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Variations of nucleotidic composition affect phylogenetic inference conducted under stationary models of evolution. In
particular, they may cause unrelated taxa sharing similar base composition to be grouped together in the resulting phy-
logeny. To address this problem, we developed a nonstationary and nonhomogeneous model accounting for compositional
biases. Unlike previous nonstationary models, which are branchwise, that is, assume that base composition only changes at
the nodes of the tree, in our model, the process of compositional drift is totally uncoupled from the speciation events. In
addition, the total number of events of compositional drift distributed across the tree is directly inferred from the data. We
implemented the method in a Bayesian framework, relying on Markov Chain Monte Carlo algorithms, and applied it to
several nucleotidic data sets. In most cases, the stationarity assumption was rejected in favor of our nonstationary model. In
addition, we show that our method is able to resolve a well-known artifact. By Bayes factor evaluation, we compared our
model with 2 previously developed nonstationary models. We show that the coupling between speciations and compo-
sitional shifts inherent to branchwise models may lead to an overparameterization, resulting in a lesser fit. In some cases,
this leads to incorrect conclusions, concerning the nature of the compositional biases. In contrast, our compound model
more flexibly adapts its effective number of parameters to the data sets under investigation. Altogether, our results show
that accounting for nonstationary sequence evolution may require more elaborate and more flexible models than those
currently used.

Introduction

Base composition has been shown to be highly vari-
able among species (Jukes and Bhushan 1986; Montero
et al. 1990; Bernardi 1993), a phenomenon generally
denoted as compositional biases. When analyzing phyloge-
netic relationships between species using standard methods,
a similar nucleotidic composition is often interpreted as
phylogenetic signal, leading unrelated species to be
grouped together in the resulting tree (Lockhart et al.
1992, 1994; Lake 1994; Galtier and Gouy 1995; Yang
and Roberts 1995; Foster and Hickey 1999; Mooers and
Holmes 2000; Foster 2004).

A first way to avoid this problem consists in recoding
the character states into functional groups, so as to homog-
enize the composition between sequences. For instance, the
RY coding (Woese et al. 1991) consists in replacing nucleo-
tides A and G by R (purine) and C and T by Y (pyrimidine).
In this way, only transversion events are considered,
nucleotides A and G, C and T become synonymous and
GC biases are removed. As transitions often occur more
frequently than transversions (Brown et al. 1982), the RY
coding also decreases saturation and this enhances ancient
phylogenetic signal. It has been used for resolving deep
divergences (Phillips and Penny 2002; Delsuc et al.
2003). An analogous coding system has been proposed
for amino acid sequences (Dayhoff coding, Hrdy et al.
2004). More generally, one can accommodate the data
by removing saturated sites from the analysis such as third
codon positions (Swofford et al. 1996; Delsuc et al. 2002;
Canbäck et al. 2004) or fast-evolving sites (Brinkmann and
Philippe 1999; Philippe et al. 2000). These methods have
not been specifically devised to deal with compositional
biases, but assuming that biased sites are generally among

the fast-evolving ones, they should nevertheless be efficient
against them. Altogether, these filtering and recoding meth-
ods have proven quite effective, in particular, for resolving
deep divergences (Philippe et al. 2000; Phillips and Penny
2002; Delsuc et al. 2003). On the other hand, they may also
result in a loss of phylogenetic information. Moreover, the
RY and the Dayhoff coding may not be efficient in all sit-
uations. For instance, the RY coding only alleviates GC
biases and will not efficiently suppress more general com-
positional shifts in DNA composition.

All methods mentioned thus far aim at filtering away
the compositional bias from the data set but do not question
the underlying evolutionary model itself, which is still as-
sumed to be stationary and homogeneous. In contrast, a se-
ries of methods based on nonstationary models have been
proposed. Among them, there are distance-based methods,
such as the ‘‘LogDet’’ (Lockhart et al. 1994), ‘‘paralinear’’
(Lake 1994), or modified ‘‘Tamura–Nei’’ (Tamura and
Kumar 2002) distances, and full-likelihood approaches,
based on maximum likelihood (Yang and Roberts 1995;
Galtier and Gouy 1998) or Bayesian (Foster 2004) frame-
works. Some of these methods have been successfully ap-
plied, in particular, to studies about ancestral GC contents
(Galtier et al. 1999; Tarrio et al. 2001) or to phylogenetic
inference from GC-biased sequences (Herbeck et al. 2004).

In the model proposed by Galtier and Gouy, a single
parameter is associated to each branch of the phylogenetic
tree. This parameter represents the branch-specific GC ra-
tio. The model proposed by Yang and Robert accommo-
dates more general biases as 3 free parameters, handling
frequencies for each of the 4 nucleotides, are assigned to
each branch. In both models, the values of the parameters
are estimated from the data by maximum likelihood. How-
ever, associating different compositions to each branch may
result in a large amount of free parameters, and problems of
overparameterization may then be encountered (Foster
2004). In order to reduce such overparameterization effects,
Foster (2004) proposed a model based on a predefined num-
ber of clusters of base frequencies, smaller than the number
of branches. The base frequencies of each cluster, and the
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cluster each branch is associated to, are sampled from their
joint posterior distribution by Markov chain Monte Carlo
(MCMC, Neal 1993). Such a method may be effective
in reducing the number of parameters. On the other hand,
it still lacks flexibility as the number of different clusters is
fixed to a prespecified number. Ideally, this number should
be a free parameter of the phylogenetic inference. More-
over, it does not completely address the problems that
are the original cause of the overparameterization of the
branchwise models, such as those of Galtier and Gouy
or Yang and Roberts. Fundamentally, this overparameteri-
zation is a consequence of the fact that the equilibrium fre-
quencies of the substitution process are reassessed at the
base of each branch of the tree, whereas in many practical
situations, the equilibrium frequencies may have remained
constant for time periods spanning several branches, some-
times entire groups. Moreover, in the branchwise models,
changes of compositional bias are associated with specia-
tion events, that is, with the nodes of the phylogenetic tree,
which is not realistic; speciation events and changes of
composition should ideally be uncoupled.

In this direction, an interesting solution was proposed
by Huelsenbeck et al. (1999), allowing variations of the
substitution rate along lineages, according to the so-called
compound stochastic process. Specifically, substitutions
between sequence states happen according to a classical
first-order Markov process, whose instant rate is described
by a second, piecewise constant, stochastic process. Real-
izations of the second stochastic process are sampled using
MCMC methods. The number of rate change events is thus
a free variable in the model of Huelsenbeck et al.

Here we propose a nonstationary model, also based on
a compound stochastic process, generalizing the models of
both Galtier and Gouy and Yang and Robert. As in the
model of Huelsenbeck et al., we use an additional stochastic
process operating along lineages, but this time, to model
compositional shift events. Those events occur indepen-
dently from speciations, according to a Poisson process,
and are thus a free, Poisson distributed variable of our
model. Importantly, this approach allows a flexible dimen-
sionality, in contrast to previous proposed nonstationary
models. We implemented this model in a Bayesian frame-
work, using the MCMC approach to sample realizations of
the compositional shift stochastic process, and applied it to
several nucleotidic data sets. In particular, our results show
that its free dimensionality leads our model to better fit the
data, especially compared with the model proposed by
Yang and Robert, which in contrast appears to be penalized
by its lack of control of the dimensionality.

Methods

A set of homologous aligned sequences is available in
the form of a data matrix of J sequences of K sites. Phyloge-
netic relationships between the J extant species are repre-
sented by a rooted binary tree, denoted as s, whose nodes
represent speciation events. A length is associated to each
branch. Let t 5 ft1, ., t2J � 2g, where (1, ., 2J � 2) are
branch indices, denote the set of branch lengths. Addition-
ally, sites have their own rate of substitution, r5 (r1, ., rK),
distributed according to a continuous gamma distribution.

Markovian Model of the Substitution Process

Probabilistic models in phylogenetics usually assume
that sequence evolution can be seen as a Markovian pro-
cess. This Markovian process is defined on a state space
of size S (S 5 4 for nucleotide, S 5 20 for amino acid)
and is characterized by a stochastic instantaneous rate ma-
trix, Q, of size S3 S. Given a stationary probability vector,
p (or ‘‘profile’’), of size S, and a matrix q of relative ex-
change rates between states, a stochastic matrix Q is ob-
tained as follows:

Qlm 5 qlmpm; l 6¼ m; ð1Þ

Qll 5
X
l 6¼m

Qlm: ð2Þ

At a site k of rate rk, and along a branch j of length tj,
the evolutionary distance vjk is

vjk 5 tjrk:

A state l is substituted into a state m in an evolutionary
distance vjk with probability:

PlmðvjkÞ5 ½evjkQ�lm: ð3Þ

Nonstationary Model of Substitution

Homogeneous models of sequence evolution assume
a single Markovian substitution process, defined by a single
Q matrix operating along the whole tree. The Markovian
process is assumed to be at equilibrium, and thus, the model
is stationary. In this article, we design a nonstationary
model of sequence evolution. We model shifts of sequence
composition along lineages as a compound and piecewise
constant stochastic process, defined as follows: discontin-
uous changes occur according to a Poisson process of rate e.
At each discontinuity point, the profile p of the substitution
process (i.e., its stationary probability vector) switches to
a new value p#, directly drawn from a prespecified distri-
bution G0 on the simplex:

pðp#jpÞ5G0ðp#Þ:

We use by default a uniform distribution for G0. Note
that p# is independent from p, consequently the series of
successive compositional shifts follows a 0th-order Markov
process. The relative exchange rates q, which are here con-
sidered as free parameters, are kept constant in the whole
tree, so that the substitution process is described by a sto-
chastic matrix Q5 pq before, and Q#5 p#q after, the dis-
continuity point. Thanks to these compositional shift events,
our nonstationary model can take into account substitution
processes specific to each part of the tree. For example, high
stationary probabilities for G and C found in a given lineage
will drive an evolution toward a GC richer content.

Ideally, the likelihood of particular values of the
parameters (topology, branch lengths, etc.) has to be inte-
grated over all realizations of the stochastic compositional
shift process described above. However, computing this
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integral directly is intractable. We, therefore, use the
MCMC approach to sample realizations of this process.
We call ‘‘break points,’’ or BP, the points at which the dis-
continuous changes occur (fig. 1). A realization of the pro-
cess is then defined by the number (N) of break points, each
of them being specified by its position in the tree and its
associated profile.

Data Structure for the Nonstationary Model

Conditional on a particular tree, of total length T, the
number N of break points follows a Poisson process of rate
e. With N break points, plus a default root break point
placed at the root of the tree (with index 0), we split the
tree into N 1 1 constant areas (i.e., where the substitution
process is homogeneous).

A break point n is entirely characterized by its profile
pn, the lineage where it appears bn (i.e., the branch onto the
break point is placed), and the point along the branch at
which it appears xn (i.e., the relative position of the break
point on its branch bn: 0 , xn , 1), where 0 � n � N. By
extension, for the particular root break point, we defined
b0 5 0, t0 5 0, and x0 5 0. Let us denote by Nj the number
of break point on the jth branch. Thus, N is equal toP2J�2

j5 1 Nj; where J is the number of taxa and 2J � 2 the
number of branches.

Given the global set of relative exchange rates q and
a break point profile pn, one can compute the Qn matrix
(eqs. 1 and 2). Then, substitution probabilities between
states (eq. 3) are computed, in each area of the split tree,
using in each case the relevant rate matrix.

Finally, as the stationary assumption does not apply,
we cannot assume that stationary probabilities at the root
are equal to those of the process at this point of the tree
(i.e., p0). As in Galtier and Gouy, we therefore define an
extraparameter pN, which represents the stationary proba-
bilities at the root. Altogether, the parameter vector h of the
nonstationary model is written:

h5 fs; r; t; q; e; N; ðpnÞ; ðbnÞ; ðxnÞ; pNg:

Probability Densities of the Data Structure

The fact that we define break points with relative posi-
tions on branches induces a nontrivial prior distribution,
which is explained here. Break points appear following
a Poisson process of rate l, as in Huelsenbeck et al.
(1999). Thus, the number Nj of break points on branch j,
of length tj, follows a Poisson distribution of mean ltj:

pðNjÞ5
e
�ltjðltjÞNj

Nj!
:

Given Nj, all possible distributions of the Nj break
points along the branch are equally likely. Denoting one
such distribution by Xj 5 fx1,x2,.,xNj

g, such that
x1,x2,.,xNj

the density of Xj is pðXjÞ5 1
Z; where

Z5

Z
0,x1

Z
,x2

� � �
Z
,xNj

,1

dx1dx2 � � � dxNj
5

1

Nj!
:

The joint probability density for Nj and Xj is thus:

pðNj;XjÞ5
e
�ltjðltjÞNj

Nj!
Nj!5 e

�ltjðltjÞNj :

Taking the product over all branches and rearranging the
factors yields the prior density of the overall break point
distribution:

pðN; xÞ5
Y2J�2

j5 1

ðe�ltjðltjÞNjÞ5e

�
�l
P2J�2

j5 1
tj

�
l

�P2J�2

j5 1
Nj

� Y2J�2

j5 1

t
Nj

j

5 e�lTlN
Y2J�2

j5 1

tNj

j 5
e
�lTðlTÞN

N!

� �
N!

T
N

Y2J�2

j5 1

tNj

j

 !
:

This last formula can be decomposed into 2 factors:
the first factor is the probability of observing N break points
on the whole tree, given a Poisson distribution of rescaled
rate e 5 lT. The second is the probability density of a par-
ticular distribution of the N break points on the tree. We
directly parameterize our model in terms of e, rather than
l. This allows a more direct interpretation of the results: e is
simply the mean number of break points across the whole
tree.

Canonical priors are used for all other model param-
eters. Specifically, we use a uniform prior over topologies
(s), a Gamma distribution of mean 1 and variance 1

a for
the rate across sites (r), an exponential prior of mean 1

b
for the branch lengths (t), an exponential prior of mean
1 for relative exchange rate parameters (q), and finally,
a uniform prior for the profiles (p). The hyperparameters

FIG. 1.—Splitting the tree into piecewise constant areas. Three BP are
placed on the tree: a default break point placed at the root of the tree, de-
fining the black area, and 2 other break points, defining the hatched
and white areas. Each area involves a specific Markovian process of
substitution.
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a, b, and e are also free parameters of the model, and all
follow exponential priors of mean 1.

Likelihood Computation

We can easily adapt the pruning algorithm of
Felsenstein (1981) to compute the likelihood given the
break points and the base frequencies. In effect, each break
point is equivalent to a new node, so that a branch with Nj

break points is subdivided into Nj 1 1 segments. Along
each segment, the vector of partial likelihoods is propagated
using the relevant Q matrix, which is itself obtained by
combining the global set of relative exchange rates with
the local base frequencies.

MCMC Sampling

By Bayes theorem, the posterior probability is propor-
tional to the prior times the likelihood:

pðhjD;MÞ5 pðDjh;MÞpðhjMÞ
pðDjMÞ ;

where D denotes the data, M a given model, and h a partic-
ular realization of its associated parameters. In order to ob-
tain a sample from the posterior distribution of h, we use
the MCMC sampling method, based on the Metropolis–
Hasting’s algorithm. Applying MCMC to phylogenetic re-
construction problems has been developed by Larget and
Simon (1999), Huelsenbeck and Ronquist (2001), and
Huelsenbeck et al. (2002). We have implemented the non-
stationary model into the software ‘‘PhyloBayes’’ (Lartillot
and Philippe 2004), which provides a MCMC implementa-
tion in a stationary context. Briefly, at each step of
a MCMC, one modifies the current value of parameter vec-
tor h, according to a stochastic kernel q(h, dh#), obtaining
a new value h#, which is accepted with probability:

pacceptðh#Þ5min 1;
pðh#jD;MÞ
pðhjD;MÞ

qðh#; dhÞ
qðh; dh#Þ

� �
;

where
pðh#jD;MÞ
pðhjD;MÞ 5

pðDjh#;MÞpðh#jMÞ
pðDjh;MÞpðhjMÞ is the ratio of posterior den-

sities, or Metropolis ratio, and H5
qðh#;dhÞ
qðh;dh#Þ is the Hastings

ratio (Neal 1993), that is, the probability of proposing
a backward modification on h# that would exactly reverse
the forward modification on h, divided by the probability of
the forward modification. Green (2003) provides a general
formula for the Hastings ratio:

H5
g#ðw#Þ
gðwÞ jJj ; ð5Þ

where w and w# are the set of random numbers picked with
distribution g and g#, when modifying h into h#, or symmet-

rically h# into h. The second factor jJj 5 jdet½@ðh#;w#Þ@ðh;wÞ �j is

the absolute value of the Jacobian determinant of the trans-
formation from fh, wg to fh#, w#g. Originally, Green’s
formula was introduced for dealing with reversible
MCMC moves, but as noted by Holder et al. (2005), this
formula happens to be useful in much more general MCMC
frameworks.

Update Mechanisms

Three stochastic kernels, or update mechanisms, were
devised to update the break point structure mapped onto
a given topology, allowing one to update the number, posi-
tions, and profiles of the break points. We also devised 3
topological update mechanisms that keep track of the break
point structure and leave the total length of the tree and the
number of break points unchanged: a ‘‘subtree pruning and
regrafting’’ or SPR, as described by Swofford et al. (1996),
a ‘‘node sliding’’ as described by Lartillot and Philippe
(2004), and a topological move of the root’s position.
All these update mechanisms, and their corresponding
Hastings ratios, are described in the Appendix. Rates across
sites, relative exchange rates, branch lengths, and hyper-
parameters are updated as described by Lartillot and
Philippe (2004).

Nonstationary Model Configurations

Several variants of our nonstationary model can be
proposed. Instead of considering the general compositional
shift process, where state frequencies of the p profiles are
free parameters, one can constrain the model so that pC 5
pG and pA 5 pT, according to a GC ratio parameter. Ad-
ditionally, rather than considering the number of break
points and their positions as free parameters, it is possible
to constrain the model so that a break point is placed at the
beginning of each branch. In this way, our nonstationary
model reduces to the models proposed by Galtier and Gouy
or Yang and Robert. More specifically, if one uses GC ratio
parameters, one obtains the model proposed by Galtier and
Gouy, denoted in the following as GGGC, and otherwise, if
profiles are left unconstrained, the settings are equivalent to
the model proposed by Yang and Robert, denoted as YRp.
By homology, one denotes our model (considering the
number of break points and their positions as free param-
eters) by BPGC and BPp, depending on whether GC or un-
constrained profiles are used. Finally, when constraining
the number of break points to N 5 0, and setting pN 5 p0,
the Markovian substitution process defined at the root is
applied to the whole tree and our nonstationary model re-
duces to a stationary and homogeneous GTR 1 Gamma
model, denoted in the following as STAT.

MCMC Settings

We define a MCMC cycle as the consecutive call to all
relevant update mechanisms, given a model. Some update
mechanisms are called several times, with different tuning
parameters (see table S1, Supplementary Material online
for details concerning a cycle). Continuous update mecha-
nisms were tuned so as to reach an acceptance ratio of 30–
70%. The transdimensional update (creating and deleting
break point) cannot by tuned. Its acceptance ratio was
highly variable, for example, of about 10% for a data set
of 5 16S rRNAs, and seems to decrease as the lengths of
sequences increase. We run chains for a total of 500,000
cycles, discarding a burn-in period of 100,000 cycles
and saving 4,000 samples among the 400,000 remaining
points. Some chains were performed under free topology,
in which case we computed the majority-rule consensus
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(Margush and McMorris 1981) from the topologies of the
4,000 resulting samples. When chains were run under fixed
topology, we estimated for each branch j the mean number
of break points:

bNj 5
1

A

XA
a5 1

Na

j ;

where A is the number of samples, and Na
j is the number of

break points placed on branch j at sample a. We also com-
puted the mean profile per branch:

bpij 5
1

A

XA
a5 1

XNa
j

n5 0

ðxan1 1 � x
a

nÞp
a

in; 1 � i � S;

where bpij is the mean frequency, averaged over A samples,
of state i along branch j, xan11 and xan are the relative posi-
tions of 2 consecutive break points (with xa0 5 0 and
xaNj11 5 taj ), taj is the length of branch j, pain is the frequency
of state i defined at break point n, and a denotes a particular
sample. We estimated standard errors (SE) on bNj and bpij us-
ing the ‘‘window estimators’’ method described by Geyer
(1992), discussed by Raftery and Lewis (1992), and used
by Wilson et al. (2003). The method consists in estimating
the effective size of the sample from its autocorrelation
function. The SE is then equal to the standard deviation di-
vided by the square root of the effective size. To check con-
vergence of the MCMC, each experiment was run twice.

Model Comparison by Bayes Factor Evaluation

Given a data set D, the relative fit between 2 models
M0 and M1 can be formulated by the ratio of their marginal
likelihoods:

B5
pðDjM1Þ
pðDjM0Þ

;

where

pðDjMiÞ5
Z
H

pðDjh;MiÞpðhjMiÞdh:

A Bayes factor B greater (respectively, lower) than one
indicates a support in favor of model M1 (respectively,
M0). To numerically estimate the Bayes factor, we used
the thermodynamic integration method (Ogata 1989; Gel-
man et al. 2004). An implementation of this method is pro-
vided in the PhyloBayes program (Lartillot and Philippe
2006). Specifically, we used the ‘‘model-switch’’ scheme
as defined in that paper. We performed several types of ther-
modynamic integrations: 1) between one of the BPp, BPGC,
YRp, GGGC, and STAT models and the stationary model
already implemented in the PhyloBayes program, under
free or fixed topology, and 2) between 2 topologies under
a fixed model. The first type of thermodynamic integration
allows us to compare fits of model configurations using the
stationary model as a reference. The second type of thermo-
dynamic integration is a way of determining the relative
support of 2 candidate topologies under a given model. Al-
though sampling the topology space already gives such an
answer, problems in the chains’ mixing behavior may be

encountered, and thus evaluation of the following Bayes
factor:

B5
pðDjM; s1Þ
pðDjM; s2Þ

;

where s1 and s2 are the 2 candidate topologies, provides
a confirmation of the results obtained under free topology.

For each experiment, we ran a 1,000,000 cycle long
bidirectional thermodynamic integration. For each direc-
tion, we got a set of 1,000 samples. Sampling, thermic
lag, and discretization errors are combined into a single
95% confidence interval for the Bayes factor approxima-
tion, as proposed by Lartillot and Philippe (2006).

Material

We first applied the nonstationary model to a data set
of 5 eubacterial (Thermus thermophilus, Deinococcus ra-
diodurans, Bacillus subtilis, Thermotoga maritima, and
Aquifex pyrophilus) 16S rRNAs, assembled by Embley
et al. (1993). A topology s1, supported by much indepen-
dent evidences (Murray 1991; Eisen 1995; Gupta 1998),
groups T. thermophilus with D. radiodurans, to the exclu-
sion of B. subtilis, T. maritima, and A. pyrophilus (fig. 2A).
However, this set of sequences is known to be prone
to phylogenetic reconstruction artifacts under stationary
models due to the attraction of sequence of similar com-
position (Embley et al. 1993; Mooers and Holmes 2000;
Foster 2004). The artifact leads to group together the mes-
ophilic bacteria D. radiodurans and B. subtilis, leading
to topology s2 (fig. 2B). In the following, we will call

FIG. 2.—Candidate phylogenies for bacteria Thermus thermophilus,
Deinococcus radiodurans, Bacillus subtilis, Thermotoga maritima, and
Aquifex pyrophilus. (A) The assumed correct phylogeny. (B) A commonly
obtained reconstruction artifact, where mesophilic bacteria with similar GC
content attract together (as well as thermophilic GC richer bacteria, which
also attract together). Percentages indicate the GC content of each species.
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s1 and s2, respectively, as the ‘‘correct’’ and the ‘‘artifact’’
topology.

We additionally compared the fits of the 4 nonstation-
ary model configurations (BPp, YRp, BPGC, and GGGC, see
Methods), on several sets of bacterial 16S rRNAs and of
yeast genes. First, we analyzed 4 data sets of 5, 10, 15,
and 20 Proteobacteria and Deinococci 16S rRNAs (species
belonging to data sets 5, 10, and 20: Pelobacter propioni-
cus, Photobacterium profundum, Vitreoscilla stercoraria,
Sulfurospirillum arcachonensis, and D. radiodurans; to
data sets 10, 15, and 20: Thioploca ingrica, Burkholderia
pseudomallei, Zymomonas mobilis, Alvinella pompejana
epibiont, and T. thermophilus; to data sets 15 and 20: Syn-
trophus gentianae, Flavimonas oryzihabitans, Leptothrix
cholodnii, Rhodospirillum molischianum, and Deinococcus
murrayi; to data set 15: Desulfuromusa bakii, Zymobacter
palmae, Rickettsia honei, Campylobacter rectus, and Ther-
mus ruber; and to data set 20: Desulfovibrio fairfieldensis,
Nitrosomonas europae, Acidosphaera rubrifaciens, Arco-
bacter cryaerophilus, and Thermus filiformis).

Second, we analyzed the BAS1 gene, chosen among
the 106 genes of the data set assembled by Rokas and Carroll
(2005). In the latter case, we investigate 2 versions of the
data set, comprising 7 and 14 species (species belonging
to data sets 7 and 14: Saccharomyces paradoxus, Saccha-
romyces kudriavzevii, Saccharomyces castellii, Saccharo-
myces kluyveri, Kluyveromyces lactis, Debaryomyces
hansenii, and Yarrowia lipolytica; and to data set 14: Sac-
charomyces cerevisiae, Saccharomyces mikatae, Saccha-
romyces bayanus, Candida glabrata, Candida albicans,
Ashbya gossypii, and Kluyveromyces waltii).

For each data set, we evaluated the Bayes factors using
thermodynamic integration between the nonstationary
models and the reference stationary model, under fixed to-
pology (see Methods). For the 4 bacterial 16S rRNAs data
sets, the topologies were obtained using the MrBayes soft-
ware (Huelsenbeck and Ronquist 2001) under the default
GTR 1 Gamma model, and for the 2 yeast gene data sets,
we use the topology obtained using MrBayes, by Jeffroy
et al. (2006) on amino acid sequences. In the latter case,
MrBayes chains were run under the WAG 1 Gamma 1
Invariant model.

Results
Check of Model and Implementation

We performed several checks of our implementation.
First, when the likelihood terms in the Metropolis–Hastings
ratio are omitted, the MCMC should yield a sample from
the prior distribution defined by our model, which we
checked, marginally, on several parameters of interest
(break point number and profiles, relative exchange rates,
branch lengths, fig. S1, Supplementary Material online; and
bipartitions, fig. S2, Supplementary Material online). Sec-
ond, we compared the posterior mean values obtained under
the default GTR 1 Gamma model of MrBayes, with those
of our model configured as closely as possible to MrBayes
(table S2, Supplementary Material online). All parameter
posterior values determined under our model were close
to those estimated by MrBayes: the largest relative differ-
ence is of 0.8%, obtained for the total tree length. This latter

difference still represents 5 times the SE, but this could be
explained by the fact that our stationary configuration is not
strictly identical to that of MrBayes. In particular, the prior
of the relative exchange rates is not the same. Finally, we
performed simulations, and measured the hit probabilities,
as was done by Wilson et al. (2003). The underlying idea is
that, if the implementation is correct, the expected fraction
of the simulations for which the true (simulation) value of
a given parameter falls within the p 3 100% confidence
interval should be equal to p. Our checks (table S3, Supple-
mentary Material online) are consistent with these expected
fractions.

Posterior Values of Model Parameters on
Fixed Topologies

As a way of illustrating the behavior of our model, we
performed a series of fixed topology analyses. We consid-
ered the data set of 5 16S rRNAs (T. thermophilus, D. ra-
diodurans, B. subtilis, T. maritima, and A. pyrophilus) and
run chains under the BPp model, fixing the topology to its
correct s1 or to its artifact s2 configuration. We rooted the
tree as in Olsen et al. (1994) and Galtier and Gouy (1998),
in the branch leading to A. pyrophilus. As the number of
break points on each branch, as well as their respective pro-
files, may change during the MCMC, we propose to visu-
alize the average effect of all these fluctuations by just
looking at the mean posterior number of break points,
and at the mean posterior profiles of stationary probabilities,
on each branch (fig. 3 and table S4, Supplementary Material
online).

On both the correct and the artifact topologies, AT rich
profiles are favored along terminal branches leading to B.
subtilis and D. radiodurans (fig. 3A and B, Supplementary
Material online) and more specifically in the case of the ar-
tifact topology, also along the internal branch leading to the
clade (B. subtilis and D. radiodurans) (fig. 3A). The model
thus takes into account the compositional shift of B. subtilis
and D. radiodurans toward an AT richer content. More-
over, one obtains mean posterior numbers of break point
(1) of 1.030 on the B. subtilis and D. radiodurans ancestor
branch, and of at most 0.074 on all other branches, for the
artifact topology (fig. 3C), and (2) of 1.234 on the B. subtilis
branch, of 1.269 on the D. radiodurans branch, and of at
most 0.117 on all other branches, for the correct topology
(fig. 3D). In other words, on average, the chains mainly
sampled break points on branches leading to the most sig-
nificantly biased sequences of the data set. Moreover, the
model parsimoniously adapts to the correct, or to the arti-
fact, topology and explains the compositional shift of B.
subtilis and D. radiodurans toward AT richness, respec-
tively, as a convergent evolution (2 independent events)
or as a shared derived character (1 ancestral event).

Comparison of 2 Candidate Topologies

We then wanted to know which of the 2 candidate to-
pologies is preferred, depending on the model used, that is,
the nonstationary model BPp or the stationary model STAT.
As expected from previous analyzes (Foster 2004), under
the STAT model B. subtilis groups with D. radiodurans
(artifact topology s2), with a posterior probability of
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0.97. In contrast, under the BPp model, we obtained the
clade (T. thermophilus and D. radiodurans) with a posterior
probability of 1 (correct topology s1).

As a confirmation, we evaluated the relative support of
the s1 and s2 topologies, by thermodynamic integration un-
der a fixed model, either BPp or STAT (see Methods). A
positive value of the logarithm of the Bayes factor (95%
credibility interval [2.4, 15.7]) is obtained under the non-
stationary model, whereas a negative value (in interval
[�9.5, �0.1]) is obtained under the stationary model. This
means that the correct s1 topology better fits the data under
the BPp model, and in contrast, that the artifact s2 topology
is chosen by STAT. These results are consistent with our
analyses under free topology and show that our model is
able to recover the correct topology.

As previously suggested by Foster (2004), this dis-
agreement between the 2 models may be explained by
the fact that the stationary model tends to artifactually group
together unrelated taxa sharing similar base composition. In
contrast, the nonstationary model, handling compositional
heterogeneities, would be able to discern the phylogenetic
signal from the compositional bias. If this interpretation is
correct, one would expect a better fit on this data set for the
nonstationary model than for the stationary one. We, there-
fore, compared the 2 models by Bayes factor evaluation,
using the thermodynamic integration method. Importantly,
as the 2 models do not favor the same phylogeny, the in-
tegration was done under free topology (see Methods). We
estimated the logarithm of the Bayes factor to lie in a 95%
credibility interval of [59.3, 67.2] (table 1). This estimation
strongly rejects the stationary model in favor of the BPp

model and thus retrospectively confirms previous results
and assumptions considering the s1 topology to be closer

than s2 to biological reality, and s2 to be an artifact caused
by compositional bias (Murray 1991; Embley et al. 1993;
Eisen 1995; Gupta 1998; Mooers and Holmes 2000; Foster
2004).

Comparison between Nonstationary Model
Configurations

Several nonstationary models have already been pro-
posed (Yang and Roberts 1995; Galtier and Gouy 1998;
Foster 2004), which differ mostly by the kind of bias that
they consider (i.e., GC or general biases). In addition all
these models are branchwise (i.e., the stationary probabil-
ities of the substitution process are reassessed at the base of
each branch). We wanted to provide a comprehensive anal-
ysis of the relative merits of some of these models, in par-
ticular those of Yang and Roberts (1995) and Galtier and
Gouy (1998), whose configurations can be reproduced in
our implementation (i.e., YRp and GGGC, see Methods).
We, therefore, performed a general Bayes factor analysis
of the bacterial 16S rRNA data set introduced in the

Table 1
Logarithm of the Bayes Factor Estimated for Several
Alternative Models on 16S rRNAs (Thermus thermophilus,
Deinococcus radiodurans, Bacillus subtilis, Thermotoga
maritima, and Aquifex pyrophilus). The Stationary Model
Is Used as a Reference (the comparison to the STAT
configuration is a control, which is expected to be close to 0).
95% Credibility Interval Is Shown

BPp YRp BPGC GGGC STAT

[59.3, 67.2] [50.4, 65.6] [59.3, 65.5] [59.0, 65.5] [�4.5, 5.3]

FIG. 3.—Posterior mean profiles and number of break points per branch obtained under the nonstationary model on the artifact (A and C) and the
correct (B and D) topology. (A) and (B): posterior mean profiles, with the pN profile placed at the very bottom of the figure. (C) and (D): posterior mean
number of break points.
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previous section, under all these model configurations and
using thermodynamic integration under free topology.

According to our results, all nonstationary models bet-
ter fit the data than the stationary model, confirming that the
stationary model is strongly rejected on this data set (table
1). In addition, among the nonstationary models under con-
sideration, BPp obtained the best Bayes factor and YRp the
worst. However, the estimated Bayes factors are very close
to each other, which suggests that the differences are not
significant in this case.

In order to get a more informative view of the relative
merits of the nonstationary models, we performed additional
Bayes factor evaluations on 4 other data sets of 5, 10, 15,
and 20 Proteobacteria and Deinococci 16S rRNAs (see Ma-
terial). On the 10, 15, and 20 species data sets, the estimated
Bayes factors are all positive, rejecting the stationary model
in favor of the nonstationary ones (fig. 4A). Only the 5 spe-
cies data set behaves differently. However, it displays weak
compositional heterogeneity and is close to stationarity (a v2

test yields a minimum P value of 0.22 over the 5 taxa). Ac-
cordingly, on this data set, all models except BPp are re-
jected in favor of the stationary model. Interestingly, the
mean posterior number of break points sampled under
the BPp model is close to 0 in this case (95% CI 5 [0,
2], table 2), indicating that, when the analyzed data display
no significant compositional bias, the compound process
model reduces itself to the stationary model.

As shown in table 2, the mean posterior number of
break points inferred by BPp and BPGC models remains
smaller than the number of branches, which implies that
these models always use fewer free parameters than their
homologous branchwise versions. This could indicate that
not all the stationary profiles assumed by the YRp and
GGGC models (i.e., one per branch) are useful and, thus,
that some of them represent no real compositional shift

events. Consistent with this observation, we note that the
YRp model systematically obtained the worst Bayes factor
and, at the same time, handles the largest number of free
parameters (table 2 and fig. 4B). These correlation between
Bayes factors and model dimensionality can be explained
as follows: for n successive branches along which there are
no compositional shift events, the YRp has to infer n times
anew the same profile; this is a highly unlikely configura-
tion a priori, which penalizes the model by lowering its mar-
ginal likelihood. Note that this interpretation does not
totally fit all the observations. In particular, the BPGC model
handles the smallest number of free parameters, yet it ob-
tains a smaller Bayes factor than its homologous model,
GGGC. However, this may be due to the conservative prior
we chose for the e parameter, which leads the mean number
of break points e and, consequently, the posterior number of
break points to tend toward one. This prior seems to penal-
ize the BPGC model, compared with its homologous GGGC

having a fixed number of break points, especially when
many break points must be fitted, that is, when the number
of analyzed biased sequences increases, as is the case here
(table 2).

FIG. 4.—(A) Bayes factor estimations, obtained by thermodynamic integration under fixed topology, on 4 16S rRNA data sets. Error bars stand for
95% CI. (B) Mean posterior number of free parameters for each of the considered data sets (inferred from table 2).

Table 2
Posterior Mean Number of Break Points Sampled under
Nonstationary Models, on Data Sets of 5, 10, 15, and 20
Proteobacteria and Deinococci 16S rRNAs. 95% CI Are
Shown within Brackets

BPp BPGC YRp and GGGC

5 Species 0.7 [0, 2] 1.6 [0, 4] 8
10 Species 2.0 [1, 3] 5.8 [2, 12] 18
15 Species 5.1 [3, 7] 9.7 [5, 16] 28
20 Species 7.6 [3, 11] 11.4 [7, 16] 38
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Finally, the 2 GC models (BPGC and GGGC) obtained
the best fit on the data sets of 15 and 20 species. This may
indicate that these data sets do not contain significant biases
other than GC biases. Consistent with this, rRNA stems
have similar proportions of G and C nucleotides (Higgs
2000), and thus, the observed compositional biases should
be well described by GC ratio parameters. In this case, GC
bias–based models avoid another overparameterization ef-
fect as they do not have to repeatedly infer similar propor-
tions for A and T and for G and C.

However, not all biases are GC, and therefore, to offer
a more complete spectrum of model comparisons, we an-
alyzed data sets displaying more unequal composition in G
and C nucleotides. We evaluated the Bayes factors of the
nonstationary models for 2 data sets of 7 and 14 yeast spe-
cies, for the BAS1 gene (see Material). In these 2 cases, the
BPGC and GGGC were penalized and did not obtain the best
Bayes factor (fig. 5A). Importantly, on the 14 species data
set, the YRp model again obtained the worst Bayes factor
and, at the same time, was the model involving the highest
number of free parameters (table 3 and fig. 5B). In contrast,
on both data sets, the BPp model obtained the best fit. Note
that only 2.2 (95% CI 5 [1, 4]), and 4.1 (95% CI 5 [2, 6]),
break points are inferred on average, respectively, on the 7
and 14 species data sets (table 3), which results in a consid-
erably smaller number of free parameters, compared with
YRp. These observations reinforce the interpretation pro-
posed above for the lack of fit of YRp, that is, that it is fun-
damentally an overparameterization problem.

Importantly, in the present case, this overparameteri-
zation phenomenon causes YRp to obtain a worse fit than
GGGC. Thus, relying on branchwise models only, one
would conclude that the bias of the 14 species data set is
a pure GC bias, rather than a more general one. However,
the BAS1 gene displays very unequal proportions in G and
C (35% of A, 16% of C, 28% of G, and 21% of T). Con-

sistent with this, the break point models show a better fit in
favor of general biases (BPp), compared with GC biases
(BPGC). Hence, we are here in a case where the lack of con-
trol of the number of parameters inherent to branchwise
models would have resulted in a wrong biological interpre-
tation. In contrast, our compound process model, which is
able to control its dimensionality according to the data, pro-
vides a more reliable conclusion.

Discussion

The nonstationary model introduced here differs from
previous full-likelihood–based models handling composi-
tional bias phenomena (Yang and Roberts 1995; Galtier
and Gouy 1998; Foster 2004) by allowing one to infer a free
number of compositional shift events along lineages. This
was done using the compound stochastic process method,
inspired from Huelsenbeck et al. (1999), to model varia-
tions of substitution rates along lineages. To deal with
the implied variations in the model dimensionality, we used
the Green (2003) formalism. Compared with the models
proposed by Galtier and Gouy and Yang and Robert,
and as we were able to show by Bayes factor evaluations,
our model is less subject to overparameterization effects,
especially when many species are analyzed.

The overparameterization issue seems to be highly im-
portant and is particularly conspicuous in the case of the
branchwise general compositional shift model (the Yang
and Robert–like settings). In our experiments, this model
always involved the greatest number of parameters and,
at the same time, obtained the worst fit. One would expect
this overparameterization problem to loose its importance
as the length of the alignment increases as the branchwise
versions of the nonstationary model are consistent in the
limit of infinite sequence length (Chang 1996). But in prac-
tice, it should be remembered that many phylogenetic stud-
ies are conducted with rRNA, using a large number of taxa
(Maidak et al. 1996; Cole et al. 2003). As was demonstrated
previously by Hasegawa and Hashimoto (1993), rRNAs are
often compositionally biased and should therefore be inves-
tigated using adequate nonstationary models. Yet, in such
cases, branchwise models will probably not be so reliable
because of overparameterization. In contrast, our break
point version should behave more reliably. Branchwise
models may also be problematic when applied to the amino
acid sequences, as amino acid alphabet implies 19 free
parameters per branch (instead of 3 for nucleotides), which
would have overwhelming deleterious consequences on the
fit of the model and maybe also on the estimated phylogeny.
Because amino acid sequences can be biased (Foster et al.
1997; Foster and Hickey 1999), an efficient nonstationary

FIG. 5.—(A) Bayes factor estimations, obtained by thermodynamic
integration under fixed topology, on 2 yeast gene data sets. Error bars stand
for 95% CI. (B) Mean posterior number of free parameters for the 2 data
sets (inferred from table 3).

Table 3
Posterior Mean Number of Break Points Sampled under
Nonstationary Models, on Data Sets of 7 and 14 BAS1 Genes
of Yeast Species. 95% CI Are Shown within Brackets

BPp BPGC YRp and GGGC

7 Species 2.2 [1, 4] 1.6 [0, 3] 12
14 Species 4.1 [2, 6] 4.0 [2, 7] 26
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model is also needed in this case. Normally, the break point
model should be able to handle this correctly.

It is not clear whether the branchwise model of Foster
is sensitive to such overparameterization effects. It was, in
fact, explicitly designed to avoid these problems. However,
the equilibrium frequencies still need to be rechosen among
the available ones at the base of each branch, which also has
a cost, in principle, and possibly a significant one in a con-
text where there are few compositional shift events, com-
pared with the number of nodes. In addition, at least in the
current version of this model, the number of profiles needs
to be fixed a priori, which lacks flexibility. In this respect,
it would be informative to modify this model such as it
handles a free number of profiles, using reversible-jump
Monte Carlo (e.g., as in Green 2003) and then to compare
this modified version to our model. Or conversely, to draw
the profile of each break point of our compound process
model from a predefined set of profiles, as in Foster’s
model.

Apart from this, some improvements of the realism of
our model can be considered. First, the exponential prior on
the apparition rate of compositional shift events is conser-
vative and penalizes the model when many events have to
be fitted. To avoid this problem, one could instead use an-
other prior (e.g., uniform). Second, one could change the
uniform distribution G0, from which profiles are a priori
created and evaluated, to a generalized Dirichlet, whose hy-
perparameters can also be inferred. Third, modeling the
compositional shifts as piecewise constant processes is
not realistic and should be considered as a convenient math-
ematical device. In this respect, another improvement of the
model would be to use a first order, rather than a 0th order,
Markov process, when creating the profile of a new break
point. Each break point profile depending on the profile of

the previous break point, more break points may be created,
which may allow to model quasi continuous compositional
shift, although at the cost of an increasing computational
time (the complexity of our modified pruning algorithm de-
pending linearly on the number of break points). All these
elaborations of our model could improve the quality of our
reconstruction of the history of compositional trends of the
substitution process. In each case, Bayes factor evaluation
can be performed to see which of these configurations ac-
tually improve the resulting fit.

In a completely opposite direction, one could try to
simplify the current model and keep only its most essential
aspects. In particular, if one is not so much interested in the
detailed reconstruction of the history of the compositional
shifts, but only in the phylogenetic reconstruction, it might
make sense to consider the branch of the phylogenetic tree
as the fundamental unit of resolution. In this context, one
could go back to the usual practice consisting in constrain-
ing the stochastic events to appear at the tree nodes, al-
though now, not systematically, but with a probability
that could itself be estimated from the data. This proposition
remains different from the models proposed by Foster, Galt-
ier and Gouy, and Yang and Robert, as (1) the equilibrium
frequencies are not systematically reassessed for all
branches, and as (2) each event leads to an independent
compositional drift. Such a simplified version of the com-
pound stochastic process presented here may have the same
statistical properties than more complex versions, while
avoiding the overparameterization pitfalls.

Supplementary Material

Supplementary figures S1 and S2 and tables S1–S4 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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Appendix
Creating and Deleting Break Points

Note that, in the following, w will denote a random
number picked from a uniform distribution.

The number of break points N is a free parameter of the
nonstationary model. The ‘‘create/delete’’ MCMC update
mechanism creates, or deletes, a break point with probabil-
ity pcreate 5

1
2
; or pdelete 5

1
2
; if N . 0. If N 5 0, then there is

no break point to delete and pcreate 5 1. When deleted,
a break point is uniformally picked among the N extant ones
(except the default root break point, which cannot be

FIG. 6.—Computing the Jacobian in the case of the SPR move. Var-
iables indicated on the drawing are as in the text (Appendix). Two break
points with relative positions x1 and x2 are shown. Branch lengths and
break point’s relative positions are calculated given the equations shown
at the bottom of the figure.
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destroyed for obvious reasons). The probability to delete
one of the extant break points is thus:

pd 5 pdelete

1

N
:

When created, the position of the new break point on
the tree, that is, its branch b and its relative position x on its
branch, are picked uniformally. The probability of creating
a break point, at any relative position, on a given branch j is
thus pðb5 jÞ5 tj

T: The profile p of the newly created break
point is randomly picked following a uniform Dirichlet dis-
tribution: p(p)5 Dir(p). Taking the product yields the over-
all probability:

pc 5 pcreate

tj
T

DirðpÞ:

By definition, the Hastings ratio, H, is the probability
of the backward move divided by the probability of the
forward move. Thus, in the case of break point creation,
Hc 5

pd
pc
; and reciprocally, in the case of break point

deletion, Hd 5
pc
pd
:

Hc 5
pdelete

1

N1 1

pcreate
tj

T
DirðpÞ; ð6Þ

Hd 5
pcreate

tj

T
DirðpÞ

pdelete
1

N

: ð7Þ

Note that some factors involved in these expressions
will cancel out with the ratio of prior probabilities,

pðh#Þ
pðhÞ : Ac-

cording to equation (4), this ratio is:

pðh#Þ
pðhÞ 5

e tj DirðpÞ
T

; ð8Þ

in the case of a creation, and

pðh#Þ
pðhÞ 5

T

e tj DirðpÞ; ð9Þ

in the case of a deletion. Combining equation (6) with equa-
tion (8) and equation (7) with equation (9) yields factored
Hastings-prior ratios, HP:

HPc 5Hc

pðh#Þ
pðhÞ 5

e pdelete

ðN1 1Þpcreate

;HPd 5Hd

pðh#Þ
pðhÞ 5

N pcreate

e pdelete

;

that is, in the case of a creation: HPc 5
e
2

if N 5 0 and
HPc 5

e
N11

if N . 0, and in the case of a deletion:
HPd 5

2
e if N 5 1 and HPd 5

N
e if N . 1.

Updating Break Point Positions

To update the relative positions of break points, we ran-
domly pick one of them, except the default root break point,
and set its new relative position as x# 5 x 1 k(w � 0.5),
where k is the tuning parameter, and w is a uniform [0, 1]
number. If x# � 0 or x# � 1, we reflect x# back into [0,
1]. The corresponding Hastings ratio is 1. Note that this up-
date mechanism may swap the relative positions of 2 break
points on their branch, and as a result, modify the effect areas.

Updating Break Point Profiles

To update break point profiles, we uniformally pick
one of them, including the profile of the default root break
point. The new profile p# is picked from a Dirichlet distri-
bution centered on the current p profile value: p# ;
Dirichlet(kp1, kp2, ., kpS), where k is the tuning param-
eter specifying the amplitude of the update mechanism. The
Hastings ratio is given by Larget and Simon (1999):

H5
YS
m5 1

pkp#m�1

m CðkpmÞ
p#kpm�1

m Cðkp#mÞ
;

where C( ) is the Gamma function. We also use this MCMC
move to update the pN profile.

Subtree Pruning and Regrafting

The SPR, described in Swofford et al. (1996), is a global
topological move, in which a subtree is pruned and recon-
nected elsewhere in the remaining tree. In this move, the to-
tal length of the tree is left unchanged, and branches behave
like solid ‘‘sticks.’’ Taking advantage of this property, one
can easily generalize the SPR update mechanism to the pres-
ent nonstationary context, essentially, by tracking the posi-
tions of the break points during the topological change as if
they were clipped at a given position along a given stick.
However, when a break point is on one of the branches that
will be split, or merged into another branch, its ‘‘relative’’
position will change. This will induce a nontrivial Hastings
ratio, which we compute using Green’s formula (eq. 5).

Specifically, let t1 and t2 denote the lengths of the
branches to be merged in a branch of length t# 5 t1 1 t2,
and symmetrically t will stand for the length of the branch
split into 2 branches of lengths t#1 and t#2, t5 t#1 1 t#2 (fig. 6).
Let w 2 [0, 1] be the uniform random number that was
used to decide the position of the regrafting. Then we have

t#1 5 tw;

t#2 5 tð1 � wÞ;

t#5 t1 1 t2:

The reverse move would have been performed upon
drawing a random number:

w#5
t1

t1 1 t2
:

The Jacobian of the SPR move, without taking break
points into account, is thus:

J0 5
@ðt#; t#1; t#2;w#Þ
@ðt; t1; t2;wÞ

5

0 w 1 � w 0

1 0 0 t2
ðt1 1 t2Þ2

1 0 0 �t1
ðt1 1 t2Þ2

0 t �t 0

��������
��������;

whose determinant’s absolute value is

j detðJ0Þ j5
t#1 1 t#2
t1 1 t2

: ð10Þ
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Now, let xk 2 [0, 1] denote the relative position
of break point k before, and x#k after, the topological
move. Suppose that break point k was placed on branch
of length t1. Its new X coordinate on the new branch of
length t# 5 t1 1 t2 will be x#k 5

xkt1
t11t2

: More generally,
we have:

x#k 5

xk t1
t1 1 t2

if break point kis on t1;
xk t2 1 t1
t1 1 t2

if break point k is on t2;
xk
w

if break point k is on t and ends up on t#1 ;
xk�w

1�w
if break point k is on t and ends up on t#2 :

8>><>>:
ð11Þ

The Jacobian of the SPR move, taking break points
into account, is

J5

���� @ðx#k Þ
@ðxlÞ

@ðt#;t#1 ;t#2 ;w#Þ
@ðxlÞ

@ðx#k Þ
@ðt;t1 ;t2;wÞ

J0

����:
As ft#, t#1, t#2, w#g are not functions of any xl,

@ðt#;t#1 ;t#2;w#Þ
@ðxlÞ 5 0; so that the cross derivative

@ðx#k Þ
@ðt;t1;t2;wÞ cancel

out and the determinant factors into:

detðJÞ5 detðJ0Þdet
@ðx#kÞ
@ðxlÞ

� �
:

Moreover, terms
@ðx#k Þ
@ðxlÞ 5 0 for k 6¼ l, so that

@ðx#k Þ
@ðxlÞ is a di-

agonal matrix whose determinant is

det
@ðx#kÞ
@ðxlÞ

� �
5
YK
k5 1

@ðx#kÞ
@ðxkÞ

; ð12Þ

where K is the number of break points whose rela-
tive positions have changed during the SPR. Given equa-
tion (11), the derivatives involved in this product
would be:

x#k 5

t1
t1 1 t2

if break point k is on t1;
t2

t1 1 t2
if break point k is on t2;

1

w
if break point k is on t and ends up on t#1 ;

1

1�w
if break point k is on t and ends up on t#2 :

8>><>>:
ð13Þ

Let N1, N2, and N denote the number of break points
initially placed on the branches of length t1, t2, and t, respec-
tively, and N#1, N#2, and N#, the number of break points fi-
nally placed on the branches of length t#1 and t#2 and on the
merged branch of length t#, respectively (we then have
N# 5 N11N2, N5N#11N#2, and K5N1N11N25
N#1N#11N#2). With the derivatives given by equation
(13), we now reformulate equation (12):

det
@ðx#kÞ
@ðxlÞ

� �
5

t1
t11t2

� �N1 t2
t11t2

� �N2 1

wc

� �N#1 1

1�wc

� �N#2

:

ð14Þ
Finally, we have

g#ðw#Þ
gðwÞ 5 1 (as the random numbers w

and w# are picked uniformally), and thus, gathering equa-
tion (10) and equation (14) yields the Hastings ratio of the
SPR move:

H5
g#ðw#Þ
gðwÞ j detðJÞ j

5
t#1 1 t#2
t1 1 t2

� �
t
N1

1 t
N2

2 ðt#1 1 t#2ÞN#1 1N#2

ðt1 1 t2ÞN1 1N2 t#N#11 t#N#22

� �
:

ð15Þ

More generally, during a topological move, each time
a break point will swap from a branch of length t to a branch
of length t#, its relative position will change and a new term

will appear in the Jacobian
@ðx#k Þ
@ðxlÞ :

@ðx#k Þ
@ðxkÞ

5
t

t#
: ð16Þ

Node Sliding

The node sliding, described in Lartillot and Philippe
(2004), is a local topological move inspired from the LO-
CAL move (Larget and Simon 1999). The difference with
the LOCAL move is simply that the tree length is left un-
changed. Let a, b, c, u, and v denote 5 nodes in the tree,
topologically associated into branches u/c; u/v;
v/a; and v/b; of lengths t1, t2, t3, and t4, respectively.
We randomly choose between the 2 paths c � u � v �
a and c � u � v � b, a path C, of origin c and of length
tC5 t1 1 t2 1 t3 or tC5 t1 1 t2 1 t4. Node u is moved along
path C at a new position B5 t11k w� 1

2

� �
; where k is a tun-

ing parameter and w is a uniform random [0, 1] number.
This results in 2 cases, depending on how B compares with
t1 1 t2: 1) B. t1 1 t2, the topology is modified and node u
swaps on branch v/a or v/b; which is split, and branches
u/c and u/v merge together, or: 2) B , t1 1 t2, the to-
pology is not modified and only the branch lengths t1 and t2
change.

Relative positions of break points placed on branches
whose lengths are modified will change, inducing a nontriv-
ial Hastings ratio. Calculation of this ratio, using Green’s
formula, is very close to that performed for the SPR move
and will, therefore, not be fully explained here. Briefly, the
absolute value of the Jacobian determinant, without taking
break points into account, is equal to 1 in both cases (i.e.,
with or without the node-sliding proposal results in a topo-
logical change). Additionally, each time a break point
swaps from one branch, of length t, to another, of length

t#, a new term equal to t
t# appears in the Jacobian

@ðx#kÞ
@ðxlÞ

(eq. 16), yielding the following Hastings ratio when the to-
pology is modified:

H5
g#ðw#Þ
gðwÞ j detðJÞ j5 t

N1

1 t
N2

2 ðt#1 1 t#2ÞN#1 1N#2

ðt1 1 t2ÞN1 1N2 t#N#1

1 t#N#2

2

;

where t#1 and t#2 are the lengths of the split branches, and sym-
metrically t1 and t2 are the lengths of the 2 merged branches.
In the other case, when the topology is not modified:

H5
g#ðw#Þ
gðwÞ j detðJÞ j5 tN1

1 tN2

2

t#N#11 t#N#22

;

where t#1 and t#2 are new lengths of the 2 branches of initial
lengths t1 and t2. In both cases, N1, N2, N#1; and N#2 denote
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the number of break points placed on branches of lengths t1,

t2, t#1; and t#2; respectively, and
g#ðw#Þ
gðwÞ 5 1; as w and w# are

uniform random numbers.

Updating the Root Position

Because the model is nonstationary, and thus not re-
versible, the pulley principle of Felsenstein (1981) no lon-
ger applies and the likelihood now depends on the position
of the root (Yang and Roberts 1995; Galtier and Gouy
1998). We thus implemented a topological move of the root
position. During this move, we simply disconnect the root
node from the tree (the root’s sibling branches are merged
together) and reconnect it at position B 5 wt, where w is
a uniform random [0, 1] number on a randomly chosen
branch of length t. The branch onto which the root is recon-
nected is split into 2 branches. Using Green’s formula, we
obtain the same Hastings ratio as for the SPR move, and this
using exactly the same derivation (eq. 15), where t1 and t2
are lengths of branches to be merged, and t#1 and t#2 are
lengths of the 2 branches resulting from the split, N1,
N2, N#1; and N#2 are the numbers of break points placed
on branches of lengths t1, t2, t#1; and t#2; respectively.

Update Hyperparameter e

Finally, the prior mean number of break points, e, is
a free parameter of the model and has therefore to be
updated. To do this, we pick w uniformally in [0, 1], we
set e#5 ee w�1

2ð Þk; where k is a tuning parameter. Only uni-
form random numbers are involved, so that the Hastings
ratio is simply equal to the Jacobian: H5 j detðJÞ j5
@ðe#Þ
@ðeÞ 5 e w�1

2ð Þk:
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