
Databases 2020
Querying Relational Databases

S lawek Staworko

University of Lille

History of SQL

Relational Database Management Systems (RDBMSs)

I Relational Model proposed by Edgar F. Codd in 1969

I System R (IBM) and Ingres (UC Berkley), two first production RDBMS, 1974

I Nowadays, three major kinds of RDBMS’s have emerged:

client-server Multiple clients connect and interact with a database present on a single server
PostgreSQL, MySQL, SQLServer, DB2, . . .

embedded Database used in isolation by a single application
SQLite, android.database, . . .

distributed for high-performance, high throughput, big data
MySQL/PostgreSQL Cluster, MemSQL, F1

Structured Query Language (SQL)

I Foundation: Relational Algebra (RA) a query formalism proposed as a part of Relational Model.

I Declarative language: specify what you want, RDBMS figures out how to compute it

I Standardization bodies: ANSI 1986 (US) and ISO 1987 (Europe); standard revised every 4-5 years

I SQL is generally not portable between different RDBMS’s without minor modifications

I What parts of the standard are supported depends largely on particular goals of a given platform

SQLite vs PostgreSQL vs F1

SQLite PostgreSQL Google F1

Target small DBs (<1GB) large DBs (∼1TB) huge DBs (∼1PB)
• architecture single file server/client distributed
• applications embedded web big data

example app address book internet store Google AdWords
SQL Features Basic Rich Standard
• data types only INT, REAL, TEXT . . . , DATE, ARRAY, JSON, . . . standard
• constraints no CHECK or FOREIGN KEY full enforcement standard
• queries some features missing fully standard compliant standard
• indexes B+-trees B+-trees, Hash, Geo,. . . global and local
Concurrency Limited Sophisticated State of the Art
Locking global only table and row table, row, column
Isolation none serializable optimistic trans.
Parallelism None Simple Full
Replication – master-slave shards (cluster)
Partitioning – declarative automatic
Execution – limited distribution fully distributed
Open Source sqlite.org postgresql.org Nope /

Working Example: Schema

Parent

ID

First Name

Last Name

Mobile

Student

ID

First Name
Height

Gender

DoB

Hobbies

ID Parent

Enrollment

Student ID

Course Subject

Grade

Course

Subject

Classroom

Prof ID

Prof

ID

Name

Office

CREATE TABLE Parent (
ID INT PRIMARY KEY,
First Name TEXT,
Last Name TEXT,
Mobile TEXT

);

CREATE TABLE Prof (
ID INT PRIMARY KEY,
Name TEXT,
Office TEXT

);

CREATE TABLE Course (
Subject TEXT PRIMARY KEY,
Classroom TEXT,
Prof ID INT REFERENCES Prof(ID)

);

CREATE TABLE Enrollement (
Student ID INT

REFERENCES Student(ID),
Course Subject TEXT

REFERENCES Course(Subject),
Grade FLOAT,
PRIMARY KEY (Student ID, Course Subject)

);

CREATE TABLE Student (
ID INT PRIMARY KEY,
First Name TEXT,
Height INT,
Gender TEXT,
Hobbies TEXT,
DoB DATE,
Parent ID INT

REFERENCES Parent(ID)

);

Working Example: Database Instance

Parent
ID First Name Last Name Mobile

1 Bruno Dubois 06.14.21.56.34
2 Constance Dupont 06.41.21.32.14
3 Adèle Martin 06.84.81.96.12

Course
Subject Classroom Prof ID

SQL B2.461 11
HTML A2.061 46

IA A1.423 11

Prof
ID Name Office

11 S lawek D.42
46 Fabien C.21
57 Marc D.42

Student
ID First Name Height Gender Hobbies DoB Parent ID

1 Jean 178 M Reading, Skateboarding 1999-04-13 1
3 Paul 162 M Sleeping 2000-09-29 3
4 Marie 159 F Music, Reading, Partying 1998-10-03 1
5 Paul 161 M NULL 2001-01-07 2
6 Luc 161 M Reading 2000-10-11 NULL

8 Marion 164 F Music 1998-04-23 4

Enrollment
Student ID Course Subject Grade

1 SQL 12.0
1 HTML 12.0
1 IA NULL

3 SQL 15.0
4 SQL 16.0
4 HTML 17.0
4 IA 12.0
6 SQL 11.0
6 IA NULL

8 HTML 16.0
8 IA NULL

SQL Queries

SELECT queries

[SELECT output column list
[FROM input table expression list]
[WHERE row filtering conditions]
[GROUP BY grouping expression list
[HAVING group filtering conditions]]
[ORDER BY ordering specification]
[LIMIT upper bound on number of rows returned
[OFFSET number of first rows omitted]]

Compound queries

I JOIN operations (INNER, OUTER, FULL, LEFT, CROSS)

I UNION [ALL] union with duplicates removed (or kept)

I INTERSECT [ALL] intersection with duplicates removed (or kept)

I EXCEPT [ALL] set difference (or a bag one)

I AND, OR, NOT Boolean combinations in filter expressions

I AS, EXISTS, CREATE VIEW nested queries

SQL: Selection-Projection Queries

Q1 Display the full table Student

SELECT * FROM Student;

ID First Name Height Gender Hobbies DoB Parent ID

1 Jean 178 M Reading, Skateboarding 1999-04-13 1
3 Paul 162 M Sleeping 2000-09-29 3
4 Marie 159 F Music, Reading, Partying 1998-10-03 1
5 Paul 161 M NULL 2001-01-07 2
6 Luc 161 M Reading 2000-10-11 NULL

8 Marion 164 F Music 1998-04-23 4

Notes on SQL Syntax

I SQL syntax (keywords) is not case-sensitive i.e., SELECT = SeLeCt = select

I It is common practice to use all-caps for SQL keywords for better readability

I Table and column names are not case-sensitive either unless surrounded by double quotes " i.e.,
Student = student 6= "sTuDeNt"

SQL: Selection-Projection Queries

Q2 Display the first 4 rows in table Student

SELECT * FROM Student LIMIT 4;

ID First Name Height Gender Hobbies DoB Parent ID

1 Jean 178 M Reading, Skateboarding 1999-04-13 1
3 Paul 162 M Sleeping 2000-09-29 3
4 Marie 159 F Music, Reading, Partying 1998-10-03 1
5 Paul 161 M NULL 2001-01-07 2

SQL Standard (and the “organic” way in which it evolves)

I LIMIT is not a standard SQL keyword but it has been implemented by most systems since 1990’s

I The 2008 revision of SQL has introduced FETCH:

SELECT * FROM Student FETCH FIRST 4 ROWS;

I FETCH is supported by PostgreSQL since version 8.3 but it is not supported by SQLite

SQL: Selection-Projection Queries

Q3 Return id, first name, and the height of male students

SELECT ID, First Name, Height

FROM Student

WHERE Gender = ’M’;

ID First Name Height

1 Jean 178
3 Paul 162
5 Paul 161
6 Luc 161

SQL: Selection-Projection Queries

Q4 Find students whose name is Luc or Paul and are born in year 2000

SELECT *

FROM Student

WHERE (First Name = ’Luc’ OR First Name = ’Paul’)

AND DoB >= ’2000-01-01’ AND DoB <= ’2000-12-31’;

ID First Name Height Gender Hobbies DoB Parent ID

3 Paul 162 M Sleeping 2000-09-29 3
6 Luc 161 M Reading 2000-10-11 NULL

SELECT *

FROM Student

WHERE First Name IN (’Luc’,’Paul’)

AND DoB BETWEEN ’2000-01-01’ AND ’2000-12-31’;

SQL: Selection-Projection Queries

Q5 Find students whose hobbies include reading

SELECT ID, First Name, DoB

FROM Student

WHERE Hobbies LIKE ’%Reading%’;

ID First Name DoB

1 Jean 1999-04-13
4 Marie 1998-10-03
6 Luc 2000-10-11

Pattern matching in SQL

I % matches any sequence of characters (even empty sequence) [PostgreSQL, SQLite]

I matches a single character [PostgreSQL]

I in SQLite matching is case insensitive but case-sensitive in PostgreSQL (c.f., ILIKE)

SQL: Selection-Projection Queries

Q6 List the height in meters of every male student

SELECT ID, First Name, Height/100.0 AS "Height in Meters"

FROM Student

WHERE Gender = ’M’;

ID First Name Height in Meters

1 Jean 1.78
3 Paul 1.62
5 Paul 1.61
6 Luc 1.61

Spaces in table and column names

I Table and column names may use spaces but then they have to be delimited with double quotes "

I The name inside double quotes is interpreted in a case-sensitive fashion, which can lead to errors

I Spaces in table and column names are best to be avoided

SQL: Sorting

Q7 List all female students in the order of their height, from shortest to highest

SELECT *

FROM Student

WHERE Gender = ’F’

ORDER BY Height;

ID First Name Height Gender Hobbies DoB Parent ID

4 Marie 159 F Music, Reading, Partying 1998-10-03 1
8 Marion 164 F Music 1998-04-23 4

SQL: Sorting (cont’d.)

Q8
List all male students and order them by their height, from highest to shortest, and
among the students of the same height use the lexicographical order

SELECT *

FROM Student

WHERE Gender = ’M’

ORDER BY Height DESC, First Name;

ID First Name Height Gender Hobbies DoB Parent ID

1 Jean 178 M Reading, Skateboarding 1999-04-13 1
3 Paul 162 M Sleeping 2000-09-29 3
6 Luc 161 M Reading 2000-10-11 NULL

5 Paul 161 M NULL 2001-01-07 2

SQL: Duplicate Removal

Q9 List all first names of students without repetitions

SELECT DISTINCT First Name FROM Student;

First Name

Jean
Paul

Marie
Luc

Marion

SQL: Aggregates

Q10 Find the minimum, the average, the maximum, and the sum of heights of all students

SELECT MIN(Height), AVG(Height), MAX(Height), SUM(Height) FROM Student;

MIN(Height) AVG(Height) MAX(Height) SUM(Height)

159 164.166666666667 178 985

Q11 Find the number of all students born in the 90s

SELECT COUNT(*) FROM Student WHERE SUBSTR(DoB,1,3) = ’199’;

COUNT(*)

3

Q12 Find the number of all different (first) names used among students

SELECT COUNT(DISTINCT First Name) AS "Diff Names Count" FROM Student;

Diff Names Count

5

SQL: Grouping

Q13 Calculate height average of male students

SELECT Gender, AVG(Height) FROM Student WHERE Gender = ’F’;

Gender AVG(Height)

F 161.5

Q14 Calculate height average of female students

SELECT Gender, AVG(Height) FROM Student WHERE Gender = ’M’;

Gender AVG(Height)

M 165.5

Q15 Calculate height average for every gender

SELECT Gender, AVG(Height) FROM Student GROUP BY Gender;

Gender AVG(Height)

F 161.5
M 165.5

SQL: Grouping (imperative interpretation)

Q15 Calculate height average for every gender

SELECT Gender,

AVG(

Height

)

FROM Student

GROUP BY Gender

Gender Height

M 178
M 162
F 159
M 161
M 161
F 164

Gender Height

F 159
F 164
M 178
M 162
M 161
M 161

sort
Gender AVG(Height)

F 161.5
M 165.5

aggr.

SQL: Grouping (imperative interpretation)

Q15 Calculate height average for every gender

SELECT Gender,

AVG(

Height

)

FROM Student GROUP BY Gender

Gender Height

M 178
M 162
F 159
M 161
M 161
F 164

Gender Height

F 159
F 164
M 178
M 162
M 161
M 161

sort

Gender AVG(Height)

F 161.5
M 165.5

aggr.

SQL: Grouping (imperative interpretation)

Q15 Calculate height average for every gender

SELECT Gender, AVG(Height)

FROM Student GROUP BY Gender

Gender Height

M 178
M 162
F 159
M 161
M 161
F 164

Gender Height

F 159
F 164
M 178
M 162
M 161
M 161

sort
Gender AVG(Height)

F 161.5
M 165.5

aggr.

SQL: Join Queries

Parent

ID

First Name

Last Name

Mobile

Student

ID

First Name
Height

Gender

DoB

Hobbies

ID Parent

Enrollment

Student ID

Course Subject

Grade

Course

Subject

Classroom

Prof ID

Prof

ID

Name

Office

Q16 List the first name of all student that attends a class in the classroom A1.423

SELECT First Name

FROM Student

JOIN Enrollment ON (ID = Student ID)

JOIN Course ON (Course Subject = Subject)

WHERE Classroom = ’A1.423’;

First Name

Jean
Marie
Luc

Marion

SQL: Qualified names

Q17 Display first and last name of every student

SELECT First Name, Last Name

FROM Student

JOIN Parent ON (Parent ID = ID);

Error Ambiguous column names: ID, First Name

SELECT Student.First Name, Last Name

FROM Student

JOIN Parent ON (Parent ID = Parent.ID);

Parent

ID

First Name

Last Name

Mobile

Student

ID

First Name
Height

Gender

DoB

Hobbies

ID Parent

First Name Last Name

Jean Dubois
Paul Martin

Marie Dubois
Paul Dupont

SQL: Qualified names and aliases

1 You can use the least amount of qualification in names

SELECT Student.First Name, Last Name

FROM Student

JOIN Parent ON (Parent ID = Parent.ID);

2 But it’s a good practice to qualify names of all attributes

SELECT Student.First Name, Parent.Last Name

FROM Student

JOIN Parent ON (Student.Parent ID = Parent.ID);

3 Use aliases if you want to make the query more compact

SELECT S.First Name, P.Last Name

FROM Student AS S

JOIN Parent AS P ON (S.Parent ID = P.ID);

SELECT S.First Name, P.Last Name

FROM Student S

JOIN Parent P ON (S.Parent ID = P.ID);

SQL: Qualified *

Q18 Display all course together with the information on the professor who teaches it

SELECT *

FROM Course

JOIN Prof ON (Prof ID = ID);

Subject Classroom Prof ID ID Name Office

SQL B2.461 11 11 S lawek D.42
HTML A2.061 46 46 Fabien C.21

IA A1.423 11 11 S lawek D.42

Q19 Display all course together with the name on the professor who teaches it

SELECT Course.*, Prof.Name

FROM Course

JOIN Prof ON (Prof ID = ID);

Subject Classroom Prof ID Name

SQL B2.461 11 S lawek
HTML A2.061 46 Fabien

IA A1.423 11 S lawek

SQL: Outer joins

Q20 For every student display their first name and if provided, their last name

SELECT Student.First Name, Parent.Last Name

FROM Student

LEFT OUTER JOIN Parent ON (Student.Parent ID = Parent.ID);

First Name Last Name

Jean Dubois
Paul Martin

Marie Dubois
Paul Dupont
Luc NULL

Marion NULL

SQL: Handling NULL values

Q21 For every student display their first name, their last name, and their full name

SELECT Student.First Name, Parent.Last Name,

Student.First Name || ’ ’ || Parent.Last Name AS Full Name

FROM Student

LEFT OUTER JOIN Parent ON (Student.Parent ID = Parent.ID);

First Name Last Name Full Name

Jean Dubois Jean Dubois
Paul Martin Paul Martin

Marie Dubois Marie Dubois
Paul Dupont Paul Dupont
Luc NULL NULL

Marion NULL NULL

NULL is an absorbing element of practically any function and any operator x ⊕ NULL 7→ NULL

’a’ || NULL 7→ NULL 1 * NULL 7→ NULL NULL/0 7→ NULL TRUE AND NULL 7→ NULL

There are exceptions but also special functions and operators designed to handle NULL values

FALSE AND NULL 7→ FALSE ’Steve’ = NULL 7→ UNKNOWN NULL IS NULL 7→ TRUE

IFNULL(’a’,’b’) 7→ ’a’ IFNULL(NULL,’b’) 7→ ’b’ COALESCE(NULL,’a’,’b’) 7→ ’a’

SQL: Handling NULL values (cont’d)

Q22
For every student display their first name, their last name, and their full name;
if their last name is not provided, their full name consists of their first name alone

SELECT Student.First Name, Parent.Last Name,

COALESCE(Student.First Name || ’ ’ || Parent.Last Name,

Student.First Name) AS Full Name

FROM Student LEFT OUTER JOIN Parent ON (Student.Parent ID = Parent.ID);

SELECT Student.First Name, Parent.Last Name,

CASE

WHEN Parent.Last Name IS NULL THEN Student.First Name

ELSE Student.First Name || ’ ’ || Parent.Last Name

END AS Full Name

FROM Student LEFT OUTER JOIN Parent ON (Student.Parent ID = Parent.ID);

First Name Last Name Full Name

Jean Dubois Jean Dubois
Paul Martin Paul Martin

Marie Dubois Marie Dubois
Paul Dupont Paul Dupont
Luc NULL Luc

Marion NULL Marion

SQL: Subqueries, and how to get rid of them

Q23 List professors who teach at least one course

SELECT *

FROM Prof

WHERE ID IN (SELECT Prof ID FROM Course);

ID Name Office

11 S lawek D.42
46 Fabien C.21

SELECT *

FROM Prof

WHERE EXISTS (SELECT * FROM Course WHERE Course.Prof ID = Prof.ID);

SELECT DISTINCT Prof.*

FROM Course JOIN Prof ON (Course.Prof ID = Prof.ID);

SQL: Subqueries, and how to get rid of them (cont’d.)

Q24 List professors who don’t teach any course

SELECT *

FROM Prof

WHERE ID NOT IN (SELECT Prof ID FROM Course);

ID Name Office

57 Marc D.42

SELECT *

FROM Prof

WHERE NOT EXISTS (SELECT * FROM Course WHERE Course.Prof ID = Prof.ID);

SELECT DISTINCT Prof.*

FROM Prof LEFT OUTER JOIN Course ON (Prof.ID = Course.Prof ID)

WHERE Course.Subject IS NULL;

SQL: Correlated ANY and ALL Subqueries

Q25 Find the shortest male student(s)

SELECT * FROM Student WHERE Gender = ’M’ ORDER BY Height ASC LIMIT 1;

ID First Name Height Gender Hobbies DoB Parent ID

5 Paul 161 M NULL 2001-01-07 2

SELECT * FROM Student

WHERE Gender = ’M’

AND Height <= ALL (SELECT Height FROM Student WHERE Gender = ’M’);

SELECT S.*

FROM Student AS S JOIN Student AS T

WHERE S.Gender = ’M’ AND T.Gender = ’M’

GROUP BY S.ID

HAVING MIN(S.Height <= T.Height) = TRUE;

ID First Name Height Gender Hobbies DoB Parent ID

5 Paul 161 M NULL 2001-01-07 2
6 Luc 161 M Reading 2000-10-11 NULL

SQL: Cross product

SELECT * FROM Course, Prof;

Subject Classroom Prof ID ID Name Office

SQL B2.461 11 11 S lawek D.42
SQL B2.461 11 46 Fabien C.21
SQL B2.461 11 57 Marc D.42

HTML A2.061 46 11 S lawek D.42
HTML A2.061 46 46 Fabien C.21
HTML A2.061 46 57 Marc D.42

IA A1.423 11 11 S lawek D.42
IA A1.423 11 46 Fabien C.21
IA A1.423 11 57 Marc D.42

SELECT * FROM Course, Prof WHERE Course.Prof ID = Prof.ID;

Subject Classroom Prof ID ID Name Office

SQL B2.461 11 11 S lawek D.42
HTML A2.061 46 46 Fabien C.21

IA A1.423 11 11 S lawek D.42

SQL: Cross product (cont’d.)

Q26 List professors who share an office

SELECT P1.Name, P2.Name

FROM Prof AS P1, Prof AS P2

WHERE P1.Office = P2.Office

AND P1.ID <> P2.ID;

Name Name

S lawek Marc
Marc S lawek

Q27 List professors who share an office without repetition

SELECT P1.Name, P2.Name

FROM Prof AS P1, Prof AS P2

WHERE P1.Office = P2.Office

AND P1.ID < P2.ID;

Name Name

S lawek Marc

SQL: Views

CREATE VIEW StudentN AS

SELECT Student.ID, Student.Height, Student.Gender, Student.DoB,

Student.First Name || IFNULL(’ ’ || Parent.Last Name,’’) AS Full Name

FROM Student LEFT OUTER JOIN Parent ON (Student.Parent ID = Parent.ID);

Views are virtual tables

I defined by SQL queries

I can be used in queries as standard tables

I are not materialized but can be treated as if their contents changed dynamically

SELECT * FROM StudentN;

ID Height Gender DoB Full Name

1 178 M 1999-04-13 Jean Dubois
3 162 M 2000-09-29 Paul Martin
4 159 F 1998-10-03 Marie Dubois
5 161 M 2001-01-07 Paul Dupont
6 161 M 2000-10-11 Luc
8 164 F 1998-04-23 Marion

SQL: Unions

Q28 Display full prefixed names of all students

SELECT ’M. ’ || Full Name AS Prefixed Name FROM StudentN WHERE Gender = ’M’

UNION

SELECT ’Mlle. ’ || Full Name FROM StudentN WHERE Gender = ’F’;

Prefixed Name

M. Jean Dubois
M. Luc

M. Paul Dupont
M. Paul Martin

Mlle. Marie Dubois
Mlle. Marion

SQL: Complex queries

Q29 For every student calculate their GPA and the number of classes they attend; Display
the list in the order of GPA

SELECT S.Full Name, AVG(E.Grade) AS GPA, COUNT(*) AS Class Count

FROM StudentN AS S JOIN Enrollment E ON (S.ID = E.Student ID)

GROUP BY S.Full Name

ORDER BY GPA DESC;

Full Name GPA Class Count

Marion 16.0 2
Marie Dubois 15.0 3
Paul Martin 15.0 1
Jean Dubois 12.0 3

Luc 11.0 2

SQL: Complex queries

Q30 Find students with GPA at least 15

SELECT S.Full Name

FROM StudentN AS S JOIN Enrollment E ON (S.ID = E.Student ID)

GROUP BY S.Full Name

HAVING AVG(E.Grade) >= 15;

Full Name

Marie Dubois
Marion

Paul Martin

SQL: Complex queries (cont’d.)

Q31 Find GPA of every student whose all notes are in (the database)

SELECT S.Full Name, AVG(Grade) AS GPA

FROM StudentN AS S JOIN Enrollment E ON (S.ID = E.Student ID)

GROUP BY S.Full Name

HAVING COUNT(*) = COUNT(Grade);

Full Name GPA

Marie Dubois 15.0
Paul Martin 15.0

SQL: Complex queries (cont’d.)

Q32 Calculate for every professor the number of courses they teach

SELECT Prof.Name, COUNT(Course.Subject) AS Courses

FROM Prof LEFT OUTER JOIN Course ON (Prof.ID = Course.Prof ID)

GROUP BY Prof.Name;

Name Courses

Fabien 1
Marc 0

S lawek 2

SQL: Complex queries (cont’d.)

Q33 Find professors who have not turned in all their notes

SELECT Prof.Name

FROM Prof

WHERE EXISTS (

SELECT * FROM Course

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject)

WHERE Course.Prof ID = Prof.ID

AND Enrollment.Grade IS NULL);

Name

S lawek

SELECT DISTINCT Prof.Name

FROM Prof

JOIN Course ON (Prof.ID = Course.Prof ID)

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject)

WHERE Enrollment.Grade IS NULL;

SQL: Complex queries (cont’d.)

Q34
Find professors who have not turned in all their notes, together with the number of
grades missing

SELECT Prof.Name,

(SELECT COUNT(*)

FROM Course

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject)

WHERE Course.Prof ID = Prof.ID

AND Enrollment.Grade IS NULL) AS Grades Missing

FROM Prof

WHERE Grades Missing > 0;

Name Grades Missing

S lawek 3

SELECT Prof.Name, COUNT(*) AS Grades Missing

FROM Prof

JOIN Course ON (Prof.ID = Course.Prof ID)

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject)

WHERE Enrollment.Grade IS NULL;

SQL: Complex queries (cont’d.)

Q35
For every professor find the number of students they teach; student that attend mul-
tiple courses of a professor, should be counted only once for that professor

SELECT DISTINCT Course.Prof ID, Enrollment.Student ID

FROM Course

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject);

Prof ID Student ID

46 1
11 1
11 3
46 4
11 4
11 6
46 8
11 8

SQL: Complex queries (cont’d.)

Q35
For every professor find the number of students they teach; student that attend mul-
tiple courses of a professor, should be counted only once for that professor

SELECT Prof.Name, COUNT(S.Student ID) AS Student Count

FROM Prof LEFT OUTER JOIN (

SELECT DISTINCT Course.Prof ID, Enrollment.Student ID

FROM Course

JOIN Enrollment ON (Course.Subject = Enrollment.Course Subject)

) AS S ON (Prof.ID = S.Prof ID)

GROUP BY Prof.Name;

Name Student Count

Fabien 3
Marc 0

S lawek 5

SELECT P.Name, COUNT(DISTINCT E.Student ID) AS Student Count

FROM Prof P

LEFT OUTER JOIN Course C ON (P.ID = C.Prof ID)

LEFT OUTER JOIN Enrollment E ON (C.Subject = E.Course Subject)

GROUP BY P.Name;

SQL: Data Manipulation Language

Q36 Insert a missing parent

INSERT INTO Parent VALUES(4,’Constance’,’Shariff’,NULL);

Q37 Delete orphan students

DELETE FROM Student WHERE Parent ID NOT IN (SELECT ID FROM Parent);

Q38 Add 2 points to the grade of every student in any of Fabien’s classes

UPDATE Enrollment

SET Grade = Grade + 2

WHERE Course Subject IN (

SELECT Subject

FROM Course

JOIN Prof ON (Course.Prof ID = Prof.ID)

WHERE Prof.Name = ’Fabien’

);

SQL: Data Definition Language

Q39 Create a table

CREATE TABLE Hobbies (ID INT PRIMARY KEY, Name TEXT);

Q40 Delete a table

DROP TABLE Hobbies;

Q41 Remove a view

DROP VIEW StudentN;

Q42 Extend a table horizontally (change its definition)

ALTER TABLE Student ADD COLUMN Phone CHAR(15);

