Quadrotor
Control

Styuan An upgrade of a linear PID controller to a
homogeneous one with application to
quadrotor control

Wang Siyuan, Andrey Polyakov, Zheng Gang

Inria Lille-Nord Europe

Sept 10, 2020

- Uni ité
(o eie @RIStAL olille
. W Centre de Recherche en Informatique, SCIENCES
inventeurs du monde numérique Signal et Automatique de Lille ET TECHNOLOGIES

1/43



Quadrotor
Control

Siyuan

Table of contents

Introduction and motivation
m Quadrotor application and controller
m Motivation and Objectives

Preliminaries
m Homogeneity
m [LF—Canonical homogeneous norm based control

Upgrade of linear controllers to Homogeneous Ones
m Process of upgrade linear controller
m Digital implementation
Experiments
m Quadrotor platform
m Controller design
m Experiment results

Conclusion

2/43



Table of contents

Quadrotor
Control

Siyuan Introduction and motivation

Introduction m Quadrotor application and controller
m Motivation and Objectives

Digital

implementation

Quadrotor platform

Controller d

Experiment results

3/43



Application of quadrotor

Quadrotor
Control

Siyuan

Introduction

Application,
Controller

Motivation-
Objectives
Preliminaries
Homogeneity
Homogeneous

controller design

Upgrade
controller

Upgrade process
Digital
implementation

Experiment

Quadrotor platform

Controller design

Experiment results

Conclusion

Application: Rescue, Transportation, Monitor, Operation

4/43



Quadrotor
Control

Siyuan

Quadrotor controller

Linear controller
m PID [Bouabdallah et al., 2004][Li and Li, 2011]
m Linear quadratic regulator
[Minh and Ha, 2010][Reyes-Valeria et al., 2013]
m Gain-scheduling [Ataka et al., 2013]

Non-linear controller
m Feedback linearization
[Mokhtari et al., 2005][Lee et al., 2009]
m Backstepping control
[Bouabdallah and Siegwart, 2005][Madani, 2006]
m Model predictive control
[Alexis et al., 2012][Bangura and Mahony, 2014]
m Sliding mode control [Wang et al., 2017]
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Why homogeneous controller?

Improve the control performance without the peaking
effect

Higher precision and finite-time stable without the
chattering problem

Relative simple controller adaptive to the on-board
calculation

More robust than linear PID controller

Easy to implement the homogenization of PID
controller based on the given PID parameters, which
is potential for many practical cases.
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Build a Homogeneous controller based on the linear controller
Appliction gains to realize the faster and finite-time stabilization.
Motivation- .
Obiectives m Linear controller

u(@) = Kijpz Ky € R™ ™, 2 € R” (1)

m Homogeneous controller

= u(z) = Koz + el i Kd(-nfrl)e— (2)
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Homogeneity is a kind of symmetry with respect to dilation.

Figure: Invariant shape after dilation
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Classical homogeneity

Leonhard Euler introduced the standard homogeneity in 18",

Definition 1.

Let n and m be two positive integers and x — Az be dilation.
A mapping f : R" — R™ is said to be homogeneous with
degree k € R in the classical sense iff

YA>0: f(Ax) =N f(z) (3)

Example 2.

A polynomial function f(z) = 22 + 2122 + 23 is homogeneous
of degree 2.

FOx) = X222 + X222 + N222 = N2 f(x)
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Weighted dilation noted as

xr— Ax (4)

is a linear mapping R™ — R" where r is the generalized
o weights.
o A2 0 --- 0
= A=[0 0 A3 .- 0 (5)

Quadrote ’v',m 1 0 0 0 A )\Tn
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[zubov, 1958] Let r be a generalized weight, a function
f:R™ — R is said to be r-homogeneous of degree « iff

f(Az) = Nf(z), Vz€R®, VA>0 (6)

Example 4.

A polynomial function

(z1,22) — 21 + zia3 + 23 (7)

is r-homogeneous of degree 8 with respect to weighted dilation
(.’L‘l, .%'2) — (/\2.%1, )\%‘2)
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Weighted homogeneity

[zubov, 1958] Let r be a generalized weight, a vector field f is
said to be r-homogeneous with degree « iff

F(Az) = XAf(z), Yz R, YA>0 (8)

Note: A vector field is homogeneous of degrees x in the
classical sense (in Definition 1) iff it is r-homogeneous of
degree k — 1(in Definition 5).

Example 6.

The vector filed & = () z is [2,1]-homogeneous of degree
=1l
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Generalized homogeneity

Generalized dilation is defined as

r — d(s)z,
where
T iem
_ Gas _ s Gd
d(s) =e79% = Z; T

seR
Ga = liny
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Generalized homogeneity

[Kawski, 1991] A map d : R — R"*" is called dilation in R" if
it satisfies

m Group property: d(0) = I,, and
d(t+s) =d(t)d(s) =d(s)d(t),Vt,s € R,
)

m Continuity property: d(s) is continuous map, i.e.

Vt,e> 0,30 >0:|s—t| <o=|d(s) —d(t)|a <e

m Limit property: lims_,_o |d(s)z| =0 and
lims_, 4 oo |d(8)x| = F00.
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Generalized homogeneity

Generalized dilation d should satisfy all the properties in
Definition 7.

Example 8.

m Uniform dilation
di(s) =€’l,, seR, Gq=1I, (11)

m weighted dilation [zubov, 1958]

ers 0 ... 0
r28
=" 7 Y ser, @
0 0 e'ns

with Gq = diag{r;},r; >0, i=1,2,...,n.
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The dilation d is strictly monotone if 35 > 0 such that

|d(s)]| < e, Vs<o. (13)
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lomogeneity

Generalized homogeneity

Theorem 10.

[Polyakov, 2018] Let d be a dilation in the Euclidean space R™
with the inner product

<u,v> - uTva u,v € Rna

where 0 < P = P € R™" js a positive definite symmetric
matrix. The dilation d is strictly monotone in R"™ equipped
with the norm ||z|| = \/(z, z) if and only if the following linear
matrix inequality holds

PGq+GlP>~0, P>0 (14)
where Gq € R" is the generator of the dilation d
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Definition 11.
The function || - ||a : R™\{0} — (0, +00) defined as

lz|]|la = €, where s, € R: ||d(—sz)z| =1, (15)

is called the canonical homogeneous norm, where d is a strictly
monotone dilation.

In this presentation, we always use following norm

ld(~s2) = /2TdT (~s,) Pd(~s,)a
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Monotonicity of dilation

Theorem 12.

[Polyakov et al., 2018] If d is a strictly monotone continuous
dilation on R™ then
m the function || - ||q : R"\{0} =R given by (15) is
single-valued and positive;
m|[z|la > 0asxz—0;

m if the norm in R™ is defined as ||z|| = V2T Px with
P € R™™ satisfying (14) then

Alzlla _ ] z'd"(—In|z|a)Pd(—In|z[q)
o 427dT (= In ||z]|q) PGad (- In |[z[|q)z
for any x # 0.

||z||a is going to be considered as a Lyapunov function
candidate. 20/43
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[Kawski, 1991] A vector field f : R™ — R" is said to be
d-homogeneous of degree v € R if

f(d(s)z) =e”*d(s)f(x), for seR, zeR"\{0} (17)

Remark that a vector field v — Az with A € R™"™ 2 € R" is
d-homogeneous of degree v € R if and only if [Polyakov, 2019]

AGq = (vI + Gd)A (18)

where Gq € R™™" is a generator of d
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Homogeneous systems

Proposition 2.1.

[Nakamura et al., 2002] If the system & = f(€) is
d-homogeneous of degree v € R and its origin is locally
uniformly asymptotically stable then

m for v < 0 it is globally uniformly finite-time stable;
m for v =0 it is globally uniformly asymptotically stable;

m for v > 0 it is globally uniformly nearly fixed-time stable,
ie. Nr>0,3T =T(r) > 0: ||zz,(t)]| <7, VE>T,
Vag € R™.
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Homogeneous stabilization of linear MIMO systems

Consider linear control system
& = Ax + Bu(x), t>0, (19)

where z(t) € R™ is the system state, u : R — R™ is the
feedback control, A€R"*™ BeR™ ™ are system matrices.

Definition 14.

A system (19) is said to be d-homogeneously stabilizable with
degree 1 € R if there exists a bounded feedback law

u : R™ — R™ such that the closed-loop system is globally
asymptotically stable and d-homogeneous of degree
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Coriel Theorem 15.

s If system (19) is controllable then homogeneous controller can
be selected as

u(z) = Koz + ||zl|lg™Y X d(~ In ||z[|a)= (20)
T with any Ko € R™™™ such that Ao = A+ BKj is nilpotent,
Homegereows pe€[-1,k71,k < n, d is generated by Gq € R™ " satisfying

AgGq = (Gd ¢ /,L])AQ, GaB =8B (21)

= and X € R™" Y € R™*" satisfy

e { XAJ +AcX+YTBT+BY +XGJ +G4X =0, (22)

XGJ+GaX =0, X =0,
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Homogeneous PID controller

Theorem 16.

Let Ko e R™*"™ pe such that A+BK) is nilpotent and an
anti-Hurwitz matrix Gq € R™*™ satisfy (21). Let X € R™*"
andY € R™*" satisfy (22) then for any positive definite
matrix () € R™*™ the control law

u(z) = Koz + up(x) + gul(m(s))ds, (23)

. 1/2v, v —QBT
with uh:Hde/ YX 1z, uIZ%, z=d(—1In|z|q)z
stabilizes the origin of the system & = Az + B(u(x) + p), in a

finite-time time for any constant vector p € R™.
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Siyuan
& = Az + Buyn(x), t>0, (24)

where z(t) € R™ is the system state, uy;, : R” — R™ is the
feedback control, Kj;,, € R™*" be such that the matrix
A+ BKj;, is Hurwitz, A€ R™ ", BeR" ™ are system

matrices
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Homogenization of linear feedback

Corollary 17.

Let the pair {A, B} be controllable, Ky € R™*™ make

Ao = A+ BK) nilpotent, K;,, € R™*™ be given by Eq.(25),
Gq € R™™ satisfies (21) for y = —1 and P = PT € R™"
satistfies

(A+ BKjin) " P+ P(A+ BEKjip) < 0 (26)
GiP+PGq =0, P=0

then the control u given by (20) with u = —1 and
K = Kj;, — Ko d-homogeneously stabilizes the origin of the
system (19) in a finite-time. Moreover, uj;,(z) = u(x) for
zeS={z e R":|z||=1}.
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Siyuan
b if  p>b,
‘ satqp(p) = p if a<p<d, peR,. (27)
e a if  p<a,

controller with saturation is defined as

Uuqp(2) = Kox + Kd(—Insatq([|2]la))z, (28)
From (27), we have

u11(2) = Kiin® and ug,+0(z) = Koz + Kd(—In ||z[a)z.
B (29)

S Linear controller and homogeneous controller coincides on the
unit sphere z' Pz = 1.
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Theorem 18.

If all conditions of Theorem 15 are fulfilled, then for any fixed
r > 0 the closed d-homogeneous ball ||z||q < r is a strictly
positively invariant compact set' of the closed-loop system
(19) with the linear control

ur(z) = Ko + r' " Kd(—Inr)a. (30)

LA set Q is said to be a strictly positively invariant for a dynamical
system if z(to) € Q = z(t) € Q,t > to, where x denotes a solution z of
this system.
31/43



Quadrotor
Control

Siyuan

Digital realization

Corollary 19.

If
all conditions of Theorem 15 are fulfilled;

{ti}j:og is an arbitrary sequence of time instances such
that 0 =tg < t; < to < ... and lim; , o t; = 4o00;
w is a linear switched control of the from

u(z(t))=la(t)llg " Kd(=In |l2(t:)lla)e(t), tE [t tirr) (31)

then the closed-loop system (19) is globally uniformly
asymptotically stable.
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Upgrade proces:
Digital
implementation

Algorithm to find ||z|q

Algorithm 1.
Initialization V. = a; V = b; Niax € N;
ifz" (t;)d" (= In V)Pd(—InV)z(t;) > 1 then
V =V;V = min(b, 2V);
elseif 7 (t;)d " (— In V)Pd(—In V)z(t;) < 1 then
V =V;V = max(0.5V, a);
else
fori =1 : Nmax
V= YAV,

—
ifz" (t;)d" (= InV)Pd(—InV)z(t;) < 1 then

endif; .
le(tlla = V;
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. 0\ . .. B
where u; = Fpr — mg, ug = 71, U3 = To, Uqg = T3

0% ok § o

_ g _ (10 — Iyy

A_<000E>’ E _<01)’ B_(o 1)'
00 0

0 Igx

N Note: the above model is simplified at the equilibrium point by
Controle des smaller angle assumption and ignoring the Coriolis Force.

Experiment results
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The PID controllers provided by Quanser are the following
form:

w =Ko (3) + [ Kredt, (8) = KeS, u= Ko ()

with the parameters (provided by the manufacturer)
Ky=[-059 0.11] K,=[-35 —14],K;=—-4

K _(—2.91 0 —-145 0 -18 0 -016 O )
¢ = 0 -353 0 -—-17% 0 -225 0 -0.20/"
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(20) and (23) can be applied to make the systems (32) be
homogeneous of degree -1 with respect to dilation

di(s) = diag{e* E,e** E, e*E,e'*E} and

da(s) = diag{e?, e’}

m System ¢ is homogeneous of degree —1, with respect to
dilation d;(s)

Quadrotor pltiorm m System z and v are homogeneous of degree —1, with
respect to dilation da(s)
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Experiment results

Least square error

Table: Mean value of stabilization error

| Ly Error (m) [ Linear

Homogeneous \ Improvement ‘

lerrory||r, | 0.0234 0.0138 41%
|lerrory||r, | 0.0081 0.0028 66%
|lerror,||r, | 0.0313 0.0071 77%
lerrory||r, | 0.0036 0.0022 38%
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Conclusion

Homogeneous controller

m Significantly improved the precision and robustness verified

by experiments;
m Energy consuming is about 0.5 — 1% more;

m Be easy to upgrade from a given linear PID controller;

m Be potential for many practical cases.

More details can be found in :
S.Wang, A.Polyakov, G.Zheng,IJRNC 2020
S.Wang, A.Polyakov, G.Zheng,ICRA 2020
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*  Developing implicit and semi-

e Literature review implicit methods e Publishing the open-loop results

*  Publishing the closed-loop results

e Analytical results e Closed-loop analysis and simulations
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Introduction
©00

Differentiation in closed-loop control systems

fo=r(t) — y(t)

()

r(t) ~f=r—y—n| _ 0 y(t)

—>@—> Differentiator —— Controller | Plant >

| o
y(t) + n(t) 5

n(t)
y(t): output
n(t): noise Definitions:
r(t): reference robustness to noise

fo(t) = f(t) — n(t) = r(t) — y(t) | robustness to disturbance
ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary




Introduction
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Challenges

Example: effect of the high-frequency noise on the differentiation

0.95 LY

Differentiation

P

— Differentiation of noisy signal
I Input: f = sin(t) + 0.01sin(100t) | Derivation of the signal

-

0 2 4 6 8 10 “o 2 4 6 8 10
Time (s) Time (s)

lrveda (Grenoble) | ANR Digitslid  Discrete-time Differentiators  R. Mojallizadeh, B. Brogliato, V. Acary



Introduction
ooe

A conventional method

o Dirty filter:
) e {£lror =
F(s) s+ c LA{y(t)} =Y(s)
LP filter

@ For ¢ — oo it turns into the Euler differentiator:

y(t): output | f(t) :Q(B+n\(fl: input

signal noise
C: parameter

Drawbacks: phase-lag, difficult tuning,

ANR Digitslid

Discrete-time Differentiators

R. Mojallizadeh, B. Brogliato, V. Acary 6 /51



Continuous-time
©000000000

Alternative methods (continuous-time differentiators)

@ Slotine-Hedrick-Misawa differentiator (SHMD)

@ Super-twisting differentiator (STD)

@ Arbitrary-order super-twisting differentiator super-twisting (AO-STD)
© High-degree super-twisting differentiator (HD-STD)

@ Quadratic sliding-mode differentiator (QD)

@ Variable gain exponent differentiator (VGED)

@ Super-twisting differentiator with adaptive coefficients (STDAC)

@ ALgebre pour Identification et Estimation Numériques (ALIEN)

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 7 /51



Continuous-time
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Slotine-Hedrick-Misawa differentiator (SHMD)

@ It's probably the first sliding-mode-based differentiator

{ Zi(t) & ZiJr]_(t) = Oz,'\U(O'o(t)) = Ii,’Uo(t)

zp(t) € —apV(oo(t)) — knoo(t)

z;: differentiation order /
n: order of the differentiator
W(-): a set-valued function

f(t) :ern\(f-)f: input

signal noise

Qj, Kj: parameters

oo(t) = zo(t) — f(t)
i=0,1,....n—1

J.-J. E. Slotine, J. K. Hedrick, and E. A. Misawa, " On Sliding Observers for Nonlinear Systems”in JoDSMC., 1987
Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary
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Continuous-time
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Super-twisting differentiator (STD)

@ Homogeneous

{ 20(t) = —XoL2[o0(t)]2 + z1(t)
21(1') S —AlLsgn(ao(t))

z1: first-order differentiation | Ag, A1, L: parameters
oo(t) = zo(t) — (1) f(t): input

[a]® = |al®sgn(a)

A. Levant, "Robust exact differentiation via sliding mode technique”in Automatica, 1998

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 9 /51




Continuous-time
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Arbitrary-order super-twisting differentiator (AO-STD)

@ The only discontinuous term only appears in the last row

@ Homogeneous

{ 2(t) = —\La [og(t) |1 + zi41(t), i=0,...,n—1
zn(t) € =ApLsgn(oo(t)),

z;: differentiation order i Aj, L: parameters
ook = 20(t) — f(t) f(t): input

n: order of the differentiator | i =0,1,...,n—1

[a]® = |al®sgn(a)

A. Levant, "Higher-order sliding modes, differentiation and output-feedback control”in 1JoC., 2003

lrzia - (Grenoble) ANR Digitslid
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0000800000

High-degree super-twisting differentiator (HD-STD)

@ Uniform convergence

20(t) = —doLE ([oo(t)) F+ufo0(t)|?) + 2(2)
1
2

21(t) € ~ML(§ sen(oo(t))+200(t) + 3 [noo(t) ),

z1: The first-order differentiation | Ag, A1, L, u: parameters
oo(t) = zo(t) — f(t) f(t): input
[a]® = ]a|sgn(a)

E. Cruz-Zavala, J. A. Moreno and L. M. Fridman, " Uniform Robust Exact Differentiator”in IEEE TAC., 2011

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 11 / 51
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Quadratic sliding-mode differentiator (QD)

Zl(t) = Zz(t)

At e{ ~aF sgn(oo(t) if oo(t)ax(t) > 0
? —Fsgn(oo(t)) if oo(t)z(t) <0

oo(t) = 2F (z1(t) — £(2)) + |22(2)|22(2),

z1(t): Differentiation of f(t) | «, F, u: parameters

oo(t) = zo(t) — 7(t) f(t): input

n: order of the differentiator | [a|® = |a|®sgn(a)

T. Emaru and T. Tsuchiya, " Research on estimating the smoothed value and the differential value..."in IEEE/RSJ., 2000

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 12 / 51




Continuous-time
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Variable gain exponent differentiator (VGED)

20(t) = —Aoploo(t)|*(®) sgn(ao(t)) + z1(t)
21(t) = —Aa(t)u?|oo(t)[** " sgn(oo(t))
Y(t) = —m(t) + 7| (2)]

o) =4 (1+ 7).

fr(t) =L <Wi> s
<(w) +0.7654 ( ) n 1) ((w) +1.8478 (w—) n 1)
z1(t): Differentiation of f(t) | Ao, A1, i, g, €, 7: parameters

oo(t) = zo(t) — f(t) f(t): input

n: order of the differentiator | [a|? = |a|®sgn(a)
. Ghanes and J. P. Barbot and L. Fridman and A. Levant and R. Boisliveau, " A New Varying Gain Exponent...”in TAC., 2020

lrzia - (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 13 / 51




Continuous-time
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STD with adaptive coefficients (STDAC)

{ 20(t) = —o(t)[o0(t) 2 + z(t)

21(t) € =A17%(t) sgn(oo(t))

loo(t)| 72 for |oo(t)] > 1
| for |oo(t)] <1
-1 for |oo(t)| < 1.1e,

z1(t): Differentiation of f(t) | Ao, A1, €: parameters

oo(t) = zo(t) — f(t) f(t): input

n: order of the differentiator | [a]® = |a|?sgn(a)

M. Reichhartinger, S. Spurgeon, " An arbitrary-order differentiator design paradigm with adaptive gains”in 1JoC., 2018

lrzia - (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 14 / 51




Continuous-time
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Algebre pour Identification et Estimation Numériques

(ALIEN)

1

(n) _ (_1)n’7f€,,u,n/ d" k+n(1 _ _\utn

z\"(t) T dT”{T (1 =7 " (rT)dT
0

(k + 11+ 2n + 1)!
(k4 n)!(+ n)!

Veop,n =

z(")(t): differentiation order n of the input | f(t): input

n: order of the differentiator K, i, T: Parameters

M. Mboup and S. Riachy " Frequency-domain analysis and tuning of the algebraic differentiators”in 1JoC., 2018

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 15 / 51




Continuous-time
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Implementation

@ To implement a continuous-time differentiator, a discretization
method is needed.

e Explicit (forward) Euler discretization is mostly utilized to achieve a
mere copy of the continuous-time algorithms due to its simplicity
(chattering, lack of a proof for the convergence, ...).

@ Some studies are dedicated to improve the explicit discretization, e.g.,
redesigning the parameters, adding high-degree Taylor expansion
terms, adding nonlinear terms. However, some drawbacks are
inherent.

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 16 / 51



Discrete-time
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Arbitrary-order super-twisting differentiator (AO-STD)

Continuous-time AO-STD
{ 2i(t) = ALt [ao(t) |7 + z4a(t), i=0,....,n—1
zn(t) € —=A\pLsgn(oo(t)),

Continuous-time system: x(t) = f(x(¢)) ﬂ
Explicit Euler discretization:  xx1 = hf(xx) + xx

Explicit AO-STD

{ Zj k+1 = —h\; L+t [O‘ij n+l 4 hzi+1,k +2zZik,i=0,...,n—1

Zpk+1 € —h\pLsgn(oo.k) + Znk

z;: differentiation order i f(t): input

ook = 2o(t) — f(t) Ai, L: parameters

n: order of the differentiator | h: sampling time

[a]® = |a|Psgn(a) i=0,1,...,n—1

ANR Digitslid  Discrete-time Differentiators  R. Mojallizadeh, B. Brogliato, V. Acary




Inu duction ; t e Discrete-time ating theorems
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ReV|S|ons of the explicit discretization

Explicit AO-STD

{ Zj k+1 = —h\;Ln+1 [0'07” ntl hZ,'_|.1,k + Zj Kk, I = 0,...,n—1

Znk+1 € —hA,L Sgn(UO,k) + Zn k

v

Explicit HDD

Zj k+1 = —h)\ Ln+1 [0‘0 kJ n+1 -+ Z IZJ+1 k —+ Zj k,l = 0 ,(n — 1)
Jj=
Zpk+1 € —hApLsgn(oo.k) + Zn k

.

Explicit GHDD (third—order)

20441 = Zok + hzi i + % sz-l- Z3k+h1/10k

Zikt1 = 21k + hzop + Lz 4 + h1/11,k + a1oh?yo k + a13h3es i

Zo ki1 = 2ok + hzz ) + Mo i + anzh®ys

73 k41 € 73k + Mp3 i, W;(-) : a discontinuous function

Creda— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 18 / 51



Discrete-time
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Discretization

Continuous-time system x(t) = fi(x(t)) + H(x(t)) X

Explicit discretization Xk+1 = hf(xx) + hfa(xk) + xxk E-X

Implicit discretization Xk+1 = hfi(xks1) + hfa(xkr1) + xk | X
Xk+1 = hfi(xkr1) + hfa(xi) + xx

Semi-implicit discretization SI-X
Xk+1 = hf(xk) + hfa(Xit1) + xk

@ k: explicit variable

@ k4 1: implicit variable

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary
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Overview of the sliding-mode-based differentiators

Continuous-time system Explicit Implicit Semi-implicit
E-STD
STD VGED [-STD SI-STD
E-STDAC
HD-STD E-HD-STD | I-HD-STD SI-HD-STD
QD E-QD I-QD =
AO-STD E'AE'DSTD I-AO-STD | SI-AO-STD
‘DD | EHDD | IHDD | - -]
GHDD E-GHDD I-GHDD -
SHMD ] I-FDFF i
I-AO-FDFF

@ The contributions are indicated in blue.

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 20 / 51




Discrete-time
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”‘Discretlzation of the AO-STD

Continuous-time AO-STD

{ Z(t) = —MLwE [oo(8)] 77 + zia (), i=0,...,n—1
zp(t) € —AnLsgn(oo(1)), oo(t) = zo(t) — f(t)
Explicit discretization (E-AO-STD)
Zj kt1 = —h\ L [o0,k] o+ hzit1 k + zi (2a)
Zn k+1 € —hA,L sgn(oo’k) + Znk (2b)

v

Implicit discretization (I-AO-STD)

n

i+1 n—i
Zj k+1 = —hAiL"1 (00 k1] ™ + hzjgq k41 + Zik
Zp k1 € —hApLsgn(ook11) + Znk

&;u&a, (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary
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Solving the generalized equation

Generalized equation

(g(007k+1) e —h"tIN, L sgn(00.k+1) (4a)

n—1
1+1

g(00k+1) = oour1+ Y (WHIN LA [og kpr ] ) + bi (4b)

1=0
n
be=—Y hz+f, (oo k1) = & (00 k+1): (4c)
1=0

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 22 /51




Discrete-time
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Solving the generalized equation

Graphical interpretation of the generalized equation
T /\ 4
-._.:/_\_/_J[:/\ Lh’”’17/\n£4h7”1] /6/«/]9) / —n = 1 (semi-implicit)

/ —n =2

~~~~~~ —n=3
~~~~~~~ —
~~~~~~~~~ > —n=4
_____________ n=>5

— —Noa Lt A L)

v

Creda— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 23 /51




Discrete-time
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Flowchart of the I-AO-STD
Oibbk:*ihlzrkJrfk: V)
=0 20k« v e s Znk Z0,k415 - -5 Zngktl
v
Case 1:
X}, < solution of (5)
—YP Zik+1 = *h/\lL'L’.‘l‘ (Xe)" ™" + hzig1 ki1 + 2igs |
i=0,....(n—1)
Znk1 = —hAnL + zn g
wN
Case 2:
Zigt1 = MZip1ps1 + 2zik, 1=0,...,(n—1)
Zn k41 = Zngk %k
Case 3:
X}, + solution of (6)
i1
Zigr = RALTT (X" 4 B jer + 2ok, 20, k+1
i=0,...,(n—1) :
v

Zn k+1

Znet1 = hAn L + 2k

lrzia - (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 24 / 51
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Implementation of the full-implicit schemes

n—1
X;:+1 + Z (h/+1>\IL%XII(7—/) + by + hn+1)\nl_ =0 (5)
1=0

xS (RHINLREXT) 4 by — BTIAL =0 (6)
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Different semi-implicit schemes for the AO-STD

Full implicit discretization (I-AO-STD)

1 1
2o k+1 = —hAoL2[o0 k412 + hzy k1 + 20,k
Z1 k+1 € —hA1Lsgn(ogki1) + 21k

(7a)
(7b)

v

A semi-implicit scheme (SI-AO-STD)

1 1
20 k+1 = —hXol2[o0 k]2 + hzy ki1 + 20,k
7 k41 € —hA1Lsgn(og k1) + Z1k

Another semi-implicit scheme (SI-AO-STD)

1 1
{Zo,k+1 = —hXoL2[0ogk]2 + hz1 k41 + 20k

71 k41 € —hA1Lsgn(oo,k) + 21,k

&t.u&a, (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary
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Parameter selection for the I-AO-STD

n—1
137 ((n = DHED) + forr — foe] < LA™, (10a)
i=1
exactness on thevbase signal (fo,x)
n—1 o
| Z ((n— i)h’nf(')) + M1 — | > LA, (10b)
i=1
cancellation of the exactness on the noise (nk)

fx = fo k + nk: input fo,k: base signal ny: noise
n: order of the differentiator | i: order of the output

h: sampling time L, \,: parameters

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 27 /51
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Fundamental operators

I-STD:
I-HD-STD:

I-AO-STD:
I-HDD:
I-GHDD:

I-FDFF:

I-AO-FDFF:
SI-STD:

SI-AO-STD:

00,k+1 —

00,k+1

00,k+1

00,k+1 =

00,k+1 =

00,k+1

00,k+1

(I + al-]7 + LAk sgn()) " (= by)

= (fa + hoL2 (T2 + -] 2) + AL (4 sen() +2u() + zlff'f))_l(—bk)

—

(1 + i (N LEE 5 ) + B8, Lsgn(- ))_1(—bk)
(/ i m,h’+1>\,l_n+1 [-]mt = ) + h" X\, Lm, sgn(-))il(fbk)

lo =S (i) + 07 Dgsen() ~ (—b0)

— (a/d + CSg"(')) 71(*b’<)

o (ts+ WL sen())  (~be)

00, k+1 —

(I +af-]2 + Lxh? sgn(-)) " (=)

ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary
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General form of the fundamental operator

oo k1~ (Ig + (-)sgn(-)) " (—by)

where
® 09 k+1: the implicit variable
@ Iy identity function, i.e., x — x
o (-)71: inverse of mapping, possibly set-valued

@ by: a function of current states, i.e., oj), i=0,...,n
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Analytical results related to the I-AO-STD
AO-STD has a Lyapunov function with convex level set (n=1).

Sliding-surface of the I-AO-STD is invariant.

Conditions for the exactness are derived.

[-AO-STD is insensitive to gains during the sliding-phase.
[-AO-STD eliminates the chartering inherently.

Asymptotic stability of the I-AO-STD is ensured.

© ©6 6 6 06 © o

Finite-time convergence of I-AO-STD is studied (n+ 1 steps are
required).

© Well-posedness of the I-AO-STD is addressed.

Q Investigation of the Levant’s inequality.

Creia— (Grenoble) ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary 30 /51




Validating theorems
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Structure of the simulations
Levant's inequality

Validating some theorems
Noise-free case

White noise

Sinusoidal noise
Bell-shaped noise
Quantization

Transient responses
Higher-order differentiation
Effect of the solver

Effect of the criteria on the optimization

®6® 6 0000006 O0O0 O

Effect of the sampling time
ANR Digitslid Discrete-time Differentiators R. Mojallizadeh, B. Brogliato, V. Acary




Validating theorems
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Investigation of the Levant's inequality

Levant's inequality

2ig = | < =i+

° f,((i): differentiation order i of f,

@ z;: estimation of f,((i)

@ [ a constant

e i: the differentiation-order of the output (i =0,...,n—1)

@ n: the order of the differentiator
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Validating theorems
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Investigation of the Levant's inequality

error band: |z x — fk(")| — bt

\‘g —E-STD ‘g _ —E-STD
3 . —I1-sTD 3 g ) —1sTD
] 0_5 f(t) =sin(t) - - -error band ft) = 5t% + 3 - - -error band
107 10° 107 107" 107 107 107 107"
h h
(C) (D)
= .10° c.
S S L
| I 10°
& [0 Lo S
\—8/ —E-STD \“x —E-STD
3 - —I-STD 3 o . —I-STD
(@) :Zsin(t)+3cos(2t)+4t - - -error band . f(t) = - - -error band
10 10 102 107 104 103 102 107
h h
y

ANR Digitslid

Discrete-time Differentiators
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Arbitrary over-sized gains input:

Output

0% x10°

16.7267

E-AO-STD
——E-HDD
——E-GHDD
- --Real

6 8 10 0 2 4 lime ()8

R. Mojallizadeh, B. Brogliato, V. Acary 34 /51
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Objective functions

® Loo(ex) = [lewlloc = max|ex|, k=0,....tr/h
tf/h
° VAR(yx) = > vk — Yk-1l
k=0
2
o THD(y) = 100¥2<Y%  k =0,...,1/h,

® yi: output ® ¢ error
e vi: frequency component e tr: final time e h: sampling time
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Toolbox overview

24 different methods and their
variants (cascade setups, ...)

Higher-order differentiations (up
to order 8)

Built-in tuning algorithm
Realistic conditions

Several types of plots and
performance functions

Comparative analysis, and
validating the theorems

Simulink blocks

Generating results in IATEX

Creda— (Grenoble) ANR Digitslid Discrete-time Differentiators

E_STD.m

1STD.m

SI_STD_sch1.m

E_HD_STD.m

I_HD_STD.m

£.QD.m

1.ao.m

alien.m

toolbox_diff.m

E_AO_STD.m

I_AO_STD.m

£_HDD.m

E_GHDD.m

I_HDD.m

I_GHDD.m

VGED.m

P

P

A

A

A

—> LF.m
—> Euler.m
Parameters.m

i

—

t>  SI_HD_STD.m

> E_STDACmM

L»  Kalman_diff

signal_generator.m

Param_select.m

Sub-optimal
parameters

_

mainm
7
plotting.m

—

ploter.m

L

ploter_dash.m

Figures AJ Tables

R. Mojallizadeh
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Robustness to noise
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SNR=30dB, f(t) =sin(t) + n(t)

Parameters J = 10000L>(ex)
| Buler ~— ~ " | No parameter ~ ~~ ~~ "~ """ 7177 400.7426 |
LF c=7.1113 114.5675
E-STD L=0.7713 92.7441
I-STD L=0.7324 87.1980
SI-STD L=0.6985 101.2067
E-HD-STD L=0.0770, ©=20.8386 86.7613
I-HD-STD [=0.1021, p=21.2075 82.9217
SI-HD-STD | L=0.1434, ;1=93.5748 94.3047
E-QD F=4.4026, a= 0.3780 102.6753
I-QD F=4.5323, a=0.8123 104.6224
ALIEN T=0.5020 , k=1, pu=2 137.2458
HD r=2.5655 150.2620
E-AO-STD L=4.8973 93.1914
I-AO-STD L=2.9122 47.9806
SI-AO-STD | L=2.8157 75.5441
E-HDD L=4.9392 79.3572
E-GHDD L=4.8970 77.8480
I-HDD [=2.9921 44.3107
I-GHDD L=2.9822 43.4911
VGED ©n=4.3694, 7=1.3269, w=12.2205, g=0.2997 89.2798
E-STDAC «=0.5318, ¢=0.0000 89.5387
I-FDFF ws=19.6607, wr=8.4727, p=8.6929, v=0.0348 95.9795
I-AO-FDFF F=37.7845, ¢=18.6061, ws=2.5068 50.2447
wr=62.6396, o1 =456.7015, p=88.3003
Kalman R =8.4121 x 10~* 51.9665
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Robustness to noise
0®0000

I-HD-STD
SI-HD-STD
E-QD

1-QD
ALIEN

HD
E-AO-STD
I-AO-STD
SI-AO-STD
E-HDD
E-GHDD
I-HDD
I-GHDD
VGED
E-STDAC
I-FDFF
I-AO-FDFF
Kalman

SNR=30dB, f(t) =sin(t) + n(t)
L Ly Loo VAR THD% | Calculation time
7 0.0401 | 0.6328 | 16678 | 156.1079 | 10.8251 | ~ 1.008 ~ |
0.0115 | 0.2312 | 0.4237 | 27.2973 | 5.1186 1.39 8
0.0093 | 0.1813 | 0.3950 | 22.6491 5.0380 1.75 8
0.0087 | 0.1694 | 0.3991 | 22.3047 | 4.8264 1.79 8
0.0101 | 0.1971 | 0.4364 | 22.6797 | 5.0543 1.60 8
0.0087 | 0.1733 | 0.4380 | 21.2378 | 4.9033 1.59 8
0.0083 | 0.1647 | 0.3669 | 21.3538 | 4.7479 28.40 8
0.0094 | 0.2021 | 0.2948 | 12.6772 | 4.9159 1.98 8
0.0103 | 0.2137 | 0.4616 | 23.8976 | 4.8946 1.92 3
0.0105 | 0.2165 | 0.5410 | 23.6339 | 4.7218 2.00 B
0.0137 | 0.2937 | 1.0670 | 9.8502 3.4701 13.64 8
0.0150 | 0.3140 | 0.9988 | 26.3416 | 4.3390 737 8
0.0093 | 0.2025 | 0.2947 | 11.7065 | 4.7248 2.60 3
0.0048 | 0.1032 | 0.1565 | 8.6579 4.4372 27.27 B
0.0076 | 0.1651 | 0.2333 | 10.3001 | 4.6059 3.65 8
0.0079 | 0.1707 | 0.2623 | 11.7419 | 4.6817 3.45 3
0.0078 | 0.1682 | 0.2496 | 11.0980 | 4.6572 4.44 3
0.0044 | 0.0948 | 0.1454 | 8.7591 4.4111 27.19 8
0.0043 | 0.0935 | 0.1420 | 8.4464 4.4002 24.47 B
0.0089 | 0.1889 | 0.4458 | 16.1570 | 5.0126 12.59 8
0.0090 | 0.1976 | 0.2581 | 11.8332 | 4.3820 2.38 3
0.0096 | 0.1975 | 0.3608 | 23.3846 | 4.9785 1.77 8
0.0050 | 0.1069 | 0.1853 | 10.4184 | 4.4473 11.15 8
0.0052 | 0.1125 | 0.1952 | 8.4625 4.3418 10.09 8

ANR Digitslid
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Robustness to noise
00000

noise, f(t) =sin(t) + n(t

—1-STD
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—I-QD
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102 I-HDD
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—Kalman
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—E-STDAC 102 N\
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920 100
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White noise,

0.5
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ANR Digitslid

f(t) =sin(t) + n(t

Robustness to noise

h = 50ms
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Robustness to noise
000000

White noise, f(t) =sin(t) + n(t

Var
102 . : . (A) 102 . . v
—E-STI
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—E-QD
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E-HDD
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White noise,

Robustness to noise
00000e

f(t) =sin(t) + n(t

THD
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Discrete-time Differentiators

—I-STD
—I-HD-STD
—1-QD
—I-AO-STD
I-HDD
—|-GHDD
—|-FDFF
—|-AO-FDFF

20 30 40 50 60 70 80 90 100
SNR
(D)

8 —ALIEN

7 —8I-STD 1

—SI-AO-STD
6 SI-HD-STD|§
K\,\ —Kalman

NN

20

R.

30 40 50 60 70 80 90 100
SNR

42 / 51

Mojallizadeh, B. Brogliato, V. Acary



Transient
00000

+initial error, h = 50ms, SNR=30dB, f(t) = sin(t) + n(t)

Parameters J =10000L>(ex)
[ Euler ~ ~ ~ [ No parameter ~ ~~~ ~~ "~~~ """ 7777 400.7426 |
LF c=7.7652 125.2666
E-STD L=0.7621 119.3866
I-STD L=0.7375 114.6544
SI-STD L=0.7105 120.0440
E-HD-STD | L=0.1526, u=17.2523 111.7988
I-HD-STD 1=0.1842, 1=19.2301 106.3642
SI-HD-STD | L=0.1779, ;=96.4825 104.6239
E-QD F=3.6398, a= 0.5345 114.1485
I-QD F=4.4258, «=108.0366 112.2623
ALIEN T=0.5020 , k=1, p=2 137.2458
HD r=2.5653 150.2620
E-AO-STD | L=20.4049 160.8194
I-AO-STD L=14.3801 102.5989
SI-AO-STD | L=9.7812 120.3473
E-HDD L=15.9819 137.7374
E-GHDD L=20.4050 144.8012
I-HDD L=14.3671 96.9101
I-GHDD L=15.7542 08.9933
VGED 1=6.3813, 7=5.9048, w.=12.1897, q=0.0011 82.4729
E-STDAC a=0.7896, ¢=0.0018 160.3342
I-FDFF ws=59.4160, wr=22.6361, p=12.6443, v=0.0001 115.2277
I-AO-FDFF | F=53.7596, ¢=22.9829, w;=3.7986 93.5342
wr=37.5615, a1=54.2768, p=29.4002
Kalman R =3.5920 x 108 366.6154
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Transient
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Transient
00000

) =sin(t) + n(t
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Transient
00000

=sin(t) + n(t
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Transient
0000@

=sin(t) + n(t
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Summarized results

Results
©000

Method noise-free | white noise | sinusoidal noise | bell-shaped noise | quantization
| Buler [ 200VC 200VTC 200VTC _| 200VTC | 200VTC |
A 2 Sube ik Sube bl Sutabet we c-TTroIcIo
[ESTD- ]I CILIITIILIIICIIICIIC R
[ESTO Z 7T IV G IITIILIIIIIIIoICIoIIToCIerl]
| SkSTD_ 1 C _J__SC__,___¢___ oS ___L__CS__]
[ 21T I S I < DN N, NONON RN, c N
LHDSTD <7 C ‘ c | c ‘ c
[SLHD-STD | " vCc ™ |~~~ ¢~~~ -~~~ "7 77 7 77C ]
=10 N N VA o S & S T
k@D [ v - D ______—___t__-__]
ALIEN 200 TC | oo T C | ocoTC | oo TC | ocoVTC
[HD = = " 7 20c0T7C1 ~ o 1 ~TC |~ "ol ~ 1T ~C ]
[ E-AO-STD | ~ = 0 _=_ _1__~"=s__""C°-°- =-_""C--="7"1
[ FAOSTD [ 20 VC1 20VC 1~ 2cVC |~ 2xVC "1 2VC ]
[SKAO-STD |~ -~ "1~~~ -~~~ "7~ ~"~"-~" """~~~ """~~~ 771
E-HDD = | - | - I - ] Z

[ E-GHDD ~— T ~ — e
[FHDD = = T~ VC ™ 17 2xVC 177 2cVC I  20VC "M 2V |
[ FGHDD ~ [ " VC ™ T 20VC 17 "200C M 7" 2xxVC "M 2cxvC ]
[ VGED ~ ~ T~ ~ L I E
[ EESTDAC™ |~ oL e Y R I
[ FFDFF~ — T~ © L e R R
[FTAOFDFF |~ C ~ 77 2C 17 2xvVvC 777 C ™~ T FT3xC ]
[ Kalman® — T = -771772807\/7ﬂ77265V7T7717777V7777k72705\77‘
2: Ly(e), 00 : Loo(e) V: var, T: THD C: calculation time
blue= best , red: worst, *the worst transient response




Results
000

Main results
o

o Implicit differentiators supersede the linear filters.

Explicit discretization should be avoided.

@ Generally, I-AO-STD, I-HDD, and I-GHDD present the best
responses.

@ Increasing the order of a differentiator generally improves the
robustness to noise. However, it increases the transient time.

@ Kalman presents one of the worst transient responses.

@ Semi-implicit schemes can be utilized in applications with limited
resources to provide a compromise between the performance and the
calculation time.

o Newton and Halley's algorithms are suitable iterative schemes to solve
the generalized equations for implicit methods.
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Results
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Future works

@ Providing strict Lyapunov functions with convex level sets for the
AO-STD (n > 1)

e Levant's inequality for the I-AO-STD (n > 1)

Investigation of the differentiators in the closed-loop systems

Practical experiments

Using homogeneity theorem to study the exact differentiators

Developing more efficient solvers

Optimizing the structure of the differentiators (Exact-ALIEN)

o Addressing the parameter design more clearly (addressing filtration)
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Discussion (open questions)

© Possible case studies and laboratory set-ups
@ How to tune the parameters in practical closed-loop systems?

© Objective functions for tuning the parameters in closed-loop systems
(estimation error, output tracking error, ...)

@ How to identify the measurement noise corresponds to the real
laboratory set-ups (for the simulations and parameter tuning)?

© Would we need extra filtration stages in closed-loops?
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Introduction

Sliding Mode Control (SMC)
Evolution:
» Classical SMC' - contributed by Prof. Utkin [Itkis, 1976],

[Utkin, 1977], [Utkin, 1992].
HOSM - Prof. Levant [Levant and Levantovsky, 1993]
Combination of the Classical and HOSM
[Shtessel et al., 2014]
SMC in discrete-time [Kukrer and Makhamreh, 2018],
[Sira-Ramirez, 1991]
Ezplicit and Implicit SMC [Galias and Yu, 2006],
[Galias and Yu, 2009], [Acary and Brogliato, 2010a],
[Acary et al., 2012]
Objectives:

» Robustness against uncertainties and perturbations

» Finite-time convergence

Subiksha SELVA IGISLID Annual Meet, ECN, Nantes.
Experim S 1 Differentia . [10 September,

v Yy

v

v




Introduction
0O@0000

Introduction

Time-Discretization

Taking the general representation of a non-linear system (in
differential equation):

&= f(x,t)
It could be discretized (in difference equation) as:
= F(x,z7,t,t)

Example:

&(t) = —Ku (Continuous) r7 =2 — Khu (Discrete)
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Introduction

Concept

Interesting methods for performance comparison 1 1

Explicit Implicit
IE+:.’IJ—KhU, ;[j"':;(;—[{hu"‘7
u = sgn(z) ut =sgn(x™)
Chattering:  YES NO

[Galias and Yu, 2006], [Galias and Yu, 2007]

Remarks:
» |z| > Kh — no difference
» 0 < z < Kh — chattering introduced in explicit method
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Introduction

Concept of Implicit projector

Challenge: How sgn(z™) could be used in 277 Seems to
create an algebraic loop error in implementation...!
Idea: To design a projector

» Inversion of set-valued mapping:
ut =sgn(z?) <= 2" € Ny q(u’)

» Mathematical representations:
Sign function Normal-cone

1, if ze€R™ R-, if ut = —1
sgn(z) =<1, if z € R* ./\/[71,1](u+) =<R", if ut =1
0, if z=0 0, if Jut|<1
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Introduction

Homogeneous Differentiators

1 Explicit Levant’s second-order homogeneous

Zi’— =21+ h()\l felja + Zz)
Z;— = 2zo + hAo [61J2a_1

where [e1]” = |e1|? sgn(ey) and e; = y — 2.

LImplicit discretization concept

Implicit: Semi-Implicit
2 = amt+hNi+z) (27 = oz +h (e + 22)
Z;_ = 29+ h)\QfL Z;_ = Zz2+ h)\2‘€1|2a_1ﬂ

U = N(617>\1) m = N(el,al,)\l)
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Introduction

Objectives

Primary Points:

» Formulation of controllers and differentiators based on
explicit and implicit methods.

» Tests on simple systems for conceptual understanding.
» Tests on the simulator model.

» Implementation on the real-time system.

» Performance analysis and conclusions.




EPA setup (Left) and Control scheme ([Girin and Plestan, 2009]).

» Desired — actuator position control and state estimations.

» Challenge — to try to suppress or overcome the
perturbation effects.

> Only available measure — Piston’s position y,.




Test-bench
oce

Electro-pneumatic Actuator

System Dynamics

A simplified system model, under few assumptions
[Girin and Plestan, 2009], is defined as follows:

pp = % [@P(Pp) +Yp(pp,sgn(u))u — %ppv}
PN = VIZ(:;) [‘PN(Z)N) — YN (PN, sgn(—u))u + %pz\w]

1
v = M[S(pp_pN) _bU'U_Fext]




Controllers
[ 1)

Control law test on a basic stem

Control methods

From. ..

Explicit Implicit
zt =12 — Khu et =z~ Khu',
u = sgn(x) ut = sgn(a™)

With K = 1, the following comparisons are made:

» with different initial conditions

» with different sampling periods




Controllers

Control law test on a basic

Summary Summary on the convergence (z — 0)
z0 h Explicit Control Implicit-Euler Control
20 10 Slow Con of «, no B-B in uT Fast Con of z, no B-B in ut
0.2 10 Chin ¢, B-Bin u No Ch in , no B-B in u™
0.7 10 Ch in z, B-B in u No Ch in z, no B-B in ut
20 1 Con of z,u with no Ch No Ch in z, no B-B in wt
20 0.1 No Ch in z, B-B in u No Ch in z, no B-B in ut
20 0.01 No Ch in z, B-B in u No Ch in z, no B-B in ut
20 21 Ch in z, B-B in u No Ch in z, no B-B in ut
20 25 Ch in z, B-B in u No Ch in z, no B-B in ut
20 50 Ch in @, B-B in u No Ch in #, no B-B in uT
20 100 Ch in z, B-B in u No Ch in z, no B-B in uT

Con — convergence, Ch — chattering, B-B — bang-bang

With x¢g = 20 and h = 10,

» Increasing gain K — increase in chattering, no
convergence.

» Decreasing gain K — increase in convergence time, no
chattering.

Nante




Controllers

[ Jelele]e}

Control Law on the simulator

Specification concerned
» Simplified system:
y=v
0= ﬁ [S(pP —Z)N) - bv'U - Fe:ct]

(assuming M = 3.4 kg and b, = 50)

» References:
Yref = Asin(27 f1),

Uref = 2Am feos(27 ft),
liref = —4Am? f2sin(27 f1),

(taking A = 0.04 (i.e., 40 mm) and f = 0.1 Hz).




Controllers
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Control Law on the simulator

Second-order Implicit Projector-based Control Law:

» Synthesis: Defining sliding surfaces:
g = kl(yref - y) + (yref - U)
o= k2(yref - 'U) + (yTef - a)

{k1,ka} — controller gains

» Control input: New control law given by:

w=—Ku=—K(WN(c)+ BN(5))

» N(o),N (o) replacing sgn (o), sgn(c)




Controllers
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Control Law on the simulator

Implementation

Simulator

Nante

Parameters:
» k1 = ky =80
» K=1
» \1 =0.3
> Ay =2
» h=0.2 ms
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ontrol Law on the simulator

Results

0.04 005
E]\Ieas\lred Velocit
Measured Position| -Reference Velocity|
0.02 ~Reference Position]

Position (m)

0.02

0.04
0

80 100 0 20 10 60 80 100
Time s Time s

0 20

Position Velocity

[—Control Tupu)

i

Acceleration (ms2)

0 20 40 60 80 100
Time s Time s

Acceleration Control input u




Controllers
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Control Law on the simulator

Remarks

» Good control achieved on the actuator position.

» Chattering observed in the actuator velocity — to be
improved (or tuned).

» No effective control on the actuator acceleration — could,
for instance, require a third-order control law.




Observers/Differentiators
[ leJele]

Tests on a basic sy:

First-order autonomous system (Pure Implicit)

» System: 7 =z + hP
» Observer: zt =z + ha
np, lel <hP

» Correction term: u =
sgn(e), elsewhere

15 State o c=a—4
Estimation z 08
g
510 Zos
; 5
I B
£ 04
z
0.2
0 20 10 60 50 100

0 20 10 60 50 100

k (no. of samples) k (no. of samples)

Estimation Error




Observers/Differentiators
[e] Tele]

Tests on a basic sy:

Second-order autonomous system (Pure Implicit)
xii_ =x1 + hxo
x; = x9 — hax1 — bhxoy + hP
zfr = z1 + hzy + hA\i1
z;r = 29 — hz1 — bhzo + hAat
oo lel < hA

sgn(e), elsewhere

> System:

» Observer:

» Correction term: u =

15 1

[~Estimation z)]
|- -State EdY
1 { {—Estimation z,| =
-State g 05
3}
H
2 0
5]
s o
(] 100 200 300 400 0 100 200 300 400
k (no. of samples) k (no. of samples)
Estimations Errors
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Tests on a basic system

Second-order autonomous system (Semi-Implicit)
xii_ =x1 + hxo
x; =x9 — 2hx1 + hP
zf = 21 + hza + hAuler|*a
z; = 29 + hgp?|er >t
[ e oo < by

» Correction term: @ = hAt
sgn(ep), elsewhere

> System:

» Differentiator:

05 1
FEstimation =, e1 =1 — 2
I State «; 05 e = 13— 2|
|- Estimation =
N State 7 5
o I &
T \ | g-05
& 3
H E}
§ £
&
15
05 e
0 1 2 3 1 5 [ 0 2 1 [ B 10
k (no. of samples) «10° & (uo. of samples) «10°

Estimations Errors




Tests on a basic system

Second-order autonomous system (Semi-Implicit)
xii_ =x1 + hxo

x; = x9 — hax1 — bhxy

zf = 21 + hza + hAjuler|*q,

z; = 29 + hop?|er |22 La,

[l e/ < By
sgn(ep), elsewhere

> System:

» Differentiator:

» Correction term: u =

.
1 [—Estimation 2, €] = I — 2]
|- -State z; €2 = Ty — 2o
|—Estimation 2| 1
-State g
&
E 0.5
z
£
i
-0.5 0.5
0 100 200 300 400 0 100 200 300 400
k (no. of samples) k (no. of samples)

Estimations Errors




Observers/Differentiators
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Tests on a sinusoidal signal

Variable exponent differentiators
» Synthesis: [Ghanes et al., 2017]
2 = 21+ hzy + hAipler|*sgn(er)
Yop 4 2 = 20+ haapPaler|** tsgn(er)

Ym =y +n(t)
4
» HPF: Y,,15(s) = (312-',-0.76545’—1—18)(s’2+1,84783’+1)ym’ s' = Wic
> LPF: b(t) = 7(|ymns| — b(t))
» Variation: a = 0.5 (1 + b(t()}rs>
— 0.5, if b(t) =0
» Adaption: “ " i b2 ,
a—1, if b(t) —
Wlmii““)  ulerm (179 < A

Sgn(e1m) letm| < hX

‘When using implicit-projector, @ : {




Observers/Differentiators
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Tests on a sinusoidal

Levant’s variable exponent (sgn function)
(21 =2+ Jlea|sgn(er) : e,

I R

Z9 = Ao sgn(ey)

. — b
Spida=05(1+52%)
Tim = T1+N N

€1 = T1im — 21

\
. Exponent
g1
2
3
@0 _0.04 e
2 o0 P
g g 202
St a0 S
0 50 0w 0 50 100
t(s)

£

Derivod state 27
- Estimated &,

o

State i1
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Tests on a sinusoidal

Levant’s variable exponent (proj function)
(1= 22+ Mafer| i 1 S

I R

2o = Al

. — b
Spida=05(1+52%)
Tim = T1+N N

€1 = T1im — 21

\
. Exponent
g1
2
3
@0 _0.04 e
2 o0 P
g g 202
St a0 S
0 50 0w 0 50 100
t(s)

£

Derivod state 27
- Estimated &,

o

State i1




Observers/Differentiators
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Tests on a sinusoidal

Semi-Implicit variable exponent

2D

zf‘ = 21 + hzy + hAjpler|“a
2y = 29 + hopPaler 22714
a=05 (1 + ﬁ)

Tim =T1+ N

\61 = Tim — 21

Subiks

Experimental R

= :
b 7 Nomy o 71, J
B A
E :
F \ J
a \
gk A | ¥,
20 80 100
o
20 40 60 80 100

AN, DiC}I LIb Ann’ual Meet, ECN, Nantes.
f Controll nd Diff E /O

L™

i Nowe n(0)
|-Exponent af

-0.
0 20 10 60 80 100
t(s)
Exponent
0.01 _
5 0
A A AAAAAA
0.01
0 50 10 50 100
t(s) t(s)
x1074 0.05
2 a
0 50 100 0 50 100
t(s) t(s)




Tests on a sinusoidal sig

Observers/Differentiators

[e]e]ele] }

Summary

Mean, Max and Integral Square Errors (rounded off to one
decimal place) for the differentiators of sinusoidal signal

Differentiator A | A2 I / Mean Max 558
(Hz) €1 €2 €1 €2 €1 2
2| 1 1710~ [ 171073005 | 0.05]2.4107% | 0.13
Fenens iy 13| VA O 71053107 [001 [ 0.01 [2110-7 | 0.1
Levant —0.11073 04102001 06 | 2107 [ 0.03
(Script, Simulink) 6| & | Ni O 1073 0.4107%10.01] 06 | 2107 | 1.5
e rres, e 2| 1 11107 | 002 |02 |31 ]|20107] 03
Semi-Implicit (seript) \o1—5— 8 | 05 5075155105 [ 02 [ 32 [2010° | 0.1
Semi-Implicit (script) | 12| 6 8 0.1 | 22107% [8510°| 02 | 0.6 | 20107 | 0.01
Semi-Implicit (simulink) | 1 [05]| 16 | 0.1 | —=8.110° [ 7.810° [ 0.01 | 0.6 | 1.510~* | 0.05




Observers/Differentiators

00000000000
Tests on the simulator

T

Scheme
Y
Y " | y
SM/PID Controll
References / ontro erI |EPA Model Monsures

2] -—
Externa} 22 <«— Differentiator

Perturbation 23 <«— ]

Scheme of the simulator with a differentiator
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Tests on the simulator

First Analysis - Hierarchy

(To compare fixed/variable exponent semi-implicit
differentiators by varying « and 7 resp.)

Fixed &
I

[r=1000] [r=100] [r=10]

Variable o

[r=1000] [r=100] [7=10]

Hierarchy of the initial analysis of differentiators




Observers/Differentiators
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Tests on the simulator

First Analysis - Differentiator

» Semi-Implicit Differentiator:

2 = 21 + hzg — hAipleim|“N (e1m)

2y = 29 — hAapalerm|** TN (e1m)
Ym =y + n(t)

» Exponent variation structure:

a— 0.5, if b(t) — 0,
a— 1, if b(t) — oo.
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Tests on the simulator

First Analysis - Summary

Comparison of constant and varying noise with fixed a

Noise Implicit Differentiator Max(|n(t)]) Max(|n(t)|)
n(t) @ Yms 21 T from z; from 2z
Close estimation Low distortion
0.5 and with less but offset 1.31073 0.9107°
distortions. prevails.
Smoother curve Smooth curve
Constant | 0.8 | with visible offset | with high offset 42107 1074
for 10 s as observed.
0.005n(t) Quicker conver- No visible
0.75 | gence with state changes 51071 1.3 1071
and low offset. observed.
Distorted curve, Distorted but 107,15 107°
Varying | 0.5 especially at smaller offset 3.5107%, 107
for 50 s as higher noise. exists. 10=%; 1.5010+°
[0.005n(t), Smooth curve Smoother curve | 1.2 1073, 1.7 1073
0.01n(t), | 0.8 with better with bigger offset 3.71073, 1073
0.05n(t), estimation. observed. 1.2107%,2 107
0.005n(t), Slightly quicker No visible | 0.4 107, 0.6 103 | 107, 1.5 10%
0.01n(t)] | 0.75 | convergence with changes 2.5 1072, 3.5107%,
state. observed. 0.5107%,0.910°% | 1.2 1074, 2 104
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Tests on the simulator

First Analysis - Summary

Comparison of constant and varying noise with variable «

Noise N Imphcn: Differentiator — Max(\n(t)\) Max(|n(t)])
n(t) Yms 21 Upn, 22 8¢ | from 2 (107%) | from z (107)
1000 0.6 - 0.7 1.3 0.1
Better estimation Smoother curve
Const | 100 with no visible and better 0.6 1 6
offset observed estimation.
10 ~ 0.6 0.9 48
0.6, 0.7 1,.1:2 6, 4
1000 0.9, 2.5, 3,
0.6,0.7 1;:1:2 6, 4
Clearly better Good estimation | 0.7, 0.8, 08,1 5 4
Vary | 100 | estimation observed | with offset only 0.9 3.7, 3
with less offset. in higher noise 0.7, 0.8 08,1 5,4
range. 0.6, 0.7, 0.6, 0.8 5 4
10 0.8, 2.3, 3,
0.6, 0.7 0.6, 0.8 5.4
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Tests on the simulator

Interpretations:
» Hits:
e Fixed exponent differentiator — o = 0.75 shows good
estimation.
Variable exponent differentiator — encouraging.
Faster adaption of « with increasing .
Increasing 7 also increases oscillation range of «.

» Misses:

e Uses the measure of position controlled by the second-order
implicit control — Needs more attention...!

o A clear offset visible in the velocity estimate zo — probably
due to chattering in the controlled velocity.

e Not able to proceed with estimation of acceleration as
velocity estimate is not accurate.

Experim
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Tests on the simulator

Second Analysis - Hierarchy

(To compare the differentiators without controller and with a
linear controller.)

Test-bed simulator

Closed loop system

Open loop system
Linear Control with

Discrete-time
Semi-Tmplicit differentiator

Continuous-time
Homogneneous

Continuous-time

Levant Levant Semi-Implicit

| Discrete-time | Discrete-time |

Hierarchy of the re-analysis of differentiators

Nante
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Tests on the simulator

Second Analysis - Cont. time variable exponent
Differentiators

Open-loop:
Z1 = 2o+ Aile1|“sgn(er)
> Levant: < 25 = Agsgn(eq)
€1 =Ym — 21
21 = 2o+ Apler|“sgn(er)
» Homogeneous: { 2o = Aopaler|** sgn(eq)

€1 =Ym — 21
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Tests on the simulator

Second Analysis - Disc. time variable exponent

Differentiators
Open loop:
2 = 21+ hza + hA1ler|“sgn(er)
> Levant: z;' = 29 + hAasgn(er)
€1 =Yn — 21
2 = 21 + hzo + hApler |
» Semi-Implicit: { 25 = 29 + hdoplaler|**La
€1 =Ym — 21
Closed loop:
» Control: Linear PID with control input
Ueg = —k1e1 — koé1 — k3éq

» Estimation: Discrete-time Semi-implicit variable exponent
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Tests on the simulator

Second Analysis - Results from closed loop test

0.05 1

_ Openloop poion ) Nowse n(t)
g , = s | Exponent o
005 £ 06
0 20 40 60 80 100 Z
t(s) _z 0.4
" K 500
Z ]
R z
: -
%% 20 40 60 80 100 0.2, 2 m M 30 100
t(s) ‘)
(a) States and estimations (b) Noise and varying exponent
£ x107%
L 0.04
00
R YWh
= -0.02 ] r
0 50 100
t(s)
X107
S2 3
5 705
z z
nQ 50 100 nﬂ 50 100
t(s) t(s)

Subiksha SELV/

Experimental R
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Tests on the simulator

Second Analysis - Summary

Mean and SSE of estimation errors in the simulator
Loop Differentiator Aol Ao Mean SSE

I
ey ey ey ey

a varying (Cont.) (6.27) [ 1 [ 04 [ 1 [—-4110°] 7.710° [ 95107 |4.61073
Bhii Levant (Cont.) (6.29) [0.4] 0.1 [N/A[-21107 | -1.1107° [ 1.51073 [ 8.5107°
Levant (Disc.) (6.31) |0.20.06 | N/A| —-1.9107° | -1.2107° | 1.610° | 8310 °
Semi-Implicit (6.33) 1 06|07 |-1810°] 6310° [8210 | 4103
Closed | Semi-Implicit (6.2.5) I |08 ] 12 [-48107° [-L110*[3110°] 0.1




Experimental Results
0

Control

Implementation on the EPA




Experimental Resu
oce

Control
Results
e
SRR
é o
=4ﬂt21655755T::.1| 12 13 14 15 16 17 18 19 20
Position (top) and control input (bottom)
Remarks:

» Good control on the position as seen in the simulator.

» A clear control input instead of bang-bang-like in explicit.
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Estimation

Differentiators

Only fixed exponent homogeneous differentiators are considered
for analysis 2:
» Third-order Levant’s differentiator
» Two cascaded second-order differentiators
o Explicit Euler Discretization (E2D) method
e Semi-Implicit Discretization based on Explicit sgn function
(SIDES) method
e Semi- Implicit Discretization based on pseudo Linearization
(SIDL) method
e Semi-Implicit Discretization based on implicit sgn Projector
(SIDP) method
e Semi-Implicit Discretization based on implicit sgn Modified
Projector (SIDMP) method




Estimation

Schematic representation

Urefs Uref Oref

Yrefs Uref, Qre

Controller }L{ System

Controller “ > System
Yerrs Verrs Gerr

B Third Order

(h) lha)

Differentiator|
2

(a) Third-order Levant differentiator

Experimental Results

O®00000000000

Differentiator 1

%2

Differentiator 2

22

(b) Two cascaded differentiators

Gain Settings

Differentiators A1 A9 A3 A4 aq Q9
Third-order Levant | 1.5 | 0.625 | 0.625 | N/A | 0.7 | N/A
E2D, SID-L/P/MP | 1.5 | 0.625| 1.5 | 0.625 | 0.75 | 0.7

SIDES 0.25 | 0.025 | 0.25 | 0.025 | 0.5 | 0.5
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Estimation

Third-order Levant
2 =214+ h(Aipfer]® + 22)
Xp: Z;_ = 29 + h()\guz (61J2a—1 + 23)
23 = 23+ h(Asp3fer |3272)

00t

“Relerence Velocity
- Measured Velocity]

0

Velocity (ms

002

Velocity h = 0.2 ms Velocity h =0.2 s
» s e e

™
001 /\f

0

o0

Com

003
(] 10 15 0

Time (s)

10 15 2
Time (s

Acceleration h = 0.2 ms Acceleration h = 0.2 s
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Estimation

E2D method

Zl+ =2z1+ h(}\l (eljal -+ 22)

Yp1:
PV 2d = 2 4+ h(hafer 20 1)

5 [at =2+ h(fea] ™ + 25)
D2 - 2;2Z3+h(>\4’762j2a2_1)
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Estimation

Estimations

0.04 0

- Reference Velocity ~Reference Velocity]
- Measured Velocity « Measured Velocity|

-002fs

001 -0
0 5 10 15 2 0 B 10 15 20

Time (s) Time (s)

(a) h=0.2ms (b) h=02s

Acceleration
Acceleration 002

“Reference Acceleration]
« Measured Acceleration|

10 15 20 0 5 10 15 20
Time (s) Time (s)

(¢) h=0.2ms (d) h=02s
Velocity (top) and acceleration (bottom)
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Estimation

SIDES method [Polyakov et al., 2014]

Sy 2 =21+ h(Mlef [Yisgn(yy — z1) + 2)
|2 = 22 h(alef P sgn(y — 21))

Solving for a = 0.5:

s zf = 21 + hA\y wysgn(ey) + hzo
br z;' = 29 + hAasgn(e)

+

zl; = zh + hAz wasgn(e2) + hzs
Ypo:
zg3 = 23 + hAssgn(ez)

—hAz++/(hA3)2+4|es|
2




Estimation

Estimations with SIDES

001
- Reference Velocity
- Measured Velocity
o
S
2
= o0
001
0 5 10 15 2
Time (s)
003

+ Reference Acceleration
+ Measured Acceleration

0.02

003
(] 10 15 20

Time (s)

(¢) h=0.2ms

Experimental Results

0000008000000

0
~Relerence Velocity]
« Measured Velocity|

0 B 10 15 20
Time (s)

(b) h=02s
= Reference Acceleration]
= Measured Acceleration|

0 5 10 15 20
Time (s)

(d) h=02s

Velocity (top) and acceleration (bottom)
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Estimation

SIDL [Wetzlinger et al., 2019]
Replacing sgn(e;) by E—h:

zf =21+ h(/\llel\o‘l_leir + z;)

YXp:
P e = 2+ hufer e

= Reference Acceleration « Reference ration|
« Measured Acceleration * Measured Acceleration|

2 4 6 8 10 12 14 16 18 20 h 0 2 4 6 8 10 12 14 16 18 20
Time (s) Time (s)

(a) h=0.2ms (b) h=0.2s

Acceleration estimate
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Estimation

SIDP

Sy - 2 =21+ k(25 + Mlel| "N (er, a1, A1)
’ Z;:22+h()\2|61|2a1_1/\/(61,a1,)\1))

Sy - 2yt = 20+ h (25 + Aglea] 2N (e2, a2, A3))
Z;_ =z3+h (/\4’62‘2a2_1/\/(62, a9, )\3))

The projector is given by:

"eiJl—Oli
N(ei,ai,)\j) = )\jh
sgn(e;) , le'™* > \jh

s ‘ei‘lfai < /\jh
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Estimation

Estimations with SIDP

001 0
- Reference Velocity ~Reference Velocity]
- Measured Velocity = Measured Velocity]
o _om
) s
2
~ 002 = .02t
004 .
0 5 10 15 2 [0 B 10 1 20
Time (s) Time (s)

(a) h=0.2ms (b) h=02s
om :
- Reference Acceleration * Reference Acceleration|
+ Measured Aceeleration 002 - Measured Acceleration|

(] 5 10 15 20

"o 5 10 15 20
Time (s)

(¢) h=0.2ms (d) h=02s
Velocity (top) and acceleration (bottom)
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Estimation

SIDMP

Q=Ofe]' 2% () _ g, [1-0i < Ak

No(e;, i, Nj) == Ajh
(€000 %) sgn(e;) , le|'™ > \jh

Before Modification:

N —=0= e; — h)\j|ei|°‘i/\/(ei,ai, )\j)
After modification:

Ng — He,' =€; — h)\j|€i|ai./\/'9(6i, (o7 )\j)

1
0 is set to —
is set to
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Estimation

Estimations with SIDMP
” T

- Measured Velocity

002

felocity (ms™!

v

-0.02

001
0 5 10 15 2 0 B 10

Time (s) Time (s)
(a) h=0.2ms (b) h=02s
om :
- Reference Acceleration * Reference Acceleration|
) + Measured Aceeleration 002 - Measured Acceleration|

on
g o

W "
=z

002

5 10 15 20

"o 5 10 15 20 0
Time (s)

(¢) h=0.2ms (d) h=02s
Velocity (top) and acceleration (bottom)
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Estimation

Summary

Velocity Acceleration Velocity Acceleration

(a) h=02ms (b) h=02s

Pictorial representation of Normalized SSE

Remarks:
» Performances differ for higher sampling period.
» SIDMP shows the best performance among the compared

methods.
a SELVARAJAN, DIGISLID Annu

1 le D



Conclusion

Control

» Second-order control law designed and tested on the
simulator.

» Experimental results show encouraging results but needs
more tuning.

» Explicit control input seems more like a bang-bang but
reduced in the case in implicit method.

» Design of a third-order control law — in perspective.
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Conclusion

Estimation

» Explicit, implicit and semi-implicit differentiators were
designed.
» Semi-implicit method resulted in efficient estimations.

» SIDMP with a modified projector exhibited even better
results.

» Variable exponent differentiators were tested on the
simulator, yet to be implemented on the test-bed.

» Estimations were carried out using the position measure
controlled by the explicit SMC method — aiming to use the
measure controlled by the implicit method.




Conclusion

Future objectives

» To obtain better tuned results with the second-order
implicit SMC.
» To design and test the third-order implicit control law.

» To implement the adaptive differentiators on the system.

» To close the system’s loop by making it achieve an
observer-based control.
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Conclusion

Thank you for the attention!

Comments & Questions?
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Notations

List of Abbreviations

List 1:
» EPA - Electro-pneumatic Actuator
» SM —  Sliding Mode
» DSM -  Discrete-time Sliding Mode
» SMC -  Sliding Mode Control
» DSMC -  Discrete-time Sliding Mode Control
» SMD -  Sliding Mode Differentiators
» HOSMC -  Higher Order SMC
» HDSM -  Higher Order Discrete-time Sliding Mode
» HOMD -  Homogeneous Differentiator
4

Experimental R
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Notations

List of Abbreviations

» E2D - Explicit Euler Discretization

» SIDES -  Semi-Implicit Discretization based on
Explicit sgn function

» SIDL -  Semi-Implicit Discretization based on
psuedo-Linearization

» SIDP -  Semi-Implicit Discretization based on
implicit sgn function with Projector

» SIDMP -  Semi-Implicit Discretization based on
implicit sgn function with Modified Projector




Notations

Nomenclature

> x; — System states
» z; — Estimated states

» h — Sampling period

v

(®)res — References

v

u — Control input to the system

» 7, — Correction term of the differentiator

v

/\/'[_171}(0) — Projector output/inverse of sgn function

v

k; — Controller gains

>

» 1 — Parameter in differentiator to cancel perturbation

\; — Differentiator gains
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Notations

Nomenclature

» ¢; — Error in traction/estimation

v

o — Sliding variable

(e)* — values at the instant of (k + 1)h
(o)~ — values at the instant of (kK — 1)h
[o]7 = [ e ["sgn(e)

ISE (o) — Integral Square Error of (e)

Max (o) — Maximum of (e)

v

v

v

v

v

v

Mean (o) — Average of (e)
» SSE (e) — Sum of Square Error of (e)




Notations

Nomenclature

v

Ymns(s) — Fourth-order Butterworth High-pass filter
Transfer function

v

b(t) — First-order Low-pass filter

> s’ = - where w. is the cut-off frequency
> 7 — time-constant of the first-order LPF
> [o]7 =] e[ sgn(e)

» o — Homogeneous exponent term

» ¢ — a very small positive parameter helping in « variation




Implicit Solution

Application

sgn(z)
— Recall:
T =2 — Khu',
r ut = sgn(z™)

B = ut =sgn(z — Khut)

(a) sgn(e) function

N(u')

[




Implicit Solution

Solution

+_ )5 lxl <,

sgn(z), elsewhere.

B 05 0 05 10 5 [ 5 10

(a) —N—1,1(u™) (b) u™ from projector

Illustration of the implicit methodology




Implicit Solution

Solving...!
T Case (i): Ni_1q(ut) =R~

_ x x
x—Kh(—l)—R -0 = ﬂ+1<0:> K_h<_1
Case(ii): Ni_1q)(ut) =R*
_ _Rt L L
p-Kh()-R* 50 — =150 = | >1

Case(iii): Ni_11(ut) =0

_ +_ Lot = +_ &
z — Khu 0—>O=>Kh U 0 = |u %h




Implicit Solution

Variables
» y — position of the pneumatic actuator (or piston)
» v — actuator linear velocity
» ¥ = a — actuator acceleration
» u — control input (or simply input)
» [+ — external perturbation from the perturbation actuator
> pp,pN — pressures in chambers P and N
» 1 —ideal gas constant
> b, — viscosity coefficient
» S — Useful surface area of the cylinder
» T — Temperature (in K)
» k — Polytropic coefficient
» M — Nominal mass of all the mobile parts




[EControl Tupui

s Y G—
0 50 100 150 200 250 300
K (no. of samples)

(a) Explicit Control u

[EControl Tupuf]

50 100 150 200 250 300
K (no. of samples)

(¢) Implicit Control u*t

Response

Response z

[EClosed loop response using Bxplicit method]

50 100 150 200 260 300
k (no. of samples)

(b) Explicit Output x

[-Closed loop response wsing Implicit-Euler method]

50 100 150 200 250 300

K (no. of samples)

(d) Implicit Output =

Explicit (top) and Implicit (bottom) Controls with xg = 20




Control Inpu] [EClosed loop response using Bxplicit method]

100 150 200 250 E 100 150 200
K (no. of samples) k (no. of samples)

(a) Explicit Control u (b) Explicit Output x

1
[EControl Tupui [EClosed 10op response using Implicit-Euler method]
5
R
0 50 100 150 200 250 300 0 50 100 150 200 20 300
k (no. of samples)
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1s Implicit Solution With different initial conditions ent sampling periods Differentiator

e0

Levant’s differentiator (sgn function) in script and simulink

Influence of Gains
Table: Influence of gains on the estimation errors and their ISE indices

>\1 )\2 €lmazx €2max ISE(el) ISE (62)
Script 6 6 0.0091 | 0.6283 | 0.0020 0.0328
Simulink 6 6 0.0057 | 0.6283 | 0.0020 1.4991
Script 6 10 4 0.0090 § | 0.6283 | 0.0020 | 0.0274 |
Simulink 0.0071 1 | 0.6283 | 0.0002 | | 1.2082 |
Script 0.0091 0.6283 | 0.0020 | 0.0462 T

Simulink 0 34 0.0008 | | 0.6283 | 0.0004 | | 2.8103 1
Script 101! 6 0.0068 | | 0.6283 | 0.0020 | 0.0332 1
Simulink 0.0033 | | 0.6283 | 0.0001 | | 1.7238 1
Script 124 6 0.0066 | | 0.6283 | 0.0020 | 0.0336 1
Simulink 0.0028 | | 0.6283 | 0.0000 | | 1.8738 1

Green — the setting for which the simulation is performed

Subiksha SELVARAJAN, DIGISLID Annual Meet, ECN, Nantes.

Experiment [10 September,
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Introduction

® One way to treat real-time differentiation is to use numerical
based Euler approximations

® Recently, based on the Acary & Brogliato's implicit
framework, a semi-implicit discretization has been proposed to
deal with homogeneous control

® We propose in this work a semi-implicit based homogeneous
differentiator to take benefits from the Euler approximation
and the implicit framework

4/28
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Problem statement

Continuous time system Let be p(t) a bounded perturbation,

which is considered unknown. The system under study consists of a
double integrator of the form

)'<1 = X2
x2 = p(t) (1)
y=x

where x(t) € R? is the state of the system, y € R is the output of
the system
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Problem statement
Homogeneous continuous time differentiator

21 =2+ Apfer]®
7y = Mopi®[e1]?* Lsgn(er) (2)

y=z

where €3 = x; — z; including the notation [e|% = | e |*sgn(e)
® )\;>0,i=1,2 allow to have the eigenvalues of the
differentiation error €1 sufficiently stables

® the coefficient i is chosen sufficiently large to cancel the
effect of the unknown perturbation p(t)

7/28



Problem statement

The corresponding Implicit Euler discrete-time system reads

X1+ =x1 + hX2Jr =x1 + h(x2 + hp™)

X =x2+h(p*)

where h is the sampling-time and assuming that
1. there exist yp > 0, such that for all t > 0, |y(t)| < ym

2. the perturbation p(t) is a constant parameter or slowly
variable, this implies that for sufficient small h > 0, p™ ~ p

Goal : The objective is to give an Euler discretization of the
continuous-time homogeneous second-order differentiator
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Problem statement

® First solution :
Explicit homogeneous Euler differentiator
5 =%+ h(+ Mle]®)
% =%+ h(le)?*)
where e;1 = x1 — X1

= This solution is not attractive since it suffers from chattering
phenomena

9/28



Problem statement

® Second solution :

Implicit homogeneous Euler differentiator

55 =+ h (%5 + Mlef )
(5)
55 =%+ h(Aofef 207)

— When ef tends to zero, the estimated X» is zero, therefore the
implicit homogeneous Euler second-order differentiator does not
work

10/28
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Semi-implicit homogeneous Euler differentiator

The proposed semi-implicit Euler discrete-time homogeneous
differentiator reads

& =51+ h (35 + Mler V)
%5 =%+ Ef h (Aa]er]?27IN)

where e ;= y — X1 = x; — X1 and

lea|'" < Mh (ef =0) = N = (EIAJ:;:Q
N = (7)
le1]!=* > A\1h (ef #0) = N = sgn(er)

(See the presentation of Subiksha for a description of the other
existing solutions)

12/28



Semi-implicit homogeneous Euler differentiator

E; depends on the stability domains and is defined as follow

set B =1 if e € SD

(8)
set By =0 if e ¢ SD
where SD is defined by SD = {e1 / |e1] < (Alh)ﬁ}
The differentiation error dynamic reads
= h(ef — Mlel|*NV
e =e+nle 1le1]
(9)

e;“ —e+h (p+ — E1+)\2|61’2a_1./\/-)

13/28



Semi-implicit homogeneous Euler differentiator

Theorem 1 : For h > 0 and « €]0, 1|, there exist A\; > 0 and
A2 > 0 such that the differentiation error dynamics (9) converge
asymptotically to

SD1,: = {ei,e /e € SDyande; € SDo} with
1
A1\ @
Dy = {e1/|e1|<zhi (22) }
A\
SD, = {ez/lez|§2h1a”‘ (p"< 1>“}
2

assuming that the absolute value of x2+ is strictly greater than the
maximum time derivative of y, i.e., |x5| > yum

14 /28



Semi-implicit homogeneous Euler differentiator

Sketch of the proof
The proof is done in two steps, firstly the convergence of e; and
after that the convergence of e,

1. if eg € SD and if e # 0, €] verifies e] = heJ

e -«
2. then e = ex+ h (p+ — Eff o) hey P21 (%)) as
€1 = hes and E; = 1, then

A
e =e+h (p+ - 2[he2J°‘>

3. we deduce SD, and since e; = h ey, we deduce finally SD;

15 /28
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Semi-implicit homogeneous Euler differentiator

Let us consider the discretized system

* & 4
X' =x1+ H x3° =x1 + W (x2+ W pio)
(10)
& +
x3° =xo+ W (pi0)
where h = 100" = 0.025 s and the perturbation is p(t) = sin(at),
also a =1 and (x1(0), x2(0)) = (0.45,0)
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Semi-implicit homogeneous Euler differentiator

The semi-implicit and explicit homogeneous Euler differentiators
are set with the set of parameters A1 =30, A\» =5, =10.6

Remark : The parameters A1, A and « have been set in order to
provide a fast dynamic to the observation as well as good tracking
properties of the states x; and x

18 /28



Semi-implicit homogeneous Euler differentiator

0 10 20 30 40 50
time (s)

Semi-implicit differentiator State variable x; and estimated state
variable %; versus time (s)
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Semi-implicit homogeneous Euler differentiator

-0.3 —y

- -y

0 10 20 30 40 50
time (s)

Semi-implicit differentiator State variable x, and estimated state
variable %, versus time (s)
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Semi-implicit homogeneous Euler differentiator

10°:

—e;
SDy
—SD

100+

0 10 20 30 40 50
time (s)

Semi-implicit differentiator Error e; = X1 — x; versus time (s) and
related SD & SD; stability domains
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Semi-implicit homogeneous Euler differentiator

Numerical results - Semi-implicit differentiator

10° : : : :
.
h SDy
102 ’ 1
107
108
1 -8 | | | |
0 0 10 20 30 40 50

time (s)

Semi-implicit differentiator Error e; = % — x versus time (s) and
related SD, stability domain
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Semi-implicit homogeneous Euler differentiator

0 10 20 30 40 50
time (s)

Explicit differentiator State variable x; and estimated state variable X;
versus time (s)
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Semi-implicit homogeneous Euler differentiator

15 20 25 30 35 40 45 50
time (s)

10

Explicit differentiator State variable x, and estimated state variable %

versus time (s)
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Semi-implicit homogeneous Euler differentiator

10-10 L

10715 | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
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Explicit differentiator Error e; = %; — x; versus time (s)
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Semi-implicit homogeneous Euler differentiator

Numerical results - Explicit differentiator

0 5 10 15 20 25 30 35 40 45 50
time (s)

Explicit differentiator Error e; = % — x2 versus time (s)
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Semi-implicit homogeneous Euler differentiator

® The semi-implicit homogeneous Euler differentiator shows
good estimations of states x; and xp, they are not affected by
the chattering phenomena even if the differentiator
parameters A1 and A\, are oversized

® The estimation errors remain inside the range of the prescribed
stability domains SD; and SD; as stated in Theorem 1

® Concerning the explicit homogeneous Euler differentiator, the
reconstruction of the x» state fails for the same parameters A1
and )\, and the states are very affected by the chattering
phenomena

27 /28



Semi-implicit homogeneous Euler differentiator

® This paper proposes a semi-implicit Euler approximation of an
homogeneous differentiator for a second-order system

® The main advantage of the proposed scheme is to keep the
possibility of applying an implicit Euler approximation
(combined with explicit one) when homogeneous
differentiators are considered instead of classical sliding mode
differentiators

e In that situation (homogeneous differentiators), the
complete-implicit Euler approximation scheme fails and the
complete explicit also for h sufficiently large (see the
presentation of Subiksha)

28 /28
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Introduction

® Introduced by the work of Brogliato et al., the implicit
discretization method is well adapted to sliding-mode
controllers and more generally to differential inclusion

® |t aims to replace the sign function by an implicit projector
with very promising results including
— reduction of the chattering effect
— robustness of the control under lower sampling frequencies
— preservation of the global stability
® We propose in this work a semi-implicit based homogeneous
controller to deal and cancel the effect of a class of
perturbations

4/37
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Problem statement

Consider a first order continuous perturbed system
x = p(t) + u(t) (1)

with x € R the state variable, v € R the control input and p € R
the perturbation such that |p(t)| < pm, pm being a positive
constant.

® Discretization towards software-in-the-loop implementation

u(t) = b+ u x(t)
@E h sampling h sampling E/g
u(k) control x(k)
algorithms

6/37



Problem statement

® From the standard homogeneous control sliding structure

u(t) = —Alx()|“sgn(x(t)) (2)

we derive a semi-implicit homogeneous control in order to
investigate the use of such "implicit "approaches for control
and observation of perturbed systems

= Reducing the chattering effect

= Use of implicit method works for sliding-mode control and
does not work for homogeneous control

= Use of semi-implicit method for (2)

7/37
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Recall on Euler implicit sliding mode control

The exact discretized system considering p = 0, with a
sampling-time h, is controlled by the implicit projector Ny j, that
gives
X1 = Xk + hug g
_ (3)
Ugy1 = —Asgn(xk11)

where the sgn(xy+1) is evaluated thanks to the operator NV, , with
A > 0 that is defined as

Ah
Ixk] > Ah — Ny, = sgn(xk) (i-e. xk11 # 0)

X .
{ IXk| < Ah— Ny = K (i-e.xk+1 = 0) ()

9/37



Recall on Euler implicit sliding mode control

Given the state variable xi, the backward Euler implicit scheme

X1 = Xk + h g

U1 = — Ny
——
sgn(Xk+1)

® if x, > |\h|, then uy1 belongs to the saturation mode!
defined by ug11 = —Asgn(xk),

® else uky1 belongs to the linear mode and corresponds to a
1/A-contraction of 3k,

1. The sgn(x) function verifies : if x > 0, then +1; if x < 0 then -1; if x = 0 then ] — 1, 1[.
10/37
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Semi-implicit Euler discretization of observer-based control

The implicit-homogeneous based closed-loop reads

U1 = = A [xkg1|“ N g (5)

If |xk+1|% = 0 = xk+1 = 0, it is not possible to evaluate the
projector

12/37



Semi-implicit Euler discretization of homogeneous control
and observer

The homogeneous control based on semi-implicit Euler
discretization Uk+1 is given by

uphy = =X x| *NR 4 (6)
with
N,\ hoa "=
’Xk|1 « . 11—« - I _ 7
A sgn(xg) if  |xk|"7* < Ah(i.e. Xk41 = 0) (7)
sgn(xk) if |x |17 > Mh(ie %1 #0)

where A > 0 and « € [0, 1] are constant parameters tuning; the
term |xi| is the explicit part and the term N3/, | constitutes the
implicit part.
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Semi-implicit Euler discretization of homogeneous control
and observer

-0.1 -0.05 0 0.05 0.1

: Sl
Examples of representation of N/\,h’a Versus o
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Semi-implicit Euler discretization of homogeneous control
and observer

Theorem 4 : For h > 0, the closed loop system, composed of the
system x = p(t) + u(t) under the homogeneous control based on
semi-implicit Euler discretization (6) action, reads as

X1 = Xk + h(pra1 — X x| N3y o) (8)

and converges in finite-time to 0 without perturbation (px1), and
converges in finite-time to hp,y1 in case of perturbation py1 1. g

15 /37



Semi-implicit Euler discretization of homogeneous control
and observer

The proposed semi-implicit observer reads as
K41 = X + h()\olek\a"/\/sol, hoao T uphy) 9)
where A\, > 0 and a, € [0, 1] being constant tuning parameters.

The projector aims to reconstruct the estimated state X from the

error ex = X, — Xk including the perturbation.
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Semi-implicit Euler discretization of homogeneous control
and observer

Corollary 5 The estimation error e, 1 with the following dynamics
converges in finite-time

ekt+1 = ek + h(px — Aolex]* ASOI h o) (10)

® to zero when system (1) is perturbation-free (p = 0) and
exact discretization ;

® to hpy when p # 0 and Euler discretization.
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Semi-implicit Euler discretization of homogeneous control
and observer

The semi-implicit discretized homogeneous observer-based control
reads

K1 = X+ h(Xolen N3,y o + 074 1) (11)
Ighy = =M xel“NFTy o+ o lek|NF! o

The observer-based control reads as a difference between the
control projector N}/, , and the observer projector N3/ | .
Theorem 6 : The closed loop system, composed of the system

x = p(t) + u(t) controlled by the observer-based control (13), and
for which the dynamics converges in a set bounded by

[h(Prs+1 — Px)l- n

19/37



Semi-implicit Euler discretization of homogeneous control
and observer

The semi-implicit discretized homogeneous observer-based control
reads

Sip1 = S+ h(Nolew|*NY! o+ T y)

' (12)
ulf{l-l =—A |Xk|aN/\S,Ih. a + >\0 |ek|aoNSola h, ao

The observer-based control reads as a difference between the
control projector N}/, | and the observer projector N/ |, .
Theorem 6 : The closed loop system, composed of the system

x = p(t) + u(t) controlled by the observer-based control (13), and
for which the dynamics converges in a set bounded by

[h(Prs+1 — Px)l- n
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Semi-implicit Euler discretization of homogeneous control
and observer

The semi-implicit discretized homogeneous observer-based control
reads

{ i1 = R+ h(Qolew| N3, . + T y) (13)

Rhy = =Mk N, Ao fer|

The observer-based control reads as a difference between the
control projector N/\S"hﬂ and the observer projector

Theorem 6 : The closed loop system, composed of the system
x = p(t) + u(t) controlled by the observer-based control (13), and
for which the dynamics converges in a set bounded by

[h(Prs+1 — Px)l- n
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Numerical results

Consider the continuous system
x = p(t) + u(t) (14)
controlled by
Tih1 = —A Xk “NRlh o+ Ao ek *NX, p o, (15)

with h =103 s, and x(0) = 0.45, set also A = 1 and A\, = 6.

To ensure a faster dynamic of the observer than the control,
consider Ao > A.
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Numerical results

Properties of observer-based explicit/semi-implicit controls are
compared for different values for oz and perturbation p defined as
the following

0<t<3, p(t)=0

3<t<6, p(t)=0.1

6<t<9, p(t)=-02
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Numerical results
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Observer-based semi-implicit control - Piecewise perturbation State
variable x (top) and control input u (bottom) versus time (s), for
different values of «
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Numerical results
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Numerical results

10°
b - @ 0 7
& 10°) e
; : 10~ for p = 0.1 2.107* forjp = —-0.2
10-10}
0 2 4 6 8 10
time (s)

Observer-based semi-implicit control - Piecewise perturbation
Estimation error |x — X| versus time (s), for different values of «

27 /37



Numerical results

a [ Var, | & | lelpo | lelp=01 | [elp=—02
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semi-implicit control
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explicit control

with e = |x — &|, Var, = 3, luks1 — ukl, €4 = h >4 (uk)?
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Numerical results
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Numerical results
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Numerical results
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Evaluation of the static error |x — X| according to the value of the
sampling-time h
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Numerical results
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variable x (top) and control input u (bottom) versus time (s), for
different values of «
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Numerical results

time (s)

Observer-based semi-implicit control - Sine perturbation.
Estimation error |x — X| versus time (s), for different values of «
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Numerical results

Control versus sine perturbation

time (s)

Observer-based explicit control - Sine perturbation. State variable x
(top) and control input u (bottom) versus time (s), for different values of
e
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Numerical results

time (s)

Observer-based explicit control - Sine perturbation. Estimated
perturbation p versus time (s), for different values of «

35/37



Outline

Introduction
Problem statement

Recall on Euler implicit sliding mode control

Semi-implicit Euler discretization of homogeneous control and
observer

Semi-implicit Euler discretization of observer-based control
Numerical results

Conclusion
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Conclusion

This work has investigated the use of semi-implicit
discretization approach for the control and observation of
perturbed systems

Homogeneous semi-implicit discretization has been introduced
to control and observe perturbed systems

Finally, an homogeneous observed-based semi-implicit control
is proposed

Future works include investigations of second order perturbed
system as well as experimental validations on a pneumatic
test-bed
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l. Introduction
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Homogeneity=Dilation Symmetry

Symmetry is an invariance with respect to a group of transformations.

rotation

S=S
D=

Homogeneity is a dilation symmetry.
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x)=e°f(x) & f(x+y)=Ff)+f(y) & f(—x) = —f(x) J
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x)=e°f(x) & f(x+y)=Ff)+f(y) & f(—x) = —f(x) J

Standard Homogeneity (L. Euler, 18th century):

x — e°x  (dilation) f(ex) = e"*f(x) (symmetry)
s € R - group parameter v € R - degree

Example: x = (x1,x2), f(x) = x1xa + X3
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x) =e°f(x) & f(x+y)=f()+f(y) & f(—x) = —f(x) J

Standard Homogeneity (L. Euler, 18th century):
x — e°x  (dilation) f(ex) = e"*f(x) (symmetry)
s € R - group parameter v € R - degree }

Example: x = (x1,x2), f(x) = x1xa + X3

Generalized Homogeneity (Zubov 1958, Khomenuk 1961, Hermes 1986, Kawski
1991, Coron & Praly 1991, Rosier 1992, Grune 2000, Levant 2003, Bhat & Bernstein
2005, Orlov 2005, Perruquetti & Moulay 2008, Andrieu et al 2008, )

x — d(s)x (dilation) f(d(s)x) = €"f(x), (symmetry)

Limit property: _lim |ld(s)x|| =0, HT |d(s)x||=+co, Vx#0
S —00 S [ee]

Example: x = (x1,x2), f(x) = x1 + x3 with d(s) = diag{e?, %}
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Geometry-preserving approximations of evolution equations
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Geometry-preserving approximations of evolution equations

Geometric Numerical Integration (ODE/PDE— Discrete-time):

o Finite-Difference Approximations preserving Lie Symmetries:
Dorodnitsyn 1989, Levi & Yamilov 1997, Heredero, Levi & Winternitz
2000, Bihlo & Valiquette 2017....

@ Symplectic integrators preserve some invariants of ODEs:
Channell & Scovel 1990, Leimkuhler & Reich 2004, Hairer, Wanner &
Lubich 2006, ...

@ Energy preserving methods: Quispel & McLaren 2008,...

o Consistent discretization of ODEs (supported by ANR DIGITSLID):
Polyakov, Efimov & Brogliato 2019, Sanchez, Polyakov, Efimov 2020
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Geometry-preserving approximations of evolution equations

Geometric Numerical Integration (ODE/PDE— Discrete-time):

o Finite-Difference Approximations preserving Lie Symmetries:
Dorodnitsyn 1989, Levi & Yamilov 1997, Heredero, Levi & Winternitz
2000, Bihlo & Valiquette 2017....

@ Symplectic integrators preserve some invariants of ODEs:
Channell & Scovel 1990, Leimkuhler & Reich 2004, Hairer, Wanner &
Lubich 2006, ...

@ Energy preserving methods: Quispel & McLaren 2008,...

o Consistent discretization of ODEs (supported by ANR DIGITSLID):
Polyakov, Efimov & Brogliato 2019, Sanchez, Polyakov, Efimov 2020

Symmetry/Energy-preserving Galerkin methods (PDE — ODE):
@ Reflection-symmetry-preserving projection: Pla et al 2015
@ Energy preserving projection: Liu & Xing 2016
e Dilation-symmetry-preserving projection: Polyakov 2020 (this paper)
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Il. Introduction to Homogeneous Evolution Equations
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Linear dilations in Banach spaces IB

B - a real Banach space and L(IB,B) is a space of linear bounded operators

Definition

A one-parameter family d : R — L£(IB, B) is said to be a dilation in B if
o group property: d(0) =/, d(t +s)=d(t)d(s), t,s € R;
o limit property: sgrfoo |ld(s)ul| = 0 and sEToo |ld(s)ul| = oo

uniformly on S = {u € B : ||u|| = 1}.
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Linear dilations in Banach spaces IB

- a real Banach space and L(IB, B) is a space of linear bounded operators

A one-parameter family d : R — L£(IB, B) is said to be a dilation in B if
o group property: d(0) =/, d(t +s)=d(t)d(s), t,s € R;
o limit property: Sgrfoo |ld(s)ul| = 0 and shToo |ld(s)ul| = oo
uniformly on S = {u € B : ||u|| = 1}.

Definition

A dilation d in B is said to strongly (uniformly) continuous if the mapping
s—d(s)x (resp. s—d(s)) is continuous in B (resp. in L(IB,B)) Vx € B.

Example (Standard dilation)

The standard dilation d(s) = e/ is uniformly continuous.

(Inria) Homogeneous Galerkin Method 9 /32



Generators of dilations

Definition (Generator of dilation)

A linear operator Gq:D(Gy) CIB— B defined as Ggx = Iimod(s)% on the
5—

domain D(Gd):{xelB:EllimO d(s)%} is called the generator of d.
s—

Theorem

Ifd is a strongly continuous dilation then its generator Gy is a linear closed
densely defined operator and

%d(s)x = Ggd(s)x = d(s)Ggx, Vx € D(Gy).

(Inria) Homogeneous Galerkin Method 10 / 32



Linear Dilations in IR"

Any continuous linear dilation in IR"” is a matrix-valued function given by

SGd = SiGé
d(s) = e’ =) =—H, seR,
i=0

where the generator Gg € R™*" is an anti-Hurwitz matrix.
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Linear Dilations in IR"

Any continuous linear dilation in IR"” is a matrix-valued function given by
—+oc0

d(s)=eSG‘1'=Z:ﬂ seR,

ir

i=0
where the generator Gg € R™*" is an anti-Hurwitz matrix.

d (s)x

Standard dilation
di(s) =e°l, Gg=1¢€RM™" 4,()x

d,(s)x

Weighted dilation |

dy(s) =diag{e"*}, Gg=diag{r;} =0

Linear dilation

d3(s)=e*%, Gy is anti-Hurwitz
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Linear Dilations in Function Spaces

Example

Let us consider the one-parameter group of linear invertible operators in
the Lebesgue space LP(IR",IR™) given by

(d(s)x)(z) = e**x(ef°z), s€R, xe€lP(R",R™), zcR" (1)
where &, B € R are constant parameters. Since
ld(s)x]le = PP x|l

then d is a dilation in LP(IR”,IR™) provided that « — fn/p > 0.
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Linear Dilations in Function Spaces

Example

Let us consider the one-parameter group of linear invertible operators in
the Lebesgue space LP(IR",IR™) given by

(d(s)x)(z) = e**x(ef°z), s€R, xe€lP(R",R™), zcR" (1)
where &, B € R are constant parameters. Since
ld(s)x]le = PP x|l

then d is a dilation in LP(IR”,IR™) provided that « — fn/p > 0.
The generator of d in LP is

(Gax)(z) = ax(z) + B(z- V)x(z), z€eR", xeD(Gyg)CLP(R",R™).
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Monotone dilations

Definition (Monotone dilation)

The dilation d is strictly monotone if
dy>0: ||d(s)|| < e, Vs<DO,
where [|d(s)[| =sup{[[d(s)x]| : [[x||=1}
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Monotone dilations

Definition (Monotone dilation)

The dilation d is strictly monotone if
dy>0: ||d(s)|| < e, Vs<DO,
where [|d(s)[| =sup{[[d(s)x]| : [[x||=1}

Let H be a real Hilbert space.

Theorem (Monotonicity in H)

The dilation d is strictly monotone in
H ifand only if 3y > 0 and a set
D C D(Gq) in H such that

(Ggx, x) > v||x]|? Vx € D.
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Monotone dilations

Definition (Monotone dilation)

The dilation d is strictly monotone if

3y >0 [|d(s)]| < &, Vs <0, - o
where |[d(s)[| =sup{||d(s)x]| : [|x]|=1} \
Let H be a real Hilbert space. ‘ - ;I‘NX
Theorem (Monotonicity in H) \
The dilation d is strictly monotone in xPx=l

H ifand only if 3y > 0 and a set
D C D(Gq) in H such that
(Ggx, x) > v||x]|? Vx € D.

Proposition (Uniqueness of a homogeneous projection to the sphere)

If d is monotone then Vx # 0 there exists a unique pair (sp, xp) € R x S
such that x = d(sp)xg, where S = {x : ||x|| = 1} is the unit sphere.
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Canonical Homogeneous Norm

Definition (a norm) Definition (homogeneous "norm™)

p € C(B,R;) is a norm if p€ C(B,IR4) is a homogeneous norm if
1) p(x)=0=x=0 1) p(x)=0=x=0

2) p(*e®x) = e°p(x) 2) p(£d(s)x) = e*p(x)

3) p(x+y) < p(x) +p(y) 3) —

(Inria) Homogeneous Galerkin Method 14 / 32



Canonical Homogeneous Norm

Definition (a norm) Definition (homogeneous "norm™)

p € C(B,R;) is a norm if p€ C(B,IR4) is a homogeneous norm if
1) p(x)=0=x=0 1) p(x)=0=x=0

2) p(*e®x) = e°p(x) 2) p(£d(s)x) = e*p(x)

3) p(x+y) < p(x) +p(y) 3) —

Canonical homogeneous norm for a monotone dilation
Ix[[g=e™ where sc€R:|d(—sc)x||=1
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Canonical Homogeneous Norm

Definition (a norm) Definition (homogeneous "norm™)
p € C(B,R4) is a norm if p€ C(B,IR4) is a homogeneous norm if
1) p(x) =0 x=0 1) p(x) =0 x=0

2) p(*e®x) = e°p(x) 2) p(£d(s)x) = e*p(x)

3) p(x+y) < p(x) +p(y) 3) —

Canonical homogeneous norm for a monotone dilation

Ix[[g=e™ where sc€R:|d(—sc)x||=1

5 5

n u
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Homogeneous functions and vector fields

Definition (Homogeneous functional)

A possibly unbounded functional h: D(h) C B — R is d-homogeneous
of the degree y € R if d(s)D(h) C D(h) and

h(d(s)x) = e*h(x), Vx € D(h), VseR.

Definition (Homogeneous Operator)

A possibly unbounded operator f : D(f) C B — B is d-homogeneous of
the degree u € R if d(s)D(f) C D(f) and

f(d(s)x) = e*d(s)f(x), VxeD(f), VseR.

(Inria) Homogeneous Galerkin Method 15 / 32



Example (Three-tank system)

X1 = Stank [ 01 (Xl — X;J,J05 -+ ul]

X2 = Sk (0333 = %) %% — 02[x2] %% + un]
X3 = Stank [61 ’VXl - X3JO > — 03 [X3 — X2J 0'5] ;

where [p]%2 = |o|sign(p).

3 5
] ]
BN
|

The model of the three-tank system is standard homogeneous d(s) = e°/3

of the degree —0.5 for u; = 0, up = 0.

v

(Inria) Homogeneous Galerkin Method
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Example (A flow in open channels — Saint-Venant Equation)

P =2,
Vv d
5 =, (3V2+gH),
H(t,0)V(t,0) — (Z — Lo)*/? =0,
H(t,1)V(t,1) — (H(t,1) - L1)3/?=0,
where H is the water level and V is the
water velocity.

i
1
iH(t,x)
1
I
1

Let f: D(f) C B — B := C([0,1],R) x C([0,1],R) be defined on the domain

= {(”' V) € €0, Ry) x €0, 1K), OO }

as follows
—2HV)
f(H, V)= 9x ,
( ~3 (gH+3V?), (H,V)eD(f)
The operator f is d-homogeneous of degree u = 1 with respect to the weighted dilation

d(s)(H, V) = (e*H,e°V),
fod(s) =e°d(s)of.

v
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Example (Laplace operator)

82 82 2 n m 2 n m
A_a—zlz+...+a—zn.D(A)cL (R",R™) — L2(R",R™)

is d-homogeneous of the degree 23 with respect to the dilation

(d(s)x)(z) =e*x(ef°z), xel? z=(z,..,z,) €R", a>nB/2.

(Ad(s)x)(z) = Ae®x(eP°z) = e*P*(d(s)Ax)(2).
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Example (Laplace operator)

82 82 2 n m 2 n m
A_a—zlz+...+a—zn.D(A)cL (R", R™) — [2(R",R™)

is d-homogeneous of the degree 23 with respect to the dilation

(d(s)x)(z) =e*x(ef°z), xel? z=(z,..,z,) €R", a>nB/2.

(Ad(s)x)(z) = Ae®x(eP°z) = e*P*(d(s)Ax)(2).

A\

Example (Navier-Stokes equations)

The classical model of the flow of an incompressible viscous fluid is

ou

B b — (s v/

5 = vBu (u-V)u p, 3)
0 = divu

where u denotes the velocity of a fluid in IR3, p denotes the scalar pressure
and v > 0 denotes viscosity of the fluid. It is d-homogeneous as well.

v

(Inria) Homogeneous Galerkin Method 18 / 32



Homogeneous evolution equations

Let us consider the nonlinear evolution equation in a Banach space
x=Ax+f(x), t>0x(0)=x (4)
where x(t), xo € B, x(t) = limy_o =X "4 D(A) € B — B and

f:D(f) C B — B are linear and, respectively, a non-linear (possibly
unbounded) closed densely defined operators, D(A) C D(f).

Let A and f be d-homogeneous operators of a degree u € R. If

x: [0, T) — B is a solution of (4) then for any s€R the function
x°:[0,e #ST)—B given by x°(t) := d(s)x(e!*t), t € [0,e7#°T) is a
solution of the evolution equation (4) as well.

Notice, if B = IH the equation (4) admits the equivalent week formulation
(x,v) = (Ax+f(x),v), VYveV,t>0

where V C H is a linear subspace dense in H.
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I1l. Homogeneous Galerkin Method
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Classical Galerkin method (for linear functional equations)

Strong formulation

Find x € D(A) such that Ax =y,
where A: D(A) C H — H - linear operator and y € H
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Classical Galerkin method (for linear functional equations)

Strong formulation

Find x € D(A) such that Ax =y,
where A: D(A) C H — H - linear operator and y € H

Weak formulation

Find x, € V such that (y,v) = (Ax,,v), VYveV,
where V C D(A) is a linear subspace dense in H.
Example: A= 2, H = [2(R,R), D(A) = H3(R,R), V = C*(R, R)

0z2!
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Classical Galerkin method (for linear functional equations)

Strong formulation

Find x € D(A) such that Ax =y,
where A: D(A) C H — H - linear operator and y € H

Weak formulation

Find x, € V such that (y,v) = (Ax,,v), VYveV,
where V C D(A) is a linear subspace dense in H.

Example: A= 2, H = [2(R,R), D(A) = H*(R,R), V = C(R, R)

Galerkin projection

Find x, € V such that (y,v) = (Ax,,v), VYveV,
where V =span{hy, hy, ..., hy} and {h;}"_; € H is an orthonormal family.
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Classical Galerkin method (for linear functional equations)

Strong formulation

Find x € D(A) such that Ax =y,
where A: D(A) C H — H - linear operator and y € H

Weak formulation

Find x, € V such that (y,v) = (Ax,,v), VYveV,
where V C D(A) is a linear subspace dense in H.

Example: A= 2, H = [2(R,R), D(A) = H*(R,R), V = C(R, R)

Galerkin projection

Find x, € V such that (y,v) = (Ax,,v), VYveV,
where V =span{hy, hy, ..., hy} and {h;}"_; € H is an orthonormal family.

If x, =Y " 1Zh,y=Y"1yihi,v=Y"1Vh;, X, 7,7 ER" then
yV=Ax, v)\VveV & 7 y=vAXVWER" & j=A%
where A, € R"™*", (An)i,j = <Ahj, h,'>.
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Galerkin approximation of a dilation d

If xo€D(Gq) CH then x(s)=d(s)xp fulfills x(s) = Ggx(s), s€R, x(0)=y
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Galerkin approximation of a dilation d

If xo€D(Gq) CH then x(s)=d(s)xp fulfills x(s) = Ggx(s), s€R, x(0)=y

Galerkin projection of the dilation

Find x, € C(R, V) such that { g?és)?’viféﬁdf;f”gvj g \Ys €R,

where V =span{hy, hy, ..., hp} and {h;}"_, €H is an orthonormal family.
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Galerkin approximation of a dilation d

If xo€D(Gq) CH then x(s)=d(s)xp fulfills x(s) = Ggx(s), s€R, x(0)=y

Galerkin projection of the dilation

Find x, € C(RR, V) such that { gi‘zgs))v‘?:(ifdxg(t)v‘y ,E \YS € R,

where V =span{hy, hy, ..., hp} and {h;}"_, €H is an orthonormal family.
<X h1>

If I1, : H—IR" is defined as IT,x= | (x ”2> then Galerkin method gives
(x,hn)

d

E)?(s) = Gy, X(s), s€R, x(0)=II,yeR",
where x, (t) = Y71 Xi(t)h;, X € R" and Gq, € R™*" is the Galerkin
projection of Gq, i.e. (Gq,)ij = (Gahj, hi).

d,(s) = e s € R — Galerkin projection of d

Notice if (Gay,y) > 7lly||* then Ga, + G4 > Yln.
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(d(s)x)(z) = e**x(ef°z), z,s€R, xcl*(RR)a>p/2.
Let us consider the Hermite functions

' _ (—1)i-1 2 gi-1 2 s
hi(z) = Ty zmie o zeRi=1,2, . (5)

The finite-dimensional projection of Gy is

mE o py/f o o o

0
V3 0 *F 0 B3 0
0

Ga, = BJ/E o 2B o B (6)
0 0 -3 0 2Ff o ..
0 0 0 —pvs 0 2PF

and the finite-dimensional projection of the dilation d is given by

d,(s) = 50 = @05 s c R, E=—8" = Gy, — (a—0.58)I,.

1
The latter means that ||%||q, = ||%||gs " for any X € R".

v
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Homogeneous Polar coordinates

If A and f are homogeneous operators of a degree v € R then denoting

z(t) = d(=In[lx(t)[la)x(2), r(t) = [Ix(¢)[la

(homogeneous polar coordinates!)

1Homogeneous polar cooridnates in IR" were introduced by Laurent Praly, CDC, 1997
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Homogeneous Polar coordinates

If A and f are homogeneous operators of a degree v € R then denoting

z(t) = d(=In[lx(t)[la)x(2), r(t) = [Ix(¢)[la

(homogeneous polar coordinates?)
the evolution equation (4) recalled here as
x(t) = Ax(t) + f(x(t)), t€ (0, T), x(0)=xo

can be rewritten as follows

“(t)d(— Inr(£))LAOnEDO) — A7 () 4 £(2(1)), t>0, )
(0)=d< In [lxolla)x0

and

H(t) = 2 () BB 50, r(0) = [olla. (8)

Homogeneous polar cooridnates in IR” were introduced by Laurent Praly, CDC, 1997
(Inria) Homogeneous Galerkin Method 24 /32



Homogeneous Galerkin Projection

Galerkin projection

find <pv C([0,T), V) and 7 € C([0, T),Ry) such that
(t))%a(g( F(t) ()) Ay (t)—F (v (1)), v) =0,
r t

—In?(t))3 nf7(t))$
dg t) X 1() Ady (8)+1( <Pv( )).9v(t))
)

<~—v

( Gd(pv ¢v(t)> '
{#v(0),v) = (d(=Inxolla)x0, v), and  7(0) = |[xo]la.
YveV,Vte (0, T),
(9)
where V' C H is a linear subspace of Hand Sy ={z€ V : ||z|g =1} is
the unit sphere in V.

v

x,(t) =d(InF(t))p,(t), t€[0,T) (10)
is a Galerkin-like projection of the strong solution x : [0, T) — H of the
system (4) on the d-homogeneous cone

Dy := |J d(s)Sv. (11)
seR
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Geometric illustration of homogeneous projection

X homogeneous Galerkin
projection

classical Galerkin projection
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On existence of a homogeneous Galerkin projection

Let the operators A, f be d-homogeneous of the degree v € IR and satisfy
certain regularity assumptions, D(A) C D(f), and h; € D(A) N D(Gy),

i =1,2,...,n be an orthonormal basis in V = span{hy, ..., h,}. Then for
any xo € Dy there exists a pair ¢, F satisfying (9) such that

bu(t) = 2 Fi(t)h, te[0.T),

where the pair ¢(t) = (p1(t), ..., ¢n(t)) " € Srn, F(t) € Ry is the unique
classical solution of the following ODE

W —7(¢) (An(t)+F(@(2))) — 7 (e) HOAFE IO 6, G(e),
F =V T n~ pTF($
dd(tt) _ 7 +1(t)¢ (%ﬂﬁgg;g(tg(tﬂf), te(0,7T),
$(0) = TT,d(~ Inlxo]la)%0.  7(0) =[x, .
12

where Gq, and A, are Galerkin projections of Gq and A, respectively.
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Properties of homogenenous Galerkin Projection

@ Introducing

x(t) = dn(In7(2))p(t)
we derive(12) is homeomorphic on IR" and diffeomorphic on R"\{0}

d%T(tt):Hi(t)llﬁndn(ln %) lla)(Andn(— In [[X]lap )X (£ (dn(— In [|2(2)[l4,) %(1))).

%(0)=do(In %0l a)TTnd(— In [1x0]la)x0,  ££(0,T).
(13)

e If x, € C([0, T), Dy) be a solution of (9) for xg € Dy then Vs € R"
the function x$ € C([0,e™"*T), Dy ) given by

xy(t) = d(s)x (")

is the solution of (9) with the scaled initial condition x(0) = d(s)xo.

@ The obtained finite-dimensional projection of the nonlinear evolution
equation (4) preserve stability properties of the original system and
the convergence rates (finite-time/fixed-time stability).
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Example: Homogeneous Galerkin projection of Burgers equation

Consider the Burgers equation

2
E;);:Z;;—xg;(, t>0, x(0,z)=x(z), z€R, xo€l* (14)

which has the exact solution

R0]e) = 2o { e [ Te gk

Compare the classical and homogeneous Galerkin projections for n = 5,
the Hermite basis

. _ (-1)'-! di-t —z2 -
hi(z) = T e HTE . ZE R,i=1,2,..
and two initial conditions
xx=heV or ongé\/,

1 if |z <1,

where
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Simulation results xg

o

(a) Classical Galerkin  (b) Homogeneous Galerkin (c) Exact solution
Figure: Approximate and exact solutions for xg = hy

0 s

(a) The classical Galerkin method  (b) The homogeneous Galerkin method
Figure: Approximation errors for xg = hy
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Simulation results xp = ¢

(a) Classical Galerkin  (b) Homogeneous Galerkin (c) Exact solution

Figure: Approximate and exact solutions for xg = ¢

o

(b) The homogeneous Galerkin

(a) The classical Galerkin method method

Figure: Approximation errors for xg = ¢
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@ A homogeneous Galerkin method is proposed for homogeneous
evolution equations in Hilbert spaces.
@ |t preserves
o the homogeneity(dilation symmetry) in the finite-dimensional
projection;
e the convergence rates (finite-time and fixed-time stability) of the
original system.
@ Simulations shows a large improvement of the approximation precision
for small number of basis functions.
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© Introduction
@ Homogeneity
o Geometry-preserving approximations of evolution equations
@ The problem of consistent discretization

@ Consistent Discretization using Lyapunov Function
@ Lyapunov function of homogeneous system
@ Polar coordinates for stable homogeneous system

© Examples
o Consistent discretization of quasi-continuous 2-SM controller

@ Consistent discretization of a positive degree system
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l. Introduction
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x)=e°f(x) & f(x+y)=Ff)+f(y) & f(—x) = —f(x) J
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x)=e°f(x) & f(x+y)=Ff)+f(y) & f(—x) = —f(x) J

Standard Homogeneity (L. Euler, 18th century):

x — e°x  (dilation) f(ex) = e"*f(x) (symmetry)
s € R - group parameter v € R - degree

Example: x = (x1,x2), f(x) = x1xa + X3
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Generalized Homogeneity

Linearity = Homogeneity + Additivity + Central Symmetry
fis linear & f(e°x) =e°f(x) & f(x+y)=f()+f(y) & f(—x) = —f(x) J

Standard Homogeneity (L. Euler, 18th century):
x — e°x  (dilation) f(ex) = e"*f(x) (symmetry)
s € R - group parameter v € R - degree }

Example: x = (x1,x2), f(x) = x1xa + X3

Generalized Homogeneity (Zubov 1958, Khomenuk 1961, Hermes 1986, Kawski
1991, Coron & Praly 1991, Rosier 1992, Grune 2000, Levant 2003, Bhat & Bernstein
2005, Orlov 2005, Perruquetti & Moulay 2008, Andrieu et al 2008, )

x — d(s)x (dilation) f(d(s)x) = e’*f(x), (symmetry)

Limit property: _lim ld(s)x]|| =0, (s)x|| =00, Vx#0
S——00

lim ||d
S—+00

Example: x = (x1,x2), f(x) = x1 + x3 with d(s) = diag{e®®, e°}
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Linear Dilations in IR"

Any continuous linear dilation in IR"” is a matrix-valued function given by

s iGi
d(s) =@ =) =2, seR,
i=0
where the generator Gy € R"*" is an anti-Hurwitz matrix.
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Linear Dilations in IR"

Any continuous linear dilation in IR"” is a matrix-valued function given by

—+o0

d(s) = e =Z# seR,

i=0

where the generator Gy € R"*" is an anti-Hurwitz matrix.

Standard dilation

di(s) = eI, Gg=1€cR™n

Weighted dilation

d (s)x
d,(s)x

d (s)x

da(s)=diag{e"*},Gy=diag{r;} -0

Linear dilation

d3(s) =e*Cd, Gy is anti-Hurwitz

(Inria)

Lyapunov-Function-Based Discretization
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Homogeneous functions and vector fields

fd(s)x)=e"d(s)f(x)

Definition(Homogeneous function)

A function f : R” — R is
d-homogeneous of degree v if 1)
f(d(s)x)=e"*f(x)

Definition(Homogeneous vector field)

A vector field f : IR" — R" is
d-homogeneous of degree v if
f(d(s)x)=e"*d(s)f(x)
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Geometry-preserving approximations of evolution equations

Geometric Numerical Integration (ODE/PDE— Discrete-time):

o Finite-Difference Approximations preserving Lie Symmetries:
Dorodnitsyn 1989, Levi & Yamilov 1997, Heredero, Levi & Winternitz
2000, Bihlo & Valiquette 2017....

@ Symplectic integrators preserve some invariants of ODEs:
Channell & Scovel 1990, Leimkuhler & Reich 2004, Hairer, Wanner &
Lubich 2006, ...

@ Energy preserving methods: Quispel & McLaren 2008,...

o Consistent discretization of ODEs (supported by ANR DIGITSLID):
Polyakov, Efimov & Brogliato 2019, Sanchez, Polyakov, Efimov 2020

Symmetry-preserving Galerkin methods (PDE — ODE):
@ Reflection-symmetry-preserving projection: Pla et al 2015
@ Energy preserving projection: Liu & Xing 2016
o Dilation-symmetry-preserving projection: Polyakov 2020
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Consistent Disctretization: Motivating Example

{ x(t) = u(x(1)) y=VIxlsgn() { y(t) = a(y(t))
u(x) =—2/|x|sgn(x) a(y) € —sgn(y).

The explicit/implicit Euler discretization destroys the equivalence.

{ Xk+1 =Xk +huy N { Yk+1=Yk+hik
U =—2 |Xk+1 |sgn(xk+1) S —sgn(ykﬂ).

(Inria) Lyapunov-Function-Based Discretization



Consistent Disctretization: The scheme

The scheme suggested in Polyakov, Efimov, Brogliato 2019:

x(t)=F(x(t)) =g y(6)=F(y(1)

a consistent the implicit Euler method

1 discrete-time | 1 gives a consistent T
approximation discrte-time approximation
_ ~ xk=CI>71(yk) ~
X 1= H (@ (xk ) +hF (P(xk11))) = Ykr1=Yk+hf (yii1)

Question: Is it possible to design a consistent explicit discretization?
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Il. Consistent Discretization using Lyapunov Function
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Lyapunov Function of homogeneous system

x="f(x), t>0, (1)
where f € C(R"\{0}) is d-homogeneous of a degree v € R.

Theorem (Zubov 1958, Rosier 1992)
The system (1) is asymptotically stable if and only if there exist

@ a d-homogeneous positive definite function V : R" — R of a degree
m >0, V € C}{(R"),

@ a d-homogeneous positive definite function W : IR" — R of the
degree m+v, W € C(R"),

such that
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Polar coordinates for stable homogeneous system

]Rn\{o} <~ IR+ X Sgn

Classical Polar Coordinates

x=rzeR": r=|x||, z € Srn,
where Sgn is the unit sphere in IR"”.

(Inria) Lyapunov-Function-Based Discretization



Polar coordinates for stable homogeneous system

]Rn\{o} <~ IR+ X Sgn

Classical Polar Coordinates

x=rzeR": r=|x||, z € Srn,
where Sgn is the unit sphere in IR"”.

4

Homogeneous Polar Coordinates /

x=d(Inr)zeR": r=||x||q, 2 € Srn

where || - || - homogeneous norm. \‘J
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Polar coordinates for stable homogeneous system

]Rn\{o} <~ IR+ X Sgn /1

Classical Polar Coordinates

x=rz€R": r=||x||, z €& Sgn,
where Sgn is the unit sphere in IR"”.

| A
N

Homogeneous Polar Coordinates

x=d(Inr)zeR": r=||x||q, 2 € Srn
where || - || - homogeneous norm.

o’

N

Lyapunov Polar Coordinates

x=d(In Vi (x))z: r=V(x),z€Sy
where V' - homogeneous Lyapunov
function of a degree m > 0 and

Sy is the unit level set of V.

B

T D
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Homogenenous System in Lyapunov Polar Coordinates

x=1"f(x), t>0 f:R"—=R"isd—homogeneous

Change of Variables (Lyapunov Polar Coordinates)
z=d(=InVmn(x))x, r=V(x)

- projected dynamics 2)
- convergent dynamics

F=—rTm W(z)
e z(t) €Sy for all t>0, where Sy is the unit level set of V ("sphere”);
e inf,cs, W(z) > 0 and the convergence to zero is defined by the
. k+v . . - .
second equation F = —r x W, which admit the explicit solution
provided that W = W(t) is a known function of time.
13/21
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The explicit solution of the second equation

F=—rtmw
where W = W(t) is assumed to be known, m > 0,v € R.

o if v =0 then

(t) = e fo WO (1), > g,

o if v > 0 then
() = rlto) ot n
<1+%r%(t0) N W(s)ds) '
e if v < 0 then
r(t) _ <r%/(to)+% fot W(s)ds>% if rm (tg)>2 fot W (s)ds
0 it rm ()<L 3 W(s)ds
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Consistent Discretization using explicit Euler method

Explicit discretization of the first equation in

{ z=rm (f(z) — LW(2)Gy2),

m+v

F=—rm W(z),

gives

m+v

F=—rm W(z), t€ [t tkr1]

{ Bl = pm (f(z) — LW(2) Gazi)

where ri & r(ty), zx = z(ty).
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Consistent Discretization using explicit Euler method

Explicit discretization of the first equation in

{ Z=rm "(L(z) —Lw(z)Gyz),

F=—rm W(z),

gives

F=—r"n W(z), t € [t trs),
where ry ~ r(ty), zx = z(tx). Since z(t) € Sy, Vt > 0 then

zk1 =P (Zk + hrk% (f(Zk) — %W(Zk)Gde)) (3)

{ Bl = pm (f(z) — LW(2) Gazi)

where P(z) =d(—In V%(z))z - homogeneous projector on Sy, .
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Consistent Discretization using explicit Euler method

Explicit discretization of the first equation in

{ z=rm (f(z) — LW(2)Gy2),

m+v

F=—rm W(z),

gives
et — o (1(2) - AW (2)Goz),
F=—rm W(z), t€ [t tkr1]

where r & r(ty), zx ~ z(tx). Since z(t) € Sy, Vt > 0 then

zk1 =P (Zk + hrk% (f(Zk) — %W(Zk)Gde)) (3)

where P(z) =d(—In V%(z))z - homogeneous projector on Sy,. The exact
discretization of the second equation for v < 0 is given by

m
—v = —
et = { (fk'" +%(tk+1*tk)w(zk)d5> it ™ > (e —t) Wiz,
0 if e (t0) <7 (b1 —te) W(zk).-

For v > 0 the system can be discretized similarly.
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I11. Examples
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Consistent discretization of 2-SM controller

Consider quasi-continuous 2-SM control system

x1 + koxa|xz|

X1 = X2, X2 = U, U:—lm,

ki, ko >0
which is d-homogeneous of the degree v = —1 for d(s) = diag{e?*, e*}.

For any k1 > 0 there exists kp, ® > 0 such that the system has a
d-homogeneous Lyapunov function V of the degree m = 3 given by !

2 1
V(x) = aghbal? +xoe + Skl

such that V(x) = —W(x) with

k 2
W(x) = kg CERelel) A ) — 52

|x1| + ka|x2|?

1Sanchez & Moreno 2019
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Simulation results 2-SM controller

-1

2
X1 X2 -001
-0.02
T 2 4 e 8 10 003 7 73 7% 7]12 745 75 155 16
States
1
0 f | I——
u(xk) 0.2
-1t 0.1 | 1
-2 -01 74 78 1
0 2 4 6 8 10
hk
Control input
(Inria)
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Consistent discretization of a positive degree system

Consider the following system

X1 = —k1X1\/|X1|+X2, )'(2:—/(2X2|X2|, ki, ko >0

which is d-homogeneous of the degree v = 1 for d(s) = diag{e®, €2}. For

any ki > 0 there exists ko, &« > 0 such that the system has a
d-homogeneous Lyapunov function V of the degree m =5 given by

2 3
V(x) = “g|x1|% — x1x2 + §k2|X2|%

such that V(x) = —W/(x) with

2
2 .
W(x) = <k1x“/|x1| —xz> + ko (wxaal ol sign(e) — al?)

(Inria) Lyapunov-Function-Based Discretization
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Simulation results for the system with positive degree

log;o(x4)

4 3 = =
log,o(hk)

States
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@ A new method for consistent discretization of homogeneous systems
is developed.

o It allows explicit consistent discretization schemes to be designed.

@ Theoretical results are supported by numerical simulations.

Thank you very much for your attension
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