principal
eigenvector of the pairwise correlation matrix of the input, but it also grows without bound. Leabra uses a
variant of the Oja normalization [33]:�wij = xiyj � yjwij = yj(xi � wij) (6)

which can also be seen as computing the expected value of the sending unit activity conditional on the
receiver’s activity (if treated like a binary variable active with probabilityyj): wij � hxijyjip. This is
essentially the same rule used in standard competitive learning or mixtures-of-Gaussians [10, 38].

Error-driven and Hebbian learning are linearly combined ateach synapse in the network, using a nor-
malized mixing constant. To keep the error-driven component within the same 0-1 range of the Hebbian
term, soft weight bounding with exponential approach to these extremes is used on this component. Finally,
a sigmoidal contrast enhancement function on the weights can be used to facilitate learning in environments
with underlying binary features (i.e., imposing a bias towards binary weights). See [57] for details.

Principal Results

In [57], Leabra is used to replicate a large number of published models that were originally implemented
using a variety of different algorithms from backpropagation to Hebbian self-organizing learning. Leabra
also illustrates many of the issues discussed in this paper regarding the interactions among the different prin-
ciples. For example, just adding interactivity to an otherwise generic error-driven network (e.g., a GeneRec
network) significantly impairs generalization performance. However, also adding Hebbian learning and in-
hibitory competition (in Leabra) restores good generalization performance within an interactive network
(O’Reilly, 1996, PhD Thesis, Carnegie Mellon University).The conclusion is similar to that of the GRAIN
exploration of interactivity and noise — interactivity itself may cause problems, but these can be remedied
with additional principles.

In addition to replicating existing models, Leabra also provides better models of several phenomena. One
salient example of this is in the case of the U-shaped past-tense overregularization phenomenon, which has
proven difficult to capture using purely error-driven backpropagation networks without also manipulating
the training environment in a potentially implausible fashion [58, 59, 60]. By adding Hebbian learning and
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inhibitory competition, Leabra introduces biases that produce a much more pronounced U-shaped effect
(including a longer period of early competence) [57]. This can be contrasted with the essentially monotonic
decrease in overregularizations that, in retrospect, is exactly what would be expected from a purely error-
driven algorithm (see [57] and Hoeffner, 1997, PhD Thesis, Carnegie Mellon University for a more detailed
critique of existing models).
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