
Semantic Web
Tutorial Using N3

Tim Berners-Lee
Dan Connolly
Sandro Hawke

For Presentaton
May 20, 2003

http://www.w3.org/2000/10/swap/doc/

Table of Contents
................ 1Semantic Web Tutorial Using N3
............... 11 Semantic Web Tutorial Using N3
.......... 2Primer - Getting into the semantic web and RDF using N3
........... 22 Primer: Getting into RDF & Semantic Web using N3
................. 22.1 Subject, verb and object
.................. 32.2 Sharing concepts
................. 42.3 Making vocabularies
.................. 6Shorthand: Paths and lists
................. 63 Shorthand: Paths and lists
..................... 63.1 Paths
..................... 73.2 Lists
................. 8Vocabulary Documentation
................. 84 Vocabulary Documentation
................. 84.1 Plain Documentation
................... 84.2 Equivalence
................... 94.3 Cardinality
................. 94.4 Different and Disjoint
.................. 94.5 Class Hierarchies
.................. 94.6 Domain, Range
................... 10Rules and Formulae
.................. 105 Rules and Formulae
.................... 105.1 Variables
................. 115.2 Variables with ? and _:
.............. 115.3 Shorthand symbols for implies, etc.
.............. 12Processing your data using N3 and Cwm
.............. 126 Processing your data using N3 and Cwm
................. 126.1 Converting data format
................... 136.2 Merging data
............. 146.3 Filtering: when you have too much data
.................. 156.4 Report Generation
................... 166.5 Debugging
..................... 166.6 Tips
..................... 166.7 More
................ 17Tutorial - Built-in functions in cwm
................. 177 Built-in functions in Cwm
....................... 19Trust
...................... 198 Trust
.................. 198.1 Delegated authority
................... 238.2 Conclusion
........... 24Semantic Web Application Integration: Travel Tools
........... 249 Semantic Web Application Integration: Travel Tools
................ 249.1 Working with legacy data
............... 269.2 Integration with mapping tools
............... 299.3 Integration with iCalendar Tools
................ 309.4 Conversion for PDA import
................. 309.5 Plain Text Summaries
................. 319.6 Checking Constraints
............... 319.7 Conclusions and Future Work
...................... 32Glossary
..................... 3210 Glossary

i

Semantic Web Tutorial Using N3

1 Semantic Web Tutorial Using N3
This is an introduction to semantic web ideas aimed at someone with experience in programming, perhaps with
web sites and scripting, who wants to understand how RDF is useful in practice. The aim is to give a feel for
what the Semantic Web is, and allow one to imagine what life will be like when it is widely deployed. This is
illustrated using the N3 language, which is easy to read and write, and cwm which is an experimental general
purpose program for semantic web stuff.

The tutorial is in the making: places linked below have text. This material will be presented as a tutorial
(http://www2003.org/tutorials.htm#TF1) at WWW2003 in Budapest, 2003-05 (http://www2003.org/).

The material in these notes may be deeper in parts than the tutorial itself, which is limited to 6 hours.

A. Writing data (using Statements, URIs, and Vocabularies)
Primer: Getting into RDF & Semantic Web using N3
Sidebar: Comparing with other data formats
Sidebar: Installing cwm (Install it during the break)
Sidebar: Cwm command line arguments

B. More Syntactic Sugar, More Ontological Power
Shorthand: Paths and Lists
Ontologies: More powerful information about vocabularies
Writing rules
Processing RDF data using rules

C. Procesing data with cwm/n3
Built-in functions in rules
Sidebar: List of built-in functions in cwm
Sidebar: Comparing with other rules systems

D. Semantics + Web = Semantic Web
Reaching out into the Web
Trust
application integration: travel tools

Glossary

1

Semantic Web Tutorial Using N3

2 Primer: Getting into RDF & Semantic Web using N3
The world of the semantic web, as based on RDF, is really simple at the base. This article shows you how to get
started. It uses a simplified teaching language -- Notation 3 or N3 -- which is basically equivalent to RDF in its
XML syntax, but easier to scribble when getting started.

2.1 Subject, verb and object
In RDF, information is simply a collection of statements, each with a subject, verb and object - and nothing else.
In N3, you can write an RDF triple just like that, with a period:

<#pat> <#knows> <#jo> .

Everything, be it subject, verb, or object, is identified with a Universal Resource Identifier. This is something
like <http://www.w3.org/> or <http://www.w3.org/2000/10/swap/test/s1.n3#includes>, but when everything is
missed out before the "#" it identifies <#pat> in the current document whatever it is.

There is one exception: the object (only) can be a literal, such as a string or integer:

<#pat> <#knows> <#jo> .
<#pat> <#age> "24" .

The verb "knows" is in RDF called a "property" and thought of as a noun expressing a relation between the two.
In fact you can write

<#pat> <#child> <#al> .

alternatively, to make it more readable, as either

<#pat> has <#child> <#al> .

or

<#al> is <#child> of <#pat> .

There are two shortcuts for when you have several statements about the same subject: a semicolon ";" introduces
another property of the same subject, and a comma introduces another object with the same predicate and
subject.

<#pat> <#child> <#al>, <#chaz>, <#mo> ;
 <#age> "24" ;
 <#eyecolor> "blue" .

So, for example, the data in the table

age eyecolor

pat 24 blue

al 3 green

jo 5 green

could be written

 <#pat> <#age> "24"; <#eyecolor> "blue" .
 <#al> <#age> "3"; <#eyecolor> "green" .
 <#jo> <#age> "5"; <#eyecolor> "green" .

2

Primer - Getting into the semantic web and RDF using N3

Sometimes there are things involved in a statement don’t actually have any identifier you want to give them -
you know one exists but you only want to give the properties . You represent this by square brackets with the
properties inside.

<#pat> <#child> [<#age> "4"] , [<#age> "3"].

You could read this as #pat has a #child which has #age of "4" and a #child which has an #age of "3". There are
two important things to remember

The identifiers are just identifiers - the fact that the letters p a t are used doesn’t tell anyone or any machine
that we are talking about anyone whose name is "Pat" -- unless we say <#pat> <#name> "Pat". The same
applies to the verbs - never take the actual letters c h i l d as telling you what it means - we will find out how
to do that later.
The square brackets declare that something exists with the given properties, but don’t give you a way to
refer to it elsewhere in this or another document.

If we actually want to use a name, we could have written the table above as

 [<#name> "Pat"; <#age> "24"; <#eyecolor> "blue"].
 [<#name> "Al" ; <#age> "3"; <#eyecolor> "green"].
 [<#name> "Jo" ; <#age> "5"; <#eyecolor> "green"].

There are many ways of combining square brackets - but you can figure that out from the examples later on.
There is not much left learn about using N3 to express data, so let us move on.

2.2 Sharing concepts
The semantic web can’t define in one document what something means. That’s something you can do in english
(or occasionally in math) but when we really communicate using the concept "title", (such in a library of
congress catalog card or a web page), we rely on a shared concept of "title". On the semantic web, we share quite
precisely by using exactly the same URI for the concept of title.

I could try to give the title of an N3 document by

<> <#title> "A simple example of N3".

(The <> being an empty URI reference always refers to the document it is written in.) The <#title> refers to the
concept of #title as defined by the document itself. This won’t mean much to the reader. However, a group of
people created a list of properties called the Dublin Core (http://purl.oclc.org/dc/), among which is their idea of
title, which they gave the identifier

<http://purl.org/dc/elements/1.1/title>. So we can make a much better defined statement if we say

<> <http://purl.org/dc/elements/1.1/title>
 "Primer - Getting into the Semantic Web and RDF using N3".

That of course would be a bit verbose - imagine using such long identifiers for everything like #age and
#eyecolor above. So N3 allows you to set up a shorthand prefix for the long part - the part we call the
namespace. You set it up using "@prefix" like this:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
<> dc:title
 "Primer - Getting into the Semantic Web and RDF using N3".

Note that when you use a prefix, you use a colon instead of a hash between dc and title, and you don’t use the
<angle brackets> around the whole thing. This is much quicker. This is how you will see and write almost all
your predicates in N3. Once set up, a prefix can be used for the rest of the file.

3

Primer - Getting into the semantic web and RDF using N3

There are an increasingly large number of RDF vocabularies for you to refer to - check the RDF home page and
things linked from it - and you can build your own for your own applications very simply.

From now, on we are going to use some well known namespaces, and so to save space, I will just assume the
prefixes

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

These are the RDF, RDF schema, and OWL namespaces, respectively. They give us the core terms which we can
bootstrap ourselves into the semantic web. I am also going to assume that the empty prefix stands for the
document we are writing, which we can say in N3 as

@prefix : <#> .

This means we could have the example above as

:pat :child [:age "4"] , [:age "3"].

which is slightly less characters to type. Now you understand how to write data in N3, you can start making up
your own vocabularies, because they are just data themselves.

2.3 Making vocabularies
Things like dc:title above are RDF Properties. When you want to define a new vocabulary you define new
classes of things and new properties. When you say what type of thing something is, you say a Class it belongs
to.

The property which tells you what type something is is rdf:type which can be abbreviated to N3 to just a. So
we can define a class of person

:Person a rdfs:Class.

In the same document, we could introduce an actual person

:Pat a :Person.

Classes just tell you about the thing which is in them. An object can be in many classes. There doesn’t have to be
any hierarchical relationship -- think of Person, AnimateObject, Animal, TallPerson, Friend, and so on. If there is
a relationship between two classes you can state it - check out the properties (of classes) in the RDF Schema
(http://www.w3.org/TR/rdf-schema/) and OWL (http://www.w3.org/TR/owl-guide/) vocabularies.

:Woman a rdfs:Class; rdfs:subClassOf :Person .

A property is something which is used to declare a relationship between two things.

:sister a rdf:Property.

Sometimes when a relationship exists between two things, you immediately know something about them, which
you can express as a class. When the subject of any property must be in a class, that class is a domain of the
property. When the object must be in a class, that class is called the range of a property. A property can have
many domains and ranges, but typically one specifies one.

:sister rdfs:domain :Person;
 rdfs:range :Woman.

4

Primer - Getting into the semantic web and RDF using N3

Note the class identifiers start with capitals and properties with lower case letters. This is not a rule, but it is a
good convention to stick to. Note also that because the domain of rdfs:range and rdfs:domain themselves is
rdf:Property, it follows that :sister is a rdf:Property without it being stated explicitly.

2.3.0.1 Equivalence

Often, you define a vocabulary where one or more of the terms, whether or not you realized it when you started,
is in fact exactly the same as one in another vocabulary. This is a really useful titbit of information for any
machine or person dealing with the information! The property of equivalence between two terms is so useful and
fundamental that N3 has a special shorthand for it, "=".

:Woman = foo:FemaleAdult .
:Title a rdf:Property; = dc:title .

Tip: Use other people’s vocabularies when you can - it helps interchange of data. When you define your own
vocabulary which includes synonyms, do record the equivalence because this, likewise, will help present and
future processors process your and others’ data in meaningful ways.

2.3.0.2 Choosing a namespace and publishing your vocabulary

Good on-line documentation for vocabulary terms helps people read and write RDF data. Writers need to see
how a term is supposed to be used; readers need to see what it is supposed to mean. People developing software
which uses the terms need to know in particular detail exactly what each URI means.

If you document your vocabulary using the RDF Schema (http://www.w3.org/TR/rdf-schema/) and OWL
(http://www.w3.org/TR/owl-guide/) vocabularies, then your documentation will be machine-readable in a variety
of interesting and useful ways, as mentioned above and covered in more detail in Vocabulary Documentation.
This kind of RDF-documentation-in-RDF is sometimes called a "schema" or an "ontology."

The easiest way to help people find your documentation is to make the URIs you create as vocabulary terms also
work in a web browser. This happens automatically if you follow the naming convention we use here, where the
vocabulary definition document has a URI like http://example.com/terms and it refers to its terms like
<#Woman>. With the @prefix declaration above, this gives the URI
http://example.com/terms#Woman which should work in any browser to display the definition
document.

Ideally, you should publish your documentation on the web using a server and portion of URI-space which are
owned by an organization which can commit to maintaining them well into the future. That way, many years
down the road, RDF data using your terms will still be documented and potentially understandable. The
convention of putting the current year into the URI can help with stability; some day people may be tempted to
re-use http://example.com/food-vocabulary, but they will probably only touch
http://example.com/2003/food-vocabulary, when they really mean to upgrade the documentation
there. In some circumstances you can also achieve increased stability by using a specialized domain name which
may be insulated from possible organizational renaming and trademark issues.

Of course if you are just playing around, you can use a file (say mydb.n3) in the same directory as the rest of
your work. When you do that, your can simply use <mydb.n3#> as your namespace identifier, because in N3
(as in HTML), the URIs can be specified relative to the current location.

5

Primer - Getting into the semantic web and RDF using N3

3 Shorthand: Paths and lists
You don’t need to know this. It just makes life easier, and of course helps when reading other people’s work.

3.1 Paths
Often it turns out that you need to refer to something indirectly through a string of properties, such as "George’s
mother’s assistant’s home’s address’ zipcode". This is traversal of the graph. In the N3 we have dealt with up till
now, this would look something like

[is con:zipcode of [
 is con:address of [
 is con:home of [
 is off:assistant of [
 is rel:mother of :George]]]]]

which reads "that which is the zipcode of that which is the address of that which is the home of that which is the
assistant of that which is the mother of :George", which isn’t very conventient to read or write. And this is when
in an object-oriented langauge, you would just cascade methods or attributes on properties using ".".

To make it easier in N3 there is a shortcut for the above would just be written

:George.rel:mother
 .off:assistant
 .con:home
 .con:address
 .con:zipcode

The dot must be immediately followed by the next thing, with no whitespace.

This is forward traversal of the graph, where with each "." you move from something to its property. So
?x.con:mailbox is x’s mailbox, and in fact in english you can read the "." as " ’s".

You can do backward traversal, using "^" instead of "." as punctuation. So if :me.con:mailbox means my
mailbox, then <mailto:ora@lassila.com>^con:mailbox is that which has <mailto:ora@lassila.com> as a mailbox.
This backward traversal is less usual - you can’t do it object-oriented programming langauges -- but sometimes
its what you need.

Note that there isn’t necessarily only one match for a path - often there are many, when it is used on the left side
of a rule.

:me.rel:parent

would be "Some x such that I have parent x", and

:me.rel:parent^rel:parent

would mean "Some y such that for some x, I had parent x and y had parent x", or loosely, some sibling of mine.
In this imaginary ontology, ".rel:child" is equivalent to "^rel:parent".

Whatever the sequence of "." and "^", they always are read left to right across the page.

These are known as "paths". If you are used to XML, think: Xpath but simpler. If you think of the circles and
arrows graph of data, think of a path from node to node.

Cwm doesn’t currently use paths on output, so getting cwm to input and output a file will turn it into the form of
N3 you already know.

6

Shorthand: Paths and lists

3.2 Lists
A common need is to represent an ordered collection of things. This is done in RDF as a rdf:Collection. In N3,
the list is represented by sepetating the objects with whitespace and surrounding them with parenthases.
Examples are:

("Monday" "Tuesday" "Wednesday")

(:x :y)

(:cust.bus:order.bus:number
 :cust.bus:order
 .bus:referncedPurchaseOrder
 .bus:number)

These lists are actually shorthand for statements which knit blank nodes together using rdf:first and
rdf:rest. rdf:first is the relationship betwen a list and its first component. rdf:rest if the
relationship between a list and the list of everything except its first element. rdf:nil is the name for the empty
list. Therefore,

("Monday" "Tuesday" "Wednesday")

is equivalent to

[rdf:first "Monday";
 rdf:next [rdf:first "Tuesday";
 rdf:rest [rdf:first "Wednesday";
 rdf:rest rdf:nil]]]

One of the common uses of lists is as parameter to a relationship which ihas more than one argment.

("Dear " ?name " ",")
 string:conatenation ?salutation.

for example, indicates that the salutation is the string concatenation of the three strings "Dear", whatever ?name
is, and a comma. This will be used with built-in functions which we will discuss later.

7

Shorthand: Paths and lists

4 Vocabulary Documentation
As we read and write N3, communicating in RDF, we need to share an understanding of what each URI means.
We often pick URIs which offer clues about meaning, such as
http://www.w3.org/2000/10/swap/test/demo1/biology#Dog, but the text of the URI still
gives only a clue. Would a wolf qualify as a one of these? How about a Dingo? We can’t tell just by looking at
the name. It’s even possible the URI text is misleading, and the intended meaning has nothing to do with dogs.

A good technique for addressing these issues is to publish a document which carefully describes the intended
meaning of each term. If this description is done carefully enough, following a precise structure, software can
help us understand what the terms mean, check for some kinds of errors, and sometimes even dynamically
update itself to use and recognize new URIs.

There is a vocabulary of about fifty terms (URIs) being developed by W3C Working Groups to support this kind
of precise documentation. About a dozen of the terms are part of the RDF Vocabulary Description Language 1.0:
RDF Schema (http://www.w3.org/TR/rdf-schema/), for which we use the "rdfs:" namespace abbreviation. The
others are part of the OWL Web Ontology Language (http://www.w3.org/TR/owl-features/). All fifty are listed
and cross referenced in the OWL Guide Appendix (http://www.w3.org/TR/owl-guide/#TermIndex) .

4.1 Plain Documentation
Rdfs:comment is for providing unstructured documentation, while rdfs:label can give an easier-to-read name and
rdfs:seeAlso gives untyped links. This is a good start for unstructured documentation.

:CanisFamiliaris
 rdfs:comment """The class of animals designated
 Canis familiaris (domestic dog). This
 includes all the dog breeds, but
 not wolves.""";
 rdfs:label "Canis familiaris";
 rdfs:seeAlso <http://www.agrobiologicals.com/glossary/G3089.htm>.

4.2 Equivalence
Our simplest machine-readable declaration is that two URIs mean the same thing:

:Pat owl:sameIndividualAs :Patrick.

Given this statement, a system which understands owl:sameIndividualAs would know that everything
true of :Pat was also true of :Patrick and everything true of :Patrick was true of :Pat. They are just synonyms: two
names for the same thing. This is what N3 means with "=". (Note that cwm does not understand any of these
terms natively, but can be instructed to use them, via rules.)

We could also say:

:Dog owl:equivalentClass :CanisFamiliaris.
 # or
:Dog owl:sameIndividualAs :CanisFamiliaris.

These two are slightly different: equivalent classes have exactly the members, but may have a different intended
meaning. If we use owl:sameIndividualAs, then our label "Canis familiaris" would also apply to :Dog.

8

Vocabulary Documentation

4.3 Cardinality
In some cases equivalence and sameness can be inferred. OWL has a vocabulary for talking about "cardinality"
of properties, saying whether they map one-to-one, one-to-many, many-to-one, etc. If we have a :mother
property, we declare that it is many-to-one ("functional"), indicating that people have at most one biological
mother:

:mother a owl:FunctionalProperty

This can be used to infer sameness, because if we say

:sam :mother :jackie.
:sam :mother :jacqueline.

a human or machine reader can figure out that ":jackie" and ":jacqueline" must be names for the same individual.

4.4 Different and Disjoint
Of course it’s possible that :jackie and :jacqueline are not the same person, and that one of the lines about :sam
was a mistake! OWL has several ways to say that things are not the same; the simplest would be:

:jackie owl:differentFrom :jacqueline.

Taken together, the three statements describe an impossible situation, and OWL software should be able to
recognize and warn about this situation.

4.5 Class Hierarchies
:Man s:subclassOf :Human .
:YoungMan s:subclassOf :Man .

:CanisFamiliarisDingo
 owl:subClassOf :CanisFamiliaris; # Dingos are Dogs!
 rdfs:seeAlso <http://www.naturalworlds.org/
 wolf/canis/Canis_familiaris_dingo.htm>.

:CanisRufus a owl:Class;
 owl:subClassOf :Canis;
 owl:disjointFrom :CanisFamiliaris; # Wolves are not Dogs!
 rdfs:label "Red Wolf";
 rdfs:comment """As of 1999 there were about 300 individuals
 of this endangered species""";
 rdfs:seeAlso <http://druidry.org/obod/endangered/redwolf.html>.

4.6 Domain, Range
:father s:domain :Human; s:range :Man.
:Sara :father :Alan.

:Sara a :Human. :Alan a :Man.

:father owl:cardinality "1".
:Sara :father :Alan.
:Sara :father :MrFoster.

:Alan = :MrFoster.

9

Vocabulary Documentation

5 Rules and Formulae
We are going to learn how to express rules in N3, which will allow us to do all kinds of things. A simple rule
might say something like (in some central heating vocabulary) "If the thermostat temperature is high, then the
heating system power is zero", or

{ :thermostat :temp :high } log:implies { :heating :power "0" } .

The curly brackets here enclose a set of statements. Until this point, all statements in each file have been
effectively in one bucket. They are all generated when the file is parsed, and stored in a store on an equal footing.
In a rule, however, we need to talk about hypothetical statements: If this were the case then that would be the
case. The statements within the brackets are not asserted like the other ones in the file. In the case above, the file
does not say that the thermostat temperature is high. It just says that the left-hand formula implies the right-hand
formula.

You see that, apart from the fact that the subject and object of the statement are formulae, the line above is just a
single statement. log:implies is a special predicate which links formulae. The statement is a fact. Rules are
in general facts, and on the semantic web they may or not be used by various programs at various times to figure
things out.

The curly brackets are important. They do take us out of the things we can represent using the current RDF/XML
OWL specifications. ((Formulae are (2003/2) a longer-term issue for the RDF Core group). Cwm will in most
cases serialize formulae using an XML syntax which is not standard.

5.1 Variables
In fact, formulae in N3 are more than just sets of statements. They also allow declarations of variables. A
variable is like just a symbol (such as :x or var:Y) except it is used to stand for other symbols. There are two
types. A "forAll" or universal variable, declared like this,

this log:forAll :x.
{ :thermostat :temp :x } log:implies { :cooling :power :x } .

means that all this information is true even if the symbol ":x" is replaced consistently by something else. This is
of course what you want for a rule which implies something generally about anything. The "this" indicates
the scope of the variable - it in fact stands for the formula in which it is, in this case the outermost formula of the
document. In most cases for simple rules, the variables are quantified in the scope of the document, but when
things get nested, it is wise to think about what you mean. We don’t deal with it in detail here. Mathematically,
the formula above might be written

A formula can also have "forSome", or existential, variables. They are declared as in

this log:forSome :a.
:Joe :home :a.
:a :phone "555-1212".

This means that there is something which is Joe’s home and has the given phone number. We’ve been doing this
all along, though, surely, with blank nodes. Indeed - most times that an existential variable is used it is actually
implicit in the [bracket] syntax.

:Joe :home [:phone "555-1212"].

Each pair of square brackets actually stands for an unnamed existential variable. Cwm will generally use square
brackets on output when it can - if there are loops then one has to use explicit variables.

10

Rules and Formulae

this log:forSome :a.
:Joe :home :a.
:a :owner :Joe.
:a :phone "555-1212".

5.2 Variables with ? and _:
So far we have introduce variables for rules using log:forAll. We have introduced existential variables
(blank nodes) with log:forSome. These are both special pseudo-properties which are really special language
things. There are shortcuts under certain circumstances, which avoid you having to type them.

When a variable is universally quantified in not the formula itself but the surrounding formula, then you can just
use ?x. This is in fact what you want for rules which don’t have nested formulae inside the antecedent.

So instead of

this log:forAll :x, :y.

{ :x :parent :y } => { :y :child :x }.

you can write

{ ?x parent ?y } => { ?y :child ?x }.

which means just the same. We will use this all the time when writing simple rules. If you need the same
variable to appear at several levels, then you can’t use this form.

The other shortcut is that if you have existentially qualified variables in the scope of the whole document, then
you can use _:a and so on. (This is the same as the ntriples notation)

So instead of writing

this log:forSome :a, :b.

:a :hates :b. :b :loves :a.

you could just write

_:a :hates _:b. _:b :loves _:a.

In practice this is very often used in ntriples but in N3, you can normally use the [] syntax to avoid using any
variables at all.

5.3 Shorthand symbols for implies, etc.
When it is used as a predicate (verb) in N3, log:implies and => are the same; owl:equivalentTo and =
are the same.

So, having gone into a few details of universal and existential identifiers, what we are left with is a pretty simple
rule language, which is still a fairly straightforward extension of RDF.

{?x family:parent ?y. ?y family:brother ?z} => {?x family:uncle ?z}.

(Always remember the dot after the rule.)

Now let’s learn how to process them.

11

Rules and Formulae

6 Processing your data using N3 and Cwm
Now that we know how to make a statements in N3, what can we do with them?

You know about how to write your data in N3, and also how to describe the terms you are using in a schema, or
ontology. Why is that so useful? Because of all the things you can then do with it. Here we’ll learn some basic
ways to use cwm, a command line python program. There are lots of other processors for RDF information, and
cwm is just one we’ll use here. It was designed to show the feasibility of everything in the Semantic Web layer
cake, so we can go quite a long way with it. It isn’t optimized, though, so you may find it too slow to use for
large datasets. This is going to be a completely practical how-to, rather than a theoretical analysis of what is
going on. You might like to keep around for reference:

The cwm manual

Examples - rather random order supplement

Cwm is a python program, so on most systems you can run it as python wherever/cwm.py, depending on
where you have installed it. From now on, though, we’ll assume you have set up an alias or whatever your
system uses to make it available by simply by the command cwm. You can always use the long form if you don’t
have the short form.

Cwm uses the command line as a sequence of operations to perform from left to right. You can input data,
process it and output it. The default is to input and output from the standard input and output. So you can read

cwm --rdf foo.rdf --think --n3

as "switch to RDF/XML format, read in foo.rdf, think about it, and then switch to N3 format (for output)".

Any filename is actually a relative URI, so you can suck data off the web just by giving its URI:

cwm http://www.w3.org/2000/10/swap/log.n3

will read in the remote file, and then output it to the terminal.

6.1 Converting data format
Converting data formats is simple:

cwm --rdf foo.xml --n3 > foo.n3

converts the RDF/XML file foo.xml into n3, and

cwm bar.n3 --ntriples > bar.nt

converts bar.n3 to ntriples format. The default format at the beginning of the command line is N3. We’ll mostly
use RDF/N3 from now on, but all the data could equally well be in RDF/XML.

(All these examples involve cwm reading the data into a store, and then reading it out. This means that the order
of the results will be different (sorted) and the comments will be lost. There is actually a--pipe option which
preserves comments and order, but it only works with flat RDF files, not with rules and other things which need
formulae. Tip: if the comment you are about to write is about one of the things your RDF file is about, make it a
rdfs:comment property and it will be carried through the system -- who knows who will find it useful later?)

12

Processing your data using N3 and Cwm

6.2 Merging data
The great thing about RDF which you will soon just assume (but you can’t do with plain XML documents) is
that merging data is trivial.

cwm blue.n3 red.n3 green.n3 > white.n3

reads three n3 files, and then outputs the results in N3 to white.n3.

This is particulaly useful if the files have used the same URIs for the same concepts. Suppose the first has that
someone is attending a meeting which has a given home page.

and the second (red) has some information about the meeting, and a third (green) has some information about the
meeting’s home page. Merging the three gives us an interconnected web, including the fact that the attendee is
actuallt chairing the meeting.

13

Processing your data using N3 and Cwm

6.2.1 Deducing more data

Often, you have data in a raw form and the information you want can be deduced from it, and you would like it
added to the data set.

In uncle.n3 we state that Fred is the father Joe, and Bob is the brother of Fred; we also describe the logical rule
for the uncle relationship:

@prefix : <uncle#>.
:Joe has :father :Fred.
:Fred has :brother :Bob.

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
this log:forAll :who1, :who2.
{ :who1 :father [:brother :who2] } log:implies { :who1 :uncle :who2 }.

This rule means "whenever someone’s father has a brother, then the latter is their uncle". This rule, once is
cwm’s store, will cause cwm to deduce the uncle information when it runs with the command line option
--think.

Delivery of packet in the USA has often one price within the contiguous United States. How could we find
those? Well, the test data set USRegionState.n3 has a list of states of the USA. This includes the borderstate
property which gives a state’s neighbors. Contiguous means that you can get there from here by going from state
to neighboring US state. Suppose you are starting in Boston.so you can get to Massachusetts. Also, any state
bordering a contiguous state must also be contiguous. That’s all the rules you need:

{?x us:code "MA"} => { ?x a :ContiguousState }.
{?x a :ContiguousState. ?x us:borderstate ?y} => {?y a :ContiguousState}.

These rules need to be applied more than once to find all the contiguous states. This is where you can see the
difference between --rules and --think. Try it with --rules. Try it with --rules --rules. Then try it with --think.s

6.3 Filtering: when you have too much data
The result of the above search for contiguous state is too much information. How can we cut it down?
Sometimes all we want from the mass of data at our disposal is a single statement.

One way is to decorate the data by marking all the uninteresting bits as being in class log:Chaff. Then, the
--purge option of cwm will remove from the store any statement which mentions anything which is in that class.
This doesn’t need much more discussion.

A more interesting way is to compute just the things which are interesting. This is done with a filter.

In uncleF.n3 we use the uncle example above, but as a filter. When a filter runs (unlike --think) only the
information gathered by the rules is preserved: everything else is discarded. We use a filter to select the logical
relationships that we want from the mass of what is already known:

@prefix : <uncle#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .

this log:forAll :p.

What is the relationship between Joe and Bob

{ :Joe :p :Bob } log:implies { :p a :RelationshipBetweeJoeAndBob }.

Is Bob an Uncle of Joe?

{ :Joe :uncle :Bob } log:implies { :Joe :uncle :Bob }.

14

Processing your data using N3 and Cwm

When we ask cwm to consider the implication it concludes:

> python cwm.py uncle.n3 --think --filter=uncleF.n3
 :Joe :uncle :Bob .
 :uncle a :RelationshipBetweeJoeAndBob .

You can read the command line as: read uncle.n3 and the deduce any new information you can given any rules
you have. Now just tell me the information selected by the filter uncleF.n3.

Note that any data in the filter is not used. It is easy to imagine that the machine knows something because you
can see it in the filter file. However, the filter file is only searched for rules. If you want to include the data, you
can put it into a separate input file, or you can even add the filter file as an input file as well as using it as the
filter.

6.3.1 Combining cwm steps

In a lot of cases, one wants to take input, decorate the information with new stuff inferred using rules (with
--think) and then filter out the essence of what is needed. Commands like

cwm income.n3 expenses.n3 categorize.n3 --think --filter=taxable.n3

are common ways of using cwm.

6.4 Report Generation
All the examples above process data and leave the result in N3. It is easy of course to generate RDF/XML, too.

What do you do to generate something else, maybe an XHTML page, or an SVG diagram?

6.4.1 Using RDF/XML and XSLT

If you are used to XML tools such as XSLT, then you can generate the RDF/XML of your data, and then use
XSLT to transform it into a report. When you do this, you may want to use the rdf output control flags to tell
cwm how you like your output. There is also the --bySubject output method which prevents the
"pretty-printing" of XML.

See examples: Making .dot files, ...

6.4.2 Using --strings to output text

Another way is to output strings from cwm. This may work well or seem a bit weird, depending on your
application. Remembering that all the data in cwm is stored in a big unordered pot, the trick is to tell cwm where
you want things on the output stream. This is done by giving each output string a key using log:outputString
relationship from key to string.. The --strings option then outputs all the strings which have keys, in order of key.
You can use string:concatenation to build the strings out of data. You can also use it to build the key.

{ ?x.context:familyName ?k.

 (?x.context:givenName " " ?x.context:familyName "has been invited\n")
string:concatenation ?s

} => {

 ?k log:outputString ?s.

}.

15

Processing your data using N3 and Cwm

This says if k is someone’s family name, and a string is made by concatenating their given name, a space, their
family name and " has been invited\n", then that string is output in order of key. In other words, in order of
family name.

See examples: tax report

6.5 Debugging
This is all very well, but what happens if it doesn’t work? There are a number of ways of looking at problems.
They are not in order.

Checking the syntax of files when you have finished editing them can save both later. You can just load the file
with the --no option so that the syntax is checked by no output is done.

If a rule isn’t firing, try commenting out one of the conditions to see which isn’t firing.

Try calculating intermediate results, dividing a big rule into more than one step.

You may have misspelled a term. If you do that, it just won’t match but it will be perfectly good syntax. To catch
this, validate your file using the DAML validator or the cwm validator. These will check that the terms you use
are indeed declared in a schema. It’ll check a few other things too.

If you think it would help to know what cwm is doing, you can run cwm with --chatty=50, or any value
between 0 and 99. It is often useful to change the --chatty flag at various times in the command line, setting
it back to zero when you don’t need it. You will find 15 tells you when files are being opened, 25 gives a list of
the things cwm has deduced, then increasing levels give you more and more of the gorey details of what happens
inside. If a rule isn’t firing, look for "no way" in the debug output.

Get cwm to read your input file and output them again (cwm foo.n3 > ,foo.n3). Looking at the file in its
new format sometimes shows up a bug: is that really what you meant?

Think.

6.6 Tips
When you use N3, you find that all your files, data and rules, can all be in the same language. Sometimes, when
using tools like make, it is convenient to give files different file extensions depending on their role. You might
want to leave the rule files as .n3, but make the sensor data .sen and the analyzed data as .ana. Then you can
make makefile rules to map create .ana files from .sen files.

If you need to pass parameters to your rules, for example something to search for, or your name, then pass them
as command line arguments, putting them at the very end of the cwm command line, after a --with. Then, the
os:argv builtin function can be used to pick up the value of each argument, as "1".os:argv and so on.

6.7 More
At this point, you should be getting the hang of it and be writing stuff. To give you some more ideas, though,
there is a longer list of more complex and varied examples. These come with less tutorial explanation.

Have fun!

16

Processing your data using N3 and Cwm

7 Built-in functions in Cwm
The processing we have done so far involves matching existing data against a template, and where a match
occurs, generating more inferred data. This is much like which you do with a database using SQL, and just as
with SQL, in practice you need to be able to combine it with basic arithmetic, string operations, and so on.

This is done by some magic "built-in" properties of which cwm knows the meaning. It automatically test the
truth of a statement, or calculate the rest of the statement given part of it.

Built-in functions are properties for which cwm can calculate the object, given the subject.

Built-in inverse functions are properties for which cwm can calculate the subject, given the object.

Some built-ins are both. Examples are log:uri, the relationship between a resource and its URI, and
time:inSeconds, the relationship between a date-time in standard string form and the date-time as number
seconds since the start of the era. One can work these either way.

Relational operators are bultins where you can’t calculate either side from the other, but you can test for truth if
both sides have been resolved. Examples are comparison operations such as math:equalTo and
string:greaterThan.

A complete list of of bultin- functions is available.

Builtin-in functions in cwm only work when they are used inside the left-hand side of a rule.

They are only used to figure out what things could take the place of a variable. If you just add data to the strore
with a built-in function in it, it is just stored.

Let’s make a more complicated thermostat rule::

{ :thermostat :temp ?x. ?x math:greaterThan "70" } log:implies { :cooling :power "high" } .

The first part, :thermostat :temp ?x, is statisfied by looking in the strore, where presumably the
temperature at the thermostat is stored as, say, :thermostat :temp "76.4". Under the hypothesis that ?x
is is "76.4", then the second part, which now looks like "76.4" math:greaterThan "70" , is satified just by the
built-in property of the math:greaterThan operator.

You can use path expressions to invoke builtins: this is of course especially useful for chaining them.

{ "1".os:argv^log:uri log:semantics ?f } => { ?f a :InputFormula }.

You could read this along the lines of "If the first command line argument -- well, whatever has that as a URI --
has semantics f, then f is an input formula". Here it is in longhand:

{ "1".os:argv ?x.
 ?d log:uri ?x.
 ?d log:semantics ?f
} => {
 ?f a :InputFormula
}.

Some functions need more than one parameter. The convention we have used is that they take lists as the subject.

{ ((?x.tempInF "32").math:difference "0.5555") math:product ?c) } => { ?x tempInC ?c}.

Let’s look at that one without the path expressions.

17

Tutorial - Built-in functions in cwm

{ (?x.tempInF "32") math:difference ?a.
 (?a "0.5555") math:product ?c.
} => {
 ?x tempInC ?c.
}.

Tip: Its useful to think of where the rule engine is going to start with some data, which will alow it to find the
values of variables.

{ ?x math:greaterThan ?y. } => { ?x :moreInterestingThan ?y }.

This doesn’t give cwm, a forward reasoner, much to go on. It won’t list all pairs of number where the first is
greater than the second. A backward reasoner, such as Euler, will be able to use that. Future semantic web
engines will get smarter about picking rules to use and algorithms to use them with.

These built-in functions give allow you to use basic properties of strings and numbers in your rules. They also
allow you to do pragmatic things, such as pick up command line parameters and environment variables, which
allow the whole rules system to be parameterized. They also allow you do do somthing else. They allow you to
make rules which interrogate the Web, parse documents, and look objectively at the contents of documents. This
opens up some very interesting possibilities -- so much so that it warrants a move to the next chapter.

18

Tutorial - Built-in functions in cwm

8 Trust
In the real world, you don’t want a program doing things without being careful. One of the more difficult things
is figuring out what rules you really use for deciding what data to trust. The Semantic Web doesn’t make that
social problem much easier. When you have figured out a trust model, the Semantic Web allows you to write it
down. Not only that -- if we introduce cryptographic built-in functions, we can actually make a system which
will use public key cryptography to check the authenticity of data.

This can of course get very big, and as complicated as your social or business environment. However, we can
give a taste with a simple example. The idea here is not to learn this particular cryptographic library, but to get
the feel of what can be done.

8.1 Delegated authority
Suppose we want to set up an access control system for the W3C Member site. (Yes, even though companies
support W3C just because is a good thing, many quite reasonably need this "what’s in it for me?" justification).

We will formalize the social arrangements and then we will write the rules which encapsulate those
arrangements so that they can be followed by a machine. Let’s just take the case of a web page which is only
accessible to W3C members. What does that mean? Well, when a company or organization joins the W3C
Advisory Committee representative is chosen as the liaison between everyone at the organization and everything
happening at W3C. Currently (2003) when someone says they belong to a company and want to access the
member site in that role, we check, by email, with the AC rep. Let’s design a system to do it with digital
signature.

In this picture, Alan Kotok is the W3C associate chairman who deals with membership. In this case, Kari is the
AC rep for W3C member Elisa Communications. Alan delegates to Kari the right to say who, as a employee of
Elisa, get access to the W3C Member Site.

19

Trust

8.1.1 Master Key

Alan’s authority to define who is a W3C is represented by a digital key. he generates it using the command

cwm access-gen-master.n3 --think --purge > access-master.private

where the access-gen-master.n3 contains:

Generate master key

@prefix : <#> .
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix crypto: <http://www.w3.org/2000/10/swap/crypto#> .
@prefix string: <http://www.w3.org/2000/10/swap/string#> .
@prefix acc: <http://www.w3.org/2000/10/swap/test/crypto/acc.n3#>.

this log:forAll :x , :y.

{ :x crypto:keyLength "1024";
 crypto:publicKey :y } log:implies {
 :x a acc:MasterKeyPair; a acc:Secret. :y a acc:MasterKey } .

log:forAll a log:Chaff.
log:implies a log:Chaff.

The crypto:keyLength built-in generates :x, which a string which actually contains both the private and the
public keys. This is convenient, as anyone who knows a private key needs to keep track of which public key goes
with it. This is not a very semantic web function, as it isn’t repeatable rule you can reuse - it is just a trick for
generating a key. (It will generate a different key each time, although the library at one stage didn’t do that to
make debugging easier).

The crypto:publicKey builtin is a function which strips out the private parts of a key :x, leaving only the
public part :y. Note we have class here :Secret which we just use for labelling things which we don’t want
another person to know.

The log:Chaff part is to label those bits which are for deletion by the --purge command, just to leave the key file
clean of stuff we don’t want.

Kari also generates a key, which represents the authority has as Elisa’s representative. he does this in an identical
fashion, using access-gen-elisa.n3. The actual passing of authority happens when Kari gives the public
part of his key to Alan, in some way secure enough for Alan to be sure enough it , and Alan then signs something
to the effect that it is indeed Kari’s key as AC rep for Elisa.

cwm access-elisa.public access-master.private access-sign-member-cert.n3 \
 --think --purge --with "Elisa" > access-eliza.cert

Here, Alan uses the private key which he (alone) has access to and the public key which Kari gave him.
access-sign-member-cert.n3 is a rule file which does the signing. It contains, in essence:

20

Trust

{ :n is os:argv of "1".
 :tk a acc:MemberKey.
 { :tk a acc:MemberKey;
 acc:authorityName :n;
 acc:junk "327462sjsdfjsakdhfkjsafd32164321"
 } log:n3String :str.
 :kp a acc:MasterKeyPair.
 :k a acc:MasterKey.
 ([is crypto:md5 of :str] :kp) crypto:sign :z
} => {
 :str acc:endorsement[acc:signature :z; acc:key :k
} .

:n resolves to be the name "Elisa", :tk resolves to be Elisa’s public key. The string str is string form of the
certificate formula, as the digital signatures work on strings. The MD5 checksum of the string is formed, and that
is signed with the master key pair (:kp). All this happens as the left hand side of the rule is resolved, and when it
has, then the conclusion is that that string has an endorsement which has a given signature and a given public
key. This endorsement information is the certificate.

In exactly the same fashion, Tiina, the employee, makes a key, and gets a certificate from Kari about that key.

Then the time comes that Tiina wants to access the member site. She makes up a request for the web page, and
signs it with her private key.

cwm access-tiina.private access-sign-request.n3 \
 --think --purge --with http://www.w3.org/Member > access-1.request

The with command passes in the URI of the page she would like to access.

The crux of this whole system is the file access-rule.n3 which tells the web site how to trust a request.
And the crux of that is its first rule. It is a bit simple but you should get the idea. It says that:

if a request is supported by a key, and there is a certificate -- signed itself with k2 -- which says k is a good
request key, and that there is some other certificate, signed with the master key, that says that k2 is a
member key, then the request is a good request.

The other details of what "supported" means are below.

this log:forAll :d, :F, :G, :k, :k2, :k3, :kp, :x, :request, :sig, :str, :y , :z , :q .

The rule of access.
#
acc:requestSupportedBy means that it correctly claimed to be
signed by the given key.

{ :request a acc:GoodRequest } is log:implies of
{
 :request acc:forDocument :d;
 acc:requestSupportedBy :k.

 [] acc:certSupportedBy :k2; # Certificate
 log:includes { :k a acc:RequestKey }.

 [] acc:certSupportedBy [a acc:MasterKey]; # Certificate
 log:includes { :k2 a acc:MemberKey }.

}.

What is a Master key?
#
(we could just put in the text here)

21

Trust

{ <access-master.public> log:semantics [
 log:includes {:x a acc:MasterKey}]
} log:implies {:x a acc:MasterKey}.

What do we belive is a request?
We trust the command line in defining what is a request.

{ "1"!os:argv!os:baseAbsolute^log:uri log:semantics :F.
 :F log:includes { :str acc:endorsement[acc:signature :sig; acc:key :k]}.
 :k crypto:verify ([is crypto:md5 of :str] :sig).
 :str log:parsedAsN3:G } log:implies { :G acc:requestSupportedBy :k }.

What do we believe from a signed request?
- what it says it is asking for.
- what it quotes as credentials
It could actually enclose a copy of the credentials inline,
but here we use the web. A credential is a document which
provides evidence in support of the request.

{:G acc:requestSupportedBy :k; log:includes {:G acc:forDocument :d}} =>
 {:G acc:forDocument :d}.

{:G acc:requestSupportedBy :k; log:includes {:G acc:credential :d}} =>
 {:G acc:credential :d}.

What do we belive from a signed credential.
#
In this case, just note that a key supports the signed formula.
The fact of this support is used in the access rule above.
We don’t actually beleive everything the certificate says.

{ [] acc:credential [log:semantics :F].
 :F log:includes { :str acc:endorsement[acc:signature :sig; acc:key :k]}.
 :k crypto:verify ([is crypto:md5 of :str] :sig).
 :str log:parsedAsN3 :G } log:implies { :G acc:certSupportedBy :k }.

The important thing is that we are really trusting very specific information from different sources.

Here is the complete data flow in summary.

22

Trust

The bit at the bottom shows how the picture itself, make.svg, was generated from the Makefile - via RDF of
course. Some people have actually started to use RDF just because of the diagram drawing facility, but we hope
by this stage that you will have a longer term and wider vision of the value of Semantic Web!

8.2 Conclusion
You will notice that in this example we didn’t use a PKI certificates looked up in a x.509 hierarchy. We could
have. We would have used an RDF interface to PKI.

There are two interesting reasons not to. One is that in designing the system from scratch we defined exactly how
it works. We defined what information Alan signed about Kari, without involving any other information actually
identifying Kari as an individual person in the world. We don’t need to know Kari’s social security number with
the Finnish government. The key represents Kari in the role he plays in this system. Because we are using RDF,
we can put whatever information into the certificate we like. We don’t have to worry about extending the
certificate format. Because what we are doing concerns the relationships between the social entities involved
without bringing in any superfluous external authority, it is more weblike in nature. We are freer to model the
actual social trust system we use.

The other interesting point is that the amount of software for working out whether a request is valid is in fact
quite small. The access rule is the secure part which is specific to this system. Apart from that the trusted code
base is a general-purpose engine and a cryptographic library.

One can make the code base even smaller. Tiina can herself run the access rule herself, and generate a proof - an
output of the bits of data used and rules used step by step. The web server then only has to check this proof.
Although it wasn’t very difficult, it did involve running a simple inference engine. Checking a proof is in fact
simpler. (Cwm is being adapted to generate proofs, but it can’t do it yet for this case) . We assumed that Tiina
had a program to generate the request which know exactly how to do it. You could imagine a more difficult
situation in which her access agent had to search for some connection between her and W3C, and find a way of
justifying the request. In this case, finding the credentials could have taken a long time, or used special
knowledge -- things which the web server itself wouldn’t want to worry about. The proof sent would then
contain just the essential information actually used to justify entry. The web server’s trusted code base would be
a proof checker and a digital signature validator. That’s the sort of thing it every processor could have in ROM
when it is made.

The ability to write rules about what document actually says what allows us to make systems which behave in
predicatable and appropriate ways in the real world. Cryptography gives use the ability to build secure systems,
which in a weblike way allow us to express what the real trust situation.

23

Trust

9 Semantic Web Application Integration: Travel Tools
The bane of my existence is doing things I know the computer could do for me. When I got my proposed July
2001 travel itinerary in email, I just couldn’t bear the thought of manually copying and pasting each field from
the iterary into my PDA calendar. I started putting the Semantic Web approach to application integration to
work.

The Semantic Web approach to application integration emphasizes data about real-world things like people,
places, and events over document structure. Documents are important real-world things too, of course. And
Semantic Web data formats benefit from the internationalization support in XML and the growing infrastructure
of tools. But most XML schemas are too constrained, syntactically, and not constrained enough, semantically, to
accomplish these integration tasks:

plot an itinerary on a map [p 26]
import travel itineraries into my iCalendar-happy desktop PIM [p 29]
import travel itineraries into my PDA calendar [p 30]
produce a brief summary of an itinerary for use in plain text email [p 30]
check proposed work travel itineraries against family constraints [p 31]
tell me when my travel schedule brings me unusually near a friend/colleague [p 31]
produce animated views of my travel schedule or past trips [p 31]
find conflicts between teleconferences and flights [p 31]

9.1 Working with legacy data
While more and more of the data in our lives is available in the Semantic Web, there will always be a place for
mechanisms that extract the statements implicit in legacy data.

The data comes from the travel agency like this, probably dumped from their database system:

07 APR 03 - MONDAY
AIR AMERICAN AIRLINES FLT:3199 ECONOMY
OPERATED BY AMERICAN AIRLINES
LV KANSAS CITY INTL 940A EQP: MD-80
DEPART: TERMINAL BUILDING B 01HR 36MIN
AR DALLAS FT WORTH 1116A NON-STOP

I hope that before too long they’ll dump it from their database directly into RDF or perhaps in XML using some
travel industry vocabulary, but

before they’ll do so, somebody will have to show them why it’s valuable
sometimes, for the short term, reverse-engineering the structure of their data is cheaper than getting them to
change their processes

So I wrote a perl script (grokNavItin.pl) to extract statements from the data:

The output of the perl script, itin.nt, is in n-triples (http://www.w3.org/TR/rdf-testcases/#ntriples), a
line-oriented serialization developed in the RDF Core working group for testing parsers. For visual inspection
and debugging, we use cwm to pretty-print it in N3. The result look like this:

24

Semantic Web Application Integration: Travel Tools

 :_gflt3199_3 a :_gECONOMY_5;
 k:endingDate :_gdayMONDAY07_2;
 k:fromLocation <http://www.daml.org/cgi-bin/airport?MCI>;
 k:startingDate :_gdayMONDAY07_2;
 k:toLocation <http://www.daml.org/cgi-bin/airport?DFW>;
 t:arrivalTime "11:16";
 t:carrier :_gAMERICANAIRLINES_4;
 t:departureTime "09:40";
 t:flightNumber "3199" .

 :_gAMERICANAIRLINES_4 a k:AirlineCompany;
 k:nameOfAgent "AMERICAN AIRLINES" .

 :_gECONOMY_5 r:value "ECONOMY" .

 :_gdayMONDAY07_2 a k:Monday;
 dt:date "2003-04-07" .

9.1.1 Choosing a Vocabulary: Build Or Buy?

The import script not only bridges the syntactic gap between the legacy data and RDF, but it also translates the
vocabulary of terms used in the data into URI space. This raises the classic build-or-buy choice:

use (buy) an existing, general-purpose vocabulary
If we can accept the risk of putting word’s into the source’s mouth, we can benefit from an economy of
scale of shared vocabulary such as the cyc ontology of common sense transportation terms
(http://www.cyc.com/cyc-2-1/vocab/transportation-vocab.html).

build a vocabulary just for this purpose
A special-purpose vocabulary isolates the data from risks of version skew and such.

Early versions of the import script used a special-purpose vocabulary; rules to relate this vocabulary to other
vocabularies were developed one at a time. But eventually a pattern of using the general purpose cyc ontology
emerged, and the expected benefit of maintaining the special-purpose ontology was dominated by the cost. More
recent versions convert directly to terms in shared ontologies, except in the case where custom terms were
needed:

25

Semantic Web Application Integration: Travel Tools

cyc terms (prefix k:) in red
DAML airport ontology terms in purple
custom travelTerms (prefix t:) in green. e.g. departureTime, flightNumber, ...; see travelTerms, in
RDF/xml, RDF/n3.
RDF standard terms (prefix r:)in blue
XML Schema terms (prefix dt:)in orange

Note that mixing vocabularies in RDF is easy; so easy, compared with the general problem of mixing XML
namespaces, that I hardly notice it at all. Within the basic subject/predicate/object abstract syntax, terms can be
combined freely. Migrating to more specialized or more generalized terms is cheap, using
rdfs:subPropertyOf and the like.

9.2 Integration with mapping tools
Let’s exploit the effort we have put into going beyond formalized document structure into formalized data about
the real world. Folks in the DAML project (http://www.daml.org/) have imported airport lat/long data into the
semantic web; we can use log:semantics to reach out and get it with rules like these, excerpted from
airportLookup.n3:

well-known airports...
{ :X a :Y; #@@kludge...
 log:uri [str:startsWith "http://www.daml.org/cgi-bin/airport?"] }
 log:implies { :X a :AirportKnownToDAML }.

{ :X apt:iataCode :K.
 :Y log:uri [is str:concatenation of
 ("http://www.daml.org/cgi-bin/airport?" :K)];
}
 log:implies { :Y a apt:Airport; apt:iataCode :K; = :X }.

26

Semantic Web Application Integration: Travel Tools

we only want to look up certain airports...
{ [k:toLocation :X]. }
 log:implies { :X a :InterestingPlace }.
{ [k:fromLocation :X]. }
 log:implies { :X a :InterestingPlace }.

believe what daml.org says about airport latitutde/longitudes...
:AirportProperty is rdf:type of
 apt:latitude,
 apt:name,
 apt:iataCode,
 apt:icaoCode,
 apt:location,
 apt:latitude,
 apt:longitude,
 apt:elevation.

{
 :P a :AirportProperty.
 [a :AirportKnownToDAML, :InterestingPlace;
 log:semantics [
 log:includes {
 :IT :P :X.
 }
]].
} log:implies {
 :IT a apt:Airport; :P :X.
}.

For the convenience of consumers (including ourselves), we publish in RDF/XML the results of reaching out
with the rules; i.e. the itinerary including the lat/long info. Then we use the (little documented) cwm
--strings output mode to generate two files, itin-arcs and itin-markers, as input to xplanet
(http://xplanet.sourceforge.net/):

27

Semantic Web Application Integration: Travel Tools

The resulting map shows that we have given the machine a fairly deep understanding of the itinerary:

28

Semantic Web Application Integration: Travel Tools

9.3 Integration with iCalendar Tools
In fact, the published RDF/XML version of the itinerary is joined not only with latitude/longitude data, but also
timezone data, and elaborated via itin2ical.n3 rules into an RDF representation of the standard iCalendar syntax.

{ :FLT
 k:startingDate [dt:date :YYMMDD];
 k:endingDate [dt:date :YYMMDD2];
 t:departureTime :HH_MM;
 k:fromLocation [:timeZone [cal:tzid :TZ]];
 t:arrivalTime :HH_MM2;
 k:toLocation [:timeZone [cal:tzid :TZ2]].
 :DTSTART is str:concatenation of
 (:YYMMDD "T" :HH_MM ":00"). #@@ extra punct in dates
 :DTEND is str:concatenation of
 (:YYMMDD2 "T" :HH_MM2 ":00").

 (:FLT!log:rawUri "@uri-2-mid.w3.org") str:concatenation :UID. #@@hmm... kludge?
}
 log:implies {
 :FLT a cal:Vevent;
 cal:uid :UID;
 cal:dtstart [cal:tzid :TZ; cal:dateTime :DTSTART];
 cal:dtend [cal:tzid :TZ2; cal:dateTime :DTEND].
}.

The final syntactic export is more complex than the markers/arcs case, so we wrote a python program,
toIcal.py, using the cwm API, to generate iCalendar syntax.

We can import the resulting iCalendar file into an of a number of interoperable tools, such as Ximian Evolution:

29

Semantic Web Application Integration: Travel Tools

9.4 Conversion for PDA import
The itin2ical.n3 rules were actually developed after my Palm Pilot broke and I switched to an iCalendar tool. The
original rules mapped to an RDF vocabulary for the palmpilot datebook, developed for use with palmagent
(http://dev.w3.org/cvsweb/2001/palmagent/), an HTTP/RDF interface to my PDA:

9.5 Plain Text Summaries
All this rich integration is great when the tools are all working and you have plenty of bandwidth and all that, but
sometimes, plain text is necessary and sufficient for the task at hand. For example, if I get mail asking when I
arrive at the meeting site, mailing back a map is probably overkill, and I can’t be 100% sure their desktop is
iCalendar-happy.

The cwm --strings output mode can be really handy in these cases; we can use a few itinBrief.n3 rules ala...

python cwm.py itinBrief.n3 itin.nt --think --strings

to get a summary ala...

2003-04-07 09:40 - 11:16 MCI->DFW Monday AMERICAN AIRLINES #3199
2003-04-07 12:03 - 15:49 DFW->MIA Monday AMERICAN AIRLINES #68
2003-04-10 19:12 - 21:32 MIA->ORD Thursday AMERICAN AIRLINES #1477
2003-04-10 22:33 - 23:54 ORD->MCI Thursday AMERICAN AIRLINES #1081

30

Semantic Web Application Integration: Travel Tools

9.6 Checking Constraints
Now that I have the proposed itinerary formalized, I can automatically check it against various constraints before
I accept it and before I copy it to my PDA and to all the other peers that need to know about it.

Rules like "itineraries that have me leaving before 30 July are no good" are a bit tedious to formalize, but my
confidence in the results is higher than my confidence in eyeballing it:

{
 ?D a k:ItineraryDocument; k:containsInformationAbout-Focally ?TRIP.
 ?TRIP k:subEvents
 [k:startingDate [dt:date ?D1];
 k:fromLocation [apt:iataCode "MCI"];
 t:departureTime ?T1;
].
 ?D1 str:lessThan "2001-07-30".
} => {
 ?TRIP <#leavesDaysTooSoon> ?D1;
 <#at> ?T1.
}.

These constraints can be checked with cwm ala:

$ python cwm.py proposed-itinerary.nt --think=constraints.n3

... and look for <#leavesDaysTooSoon> in the output.

9.7 Conclusions and Future Work
For the first few integration tasks, it might have been less work to just manually copy the data, field by field. But
the return on investment increases with each trip I take, each system we integrate with, and each collaborator
who develops an interoperable tool.

The DAML project is a source of not just airport lat/long data, but also tools such as DAML itinerary
(http://www.daml.org/2001/06/itinerary/) by Mike Dean.

Ideas for future work include:

animated views of my travel schedule or past trips
peer-to-peer synchronization, ala "if it’s in this schedule scraped from an HTML page I maintain, but not in
my evolution calendar, print it out in .ics format for import".
based on my addressbook and my travel schedule (and the travel schedules of folks in my addressbook...)
tell me when my travel schedule brings me unusually near a friend/colleague
find conflicts between teleconferences and flights

31

Semantic Web Application Integration: Travel Tools

10 Glossary
These are not formal definitions - just phrases to help you get the hang of what these things mean. The definition
terms are linked back to more information where available.

Class [p ??]
A set of Things [p 33] ; a one-parameter predicate; a unary relation.

DAML
Darpa Agent Markup Langauge. This is DARPA’s name for the US govenment funded projects which led
to, among other things, OWL. The DAML site (http://www.daml.org/) has useful pointers and registries of
useful ontologies and data in RDF.

domain [p ??]
For a Property [p 32] , a class of things which any subject of the Property [p 32] must be in.

Formula [p ??]
An (unordered) set of statements [p 32] . You can write one out in N3 using {braces}.

context
The relationship between a statement and a formula containing it.

cwm
(From: Closed world machine; valley.) A bit of code for playing with this stuff, as grep is for regular
expressions. Sucks in RDF in XML or N3, processes rules, and spits it out again.

existential variable
A term in a language (such as N3) which stands in place of a normal symbol, allowing one to consider a
formula being true for some symbol being put consistently in place of the variable.

filter [p ??]
A set of rules [p 32] which are used to select certain data from a larger amount of information.

Formula
A set of statements [p 32] , with a list of universally quanitified variables and a list of existentially
quantified variables. In N3, a literal formula if representated by braces {}.

N3
Notation3, a quick notation for jotting down or reading RDF semantic web information, and experimenting
with more advanced sematic web features.

object [p ??]
Of the three parts of a statement, the object is one of the two things related by the predicate. Often, it is the
value of some property, such as the color of a car. See also: subject, predicate.

OWL
The Web Ontology Language standard from W3C. Currently (2003/04) on the Recommensation track. An
RDF vocabulary.

predicate
Of the three parts of a statement, the predicate, or verb, is the resource, specifically the Property, which
defines what the statement means. See also: subject, object.

Property [p ??]
A sort of relationship between two things; a binary relation. A Property can be used as the predicate [p 32]
in a statement [p 32] .

range [p ??]
For a Property [p 32] , its range is a class which any object [p 32] of that Property [p 32] must be in.

rule
A loose term for a Statement that an engine has been programmed to process. Different engines have
different sets of rules. cwm [p 32] rules are statements [p 32] whose verb is log:implies.

Resource
That identified by a Universal Resource Identifier (without a "#"). If the URI starts "http:", then the resource
is some form of generic document.

Statement
A subject, predicate and object which assert meaning defined by the particular predicate used.

32

Glossary

subject
Of the three parts of a statement, the subject is one of the two things related by the predicate. Often, it
indicates the thing being described, such as a car whos color and length are being given. See also: object,
predicate

Thing
In OWL, a generic name for anything - abstract, animate, inanimate, whatever. The class which anything is
in. (In RDF parlance, confusingly, rdf:Resource.) Identified by a URI with or without a "#" in it. Tip:
Saying something is a Thing doesn’t tell anyone anything, which is why you don’t see it much.

Truth
In the log: namespace, a Class of all formulae which are true.

type
A particular property used to assert that a thing is in a certain Class. The relationship between a thing and
any Class it is in.

universal variable
A term in a language (such as N3) which stands in place of a normal symbol, allowing one to consider a
formula being true for any symbol being put consistently in place of the variable.

URI
Universal Resource Identifier. The way of identifying anything (including Classes, Properties or individual
things of any sort). Not everything has a URI, as you can talk about something by just using its properties.
But using a URI allows other documents and systems to easily reuse your information.

variable
Either a universal variable [p 33] or an existential variable [p 32] .

33

Glossary

View publication statsView publication stats

