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Objectives

Pre-requisits:

Basic physics and maths,

previous chapters (Robotics Chapter 1 to 3): modeling,

Objectives : Path planning and tracking

What is Path planning,

Path planning, controllability and flatness,

Path planning as a polynomial interpolation problem with
constraints: application to manipulators, mobile robots and
networked mobile robots,

Tracking (stabilization around a trajectory).
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Manipulator from one configuration to another

From one configuration of the EF to another: non feasible !!
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Posture:
x = f(q)

Direct geometric model (manipulator) or Posture model (mobile

robot)

6

-

xI

xF

Space Mx

Figure 1: TriangulationPosture

Configuration (state):

q = (q1, . . . , qn)
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-
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Figure 1: TriangulationState/Configuration

path planning for state in automatic control it is a reachability
problem (controllability)
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Controllability

What is ctrb ?

Does there exists a time function (control) u(t) s.t. starting from
x0 the trajectory will reach xf in a pre-given time tf?

xf

x0

u : x(t = tf , x0, u) = xf

1

Controllability

u(t) is the open loop control (nominal control)

W. Perruquetti Path planning
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Experimental results on the open loop system
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Path planning: Oups

A unicycle type model . . . with pies

What happens when skidding or sliding??(which may appears if the
contact between the road and the tire is not maintained . . . ) or
just when we have uncertainties in the actuator dynamics or in the
dynamical model
For example when skidding or sliding:





ẋi = vi cos θi + π1,i

ẏi = vi sin θi + π2,i

θ̇i = wi + π3,i

π1,i, π2,i, π3,i are unknown additive uncertainties.

Question

Help! How can we deal with such pies?W. Perruquetti Path planning
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Path planning needs Tracking !!

ẋ = f(x, u), yflat

Path planning ⇒ nominal trajectory for ynominal
flat (t) leads to

nominal trajectory for xnominal(t) and open loop control
unominal(t).

Error Dynamics: (e = x− xnominal(t))

ė = f(e+ xnominal(t), u)

Set u = unominal(t) + v and find good v s.t.

lim
t→∞

e(t) = 0

W. Perruquetti Path planning
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Lie bracket

θ

x
1

x 2

u
1

u
2



ẋ1

ẋ2

θ̇


 =




sin θ
cos θ

0


u1 +




0
0
1


u2.

The linearized model around any point is ẋ = Bu thus the Kalman
rank criterium rankC(A,B) = n is not satisfied

rankC(A,B) = rankB = 2 6= 3 = n

where C(A,B) = [B,AB, . . . , An−1B] = B!!. Thus the linearized
model is NOT controllable but everyday life shows us that we are
able to park car.

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Controllability
Flatness

Lie bracket

Let us apply a piecewise constant input

u(t) =





(1, 0), t ∈ [0, ε[
(0, 1), t ∈ [ε, 2ε[

(−1, 0), t ∈ [2ε, 3ε[
(0,−1), t ∈ [3ε, 4ε[

Using a Taylor serie expansion and using the following notations
θ = x3, g1(x) = (sin(x3), cos(x3), 0)T , g2 = (0, 0, 1)T : every things
during such short time acts as ẋ = [g1, g2](x) where

[g1, g2] =

(
∂g2

∂x
g1 −

∂g1

∂x
g2

)
,

W. Perruquetti Path planning
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x(ε) = x0 + εg1(x0) +
1

2
ε
2
(
∂g1

∂x

)
x=x0

g1(x0) + o(ε
2
),

x(2ε) = x(ε) + εg2(x(ε)) +
1

2
ε
2
(
∂g2

∂x

)
x=x(ε)

g2(x(ε)) + o(ε
2
)

= x0 + ε (g1(x0) + g2(x0)) + ε
2
(
∂g2

∂x

)
x=x0

g1(x0) +
1

2
ε
2
(
∂g1

∂x

)
x=x0

g1(x0)

+
1

2
ε
2
(
∂g2

∂x

)
x=x0

g2(x0) + o(ε
2
)
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x(3ε) = x(2ε)− εg1(x(2ε)) +
1

2
ε
2
(
∂g1

∂x

)
x=x(2ε)

g1(x(2ε)) + o(ε
2
)

= x0 + ε (g1(x0) + g2(x0)) + ε
2
(
∂g2

∂x

)
x=x0

g1(x0) + ε
2
(
∂g1

∂x

)
x=x0

g1(x0)

+
1

2
ε
2
(
∂g2

∂x

)
x=x0

g2(x0)− ε
(
g1(x0) + ε

(
∂g1

∂x

)
x=x0

(g1(x0) + g2(x0))

)
+ o(ε

2
)

= x0 + εg2(x0) + ε
2

(
1

2

(
∂g2

∂x

)
x=x0

g2(x0) +

(
∂g2

∂x

)
x=x0

g1(x0)−
(
∂g1

∂x

)
x=x0

g2(x0)

)
+ o(ε

2
)

= x0 + εg2(x0) + ε
2

(
1

2

(
∂g2

∂x

)
x=x0

g2(x0) + [g1, g2](x0)

)
+ o(ε

2
)

x(4ε) = x(3ε)− εg2(x(3ε)) +
1

2
ε
2
(
∂g2

∂x

)
x=x(3ε)

g2(x(3ε)) + o(ε
2
)

= x0 + εg2(x0) + ε
2

((
∂g2

∂x

)
x=x0

g2(x0) + [g1, g2](x0)

)
− ε

(
g2(x0) + ε

(
∂g2

∂x

)
x=x0

g2(x0)

)
+ o(ε

2
)

=
(
Id + ε

2
[g1, g2]

)
(x0) + o(ε

2
)
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Lie bracket

Le crochet de Lie (ou commutateur) défini par :

[g1, g2] =

(
∂g2

∂x
g1 −

∂g1

∂x
g2

)
,

permet de calculer la condition de commutativité de deux flots Φt
g1

et Φs
g2

.

Theorem

Soient g1 et g2 des champs de vecteurs C∞ complets, définis sur X
(par exemple Rn). Alors :

∀t,∀s, Φt
g1
◦ Φs

g2
= Φs

g2
◦ Φt

g1
⇔ [g1, g2] = 0.

W. Perruquetti Path planning
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Lie bracket

Chochet de Lie.
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Proof.

Soient x0 ∈ Rn et t, s > 0 donnés. Pour un champ de vecteurs analytique X, on a
Φt

X (y) = y + tX(y) + R(t, y), où R(t, y) représente un reste s’annulant pour t→ 0. On obtient donc :

Φ
t
g1
◦ Φ

s
g2

(x0) = x0 + (sg2(x0) + tg1(x0)) + st
∂g1

∂x
g2(x0) + R1(t, s, x0),

Φ
s
g2
◦ Φ

t
g1

(x0) = x0 + (sg2(x0) + tg1(x0)) + st
∂g2

∂x
g1(x0) + R2(t, s, x0),

et donc :
Φ

t
g1
◦ Φ

s
g2

(x0)− Φ
s
g2
◦ Φ

t
g1

(x0) = st[g2, g1](x0) + R3(t, s, x0).

Prenons t = s, alors l’implication découle immédiatement. Pour la réciproque,

[g1, g2] = 0⇒ ∀x0 ∈ Rn : limt→0(
Φ−t
g2
◦Φs

g1
◦Φt

g2
(x0)−Φs

g1
(x0)

t
) = 0. Soit la trajectoire

x(t) = Φ−t
g2
◦ Φs

g1
◦ Φt

g2
(x0), alors ẋ(t) = 0, donc Φ−t

g2
◦ Φs

g1
◦ Φt

g2
= Φs

g1
.

W. Perruquetti Path planning
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Lie bracket : Propriétés

1 Bilinéaire sur R :

[α1g1 + g2, g] = α1[g1, g] + [g2, g]

[g, α1g1 + g2] = α1[g, g1] + [g, g2]

2 anticommutativité :

[f, g] = −[g, f ]

3 identité de Jacobi :

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0

4 flot (commutativité) :

∀t,∀s, Φt
g1
◦ Φs

g2
= Φs

g2
◦ Φt

g1
⇔ [g1, g2] = 0.

W. Perruquetti Path planning
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Lie bracket

En automatique, la non-commutativité des champs a une
application très importante puisqu’elle permet de caractériser
l’atteignabilité (version locale de la commandabilité) d’un système
commandé du type

ẋ = g1(x)u1 + g2(x)u2.

W. Perruquetti Path planning
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Et de façon générale pour des systèmes de la forme

ẋ = f(x) +

p∑

i=1

gi(x)ui, x ∈ Rn (1)

pour cela il faut que

rang(A{f, g1, g2, . . . , gp}) = n,

où A{f, g1, g2, . . . , gp} est l’algèbre de Lie engendrée par les
champs de vecteurs {f, g1, g2, . . . , gp}.
f est le champs de dérive: il est à noter que les modèles
cinématiques que l’on va rencontrer ici sont sans dérive,
c’est-à-dire que f = 0.

W. Perruquetti Path planning
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θ

x
1

x 2

u
1

u
2



ẋ1

ẋ2

θ̇


 =




sin θ
cos θ

0


u1 +




0
0
1


u2.

g1(x) = (sin(θ), cos(θ), 0)T , Φt
g1

:




x10

x20

θ0


 7→




x10 + sin(θ0)t
x20 + cos(θ0)t
θ0


 ,

g2 = (0, 0, 1)T , Φt
g2

:




x10

x20

θ0


 7→




x10

x20

θ0 + t


 ,

⇒ Φt
g2
◦ Φs

g1
6= Φs

g1
◦ Φt

g2W. Perruquetti Path planning
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Crochet de Lie

([g1, g2], g1, g2) =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0
0 0 1


 ,

dim (vect{[g1, g2], g1, g2}) = 3,

W. Perruquetti Path planning
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Definition

Soient g1, g2, . . . , gp des champs de vecteurs que l’on suppose
libres (idépendant les uns des autres). L’algèbre de Lie engendrée
par les champs de vecteurs gi est la distribution construite à partir
de vect{g1, g2, . . . , gp} à laquelle on ajoute tous les crochets de Lie
successifs formés des gi à condition qu’ils augmentent la dimension
de l’algèbre (c’est-à-dire qui ne sont pas déjà engendrés par la
distribution que l’on est en train de construire !). On la note
A{g1, g2, . . . , gp}.

A = accéssibilité (controllabilité). Si rang(A{g1, g2, . . . , gp}) = n
alors le système ẋ = G(x)u, x ∈ Rn, G = (g1, g2, . . . , gp) (robot
mobile) ou (1) est accessible (localement commandable).

W. Perruquetti Path planning
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Le crochet de Lie de deux champs de vecteurs g1, g2 est un
nouveau champs de vecteur [g1, g2], défini par

[g1,g2] (x) =

(
∂g2

∂x
g1 −

∂g1

∂x
g2

)
(x). (2)

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Controllability
Flatness

Table of Contents

1 Introduction

2 Controllability, Flatness
Controllability
Flatness

3 Path planning

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Controllability
Flatness

Flatness is the key point

Flatness (see works from M. Fliess, J.Lévine, Ph.Martin, et
P.Rouchon details in [?, ?, ?, ?, ?])
+ For linear systems

ẋ = Ax+Bu

the following notions are equivalent :

1 controllability,

2 Brunovsky normal form,

3 the parametrization of the state variables and the inputs using
m outputs (Brunovsky outputs = flat outputs).

W. Perruquetti Path planning
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Flatness is the key point

Theorem

Let us consider the following linear system ẋ = Ax+Bu, if
controllable, and B is full rank then there exist a regular static
feedback (u = Pz +Qv,Q invertible) and a change of coordinatee
(z = Rx,R invertible) such that

y
(α1)
1 = v1,

. . .

y(αm)
m = vm,

with z = (y1, ẏ1, . . . , y
(α1−1)
1 , . . . , ym, ẏm, . . . , y

(αm−1)
m ) and αi

positive integers.

W. Perruquetti Path planning
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Flatness is the key point

Definition

System
ẋ = f(x, u), x ∈ Rn, u ∈ Rm,

is flat if there exist m functions of the state, the inputs and their
derivatives up to order r ≤ n (flat outputs) such that the state
variables and the outputs can be expressed in terms of the flat
outputs.
+ This is that there exist three mapping

W. Perruquetti Path planning
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Flatness is the key point

Definition (continued)

ϕy : Rn × Rm × . . .× Rm︸ ︷︷ ︸
r+1

7→ Rm, ϕx : Rm × . . .× Rm︸ ︷︷ ︸
r

7→ Rn,

ϕu : Rm × . . .× Rm︸ ︷︷ ︸
r+1

7→ Rm

such that

y = ϕy(x, u, u̇, ü, . . . , u
(r)),

x = ϕx(y, ẏ, . . . , y(r−1)),

u = ϕu(y, ẏ, . . . , y(r)).

W. Perruquetti Path planning
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Flatness: double integrator

Example

ẋ1 = x2 (3)

ẋ2 = f(x) + u (4)

y = h(x) (5)

Flat output is yflat = x1

x1 = yflat,

x2 = ẋ1 = ẏflat,

y = h(x1, x2) = h(yflat, ẏflat),

u = ẋ2 − f(x) = ÿflat − f(yflat, ẏflat).

W. Perruquetti Path planning
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Flatness: simple pendulum

Example

Model with friction:

θ̈+
δ

ml2
θ̇+

g

l
sin(θ) =

u

ml2
.

y = θ (it is also a flat
output). Let z1 = θ, z2 = θ̇
we get:

ż1 = z2,

ż2 = − δ

ml2
z2 −

g

l
sin(z1) +

u

ml2

Pendulum m, l with applied
torque u.

mg

θ

?

Pendulum.

W. Perruquetti Path planning
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Flatness: simple pendulum

Example

ż1 = z2,

ż2 = − δ

ml2
z2 −

g

l
sin(z1) +

u

ml2

Flat output is yflat = z1

z1 = yflat,

z2 = ẋ1 = ẏflat,

y = z1 = yflat,

u = ml2ÿflat + δẏflat +mgl sin(yflat).

W. Perruquetti Path planning
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Flatness: SISO linear ctrb system

Any linear controllable SISO system is flat. Indeed, due to
controllability

Y (p)

U(p)
=
n(p)

d(p)
, n(p) ∧ d(p) = 1

Thus there exist a, b solution of the Bezout equation

a(p)n(p) + b(p)d(p) = 1

W. Perruquetti Path planning
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Flatness: SISO linear ctrb system

Flat output is Yflat(p) = U(p)
d(p) (sol. of Lin. ODE with input u).

a(p)n(p)Yflat(p) + b(p)d(p)Yflat(p) = Yflat(p)

n(p)Yflat(p) =
n(p)

d(p)
U(p) = Y (p)

d(p)Yflat(p) = d(p)
U(p)

d(p)
= U(p)

a(p)Y (p) + b(p)U(p) = Yflat(p)

W. Perruquetti Path planning
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Flatness: SISO linear ctrb system

y = ϕx(y, ẏ, . . . , y(deg d)),

u = ϕu(y, ẏ, . . . , y(degn)).

Ctrb : rankC(A,B) = n,C(A,B) = [B,AB, . . . , An−1B].
Change of var. z = C(A,B)x

ż1 = −a0zn + u,

żn = z1 − a1zn,

. . .

ż1 = zn−1 − an−1zn,

yflat = zn

W. Perruquetti Path planning
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Flatness: Fully actuated manipulator

Dynamics: Let q = (q1, . . . , qn), q ∈Mq (state) where Mq is the
configuration space (state space). For each d.o.f (en français:
d.d.l) there is an actuator u has dimension n.
Using Euler Lagrange L = Ec − Ep, Ec(q, q̇), Ep(q),

d

dt
(
∂L
∂q̇i

)− ∂L
∂qi

+
∂D

∂q̇i
= Di.

J(q)q̈ + C(q, q̇) +G(q) = u

Flat output is yflat = q
State x = (q, q̇) = (yflat, ẏflat)
Input u = J(q)q̈ + C(q, q̇) +G(q) = F (yflat, ẏflat, ÿflat) If and
ONLY if n fully actuated d.o.f

W. Perruquetti Path planning
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Kinematic model: flatness is the key point

Theorem (P. Martin et P. Rouchon [?] (see also [?, ?]))

Any driftless non linear system

ẋ = B(x)u

(which is the case for non holonomic mobile robots with m inputs
and at most m+ 2 states is flat.

∃ 3 functions: one defining m flat outputs (thus differentially
independent) in terms of q, u, u̇, . . . , u(a)) and two other functions
one for q the other for u allowing to express them in terms of the
output and its time derivatives (in finite number).

W. Perruquetti Path planning
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Kinematic model: flatness is the key point

+ Thus the PKM and PDM are flat.

+ Thus it implies that they are controllable.

+ But from Brockett’s theorem (see [?]) they are not stabilizable
by a continuous static time-invariant state feedback.

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Controllability
Flatness

Kinematic model: flatness is the key point

1 Unicycle mobile robot (type (2,0))

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w (6)

2 Car-like mobile robot (type (1,1))

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v
tan(φ)

l

φ̇ = w (7)
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Kinematic model: flatness is the key point

Flat Outputs: (x, y).
Indeed:

1 for (82): θ = arctan
(
ẏ
ẋ

)
, v = ±

√
ẋ2 + ẏ2,w = ẋÿ−ẏẍ

ẋ2+ẏ2

2 for (7): θ = arctan
(
ẏ
ẋ

)
, v = ±

√
ẋ2 + ẏ2, φ =

arctan
(
l ẋÿ−ẏẍ
(ẋ2+ẏ2)3/2

)
, w = φ̇.
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Flatness: what else ?

Advantages of this point of view:

There exists a bijective mapping between admissible
trajectories of the dynamical system and the trajectories of
the flat outputs,

One can completly parameterized a nominal trajectory using
interpolating polynomial Bésier, Hermite, B-spline . . . (it may
be an equilibrium point),

Usefull to get open loop control,

Usefull for sizing actuators (dimensionnement en français),

Usefull for closed-loop control design (flatness ⇔ dynamic
feedback liberalization),

There exist extensions for other classes of dynamical systems
(delays, PDE, etc . . . )
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Flatness: Hot air balloon

Hot air balloon

“Altitude”

ż1 = z2,

ż2 = − 1

τ2
z2 + α(θ − θambiant(z1)) + pwind

θ̇ = − 1

τ1(z1)
(θ − θambiant(z1)) + u (8)

Measured variable y = z1. pwind wind action
(speed), z1 altitude τ1(z1) > 0, u heater action.
A.N. : α = 0.5, τ2 = 10−1,
θambiant(z1) = 25− 90

10000z1,
τ1(z1) = 3600

(
1− z1

20000

)
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Flatness: Hot air balloon

+ No wind action p = 0: Flat output is yflat = z1

z1 = yflat,

z2 = ẋ1 = ẏflat,

θ = θambiant(yflat) +
1

α

(
ÿflat +

1

τ2
ẏflat

)
,

y = z1 = yflat,

u = θ̇ +
1

τ1(z1)
(θ − θambiant(z1))

=
∂θambiant

∂z1
(yflat)ẏflat +

1

α

(
y

(3)
flat +

1

τ2
ÿflat

)

+
1

ατ1(z1)
(ÿflat +

1

τ2
ẏflat)
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Flatness: Hot air balloon

+ Design a heating process and control such that the operating
range of the hot air balloon is : z1 ∈ [0, 1000]m.
+ 1rst STEP (trajectory planning): Find yNflat(t) such that

yNflat(ti) = yi (9)

yNflat(tf ) = yf (10)

ẏNflat(ti) = 0 (11)

ẏNflat(tf ) = 0 (12)

Smooth trajectory. Bézier interpolation

yNflat(t) = a0 + a1τ + a2τ
2 + a3τ

3, τ =
t− ti
tf − ti

ẏNflat(t) = τ̇
(
a1 + 2a2τ + 3a3τ

2
)
, τ̇ =

1

tf − ti
W. Perruquetti Path planning
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Flatness: Hot air balloon




yi
0
yf
0


 =




1 0 0 0
0 τ̇ 0 0
1 1 1 1
0 τ̇ 2τ̇ 3τ̇







a0

a1

a2

a3







a0

a1

a2

a3


 =




1 0 0 0
0 1/τ̇ 0 0
−3 −2/τ̇ 3 −1/τ̇
2 1/τ̇ −2 1/τ̇







yi
0
yf
0


 =




yi
0

3(yf − yi)
−2(yf − yi)




yNflat(t) = yi + (yf − yi)τ2(3− 2τ), τ =
t− ti
tf − ti

W. Perruquetti Path planning
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Flatness: Hot air balloon

+ Trajectory: yi = 0, yf = 100, tf − ti = 300, ti = 0

yNflat(t) = 100τ2(3− 2τ), τ =
t

300

Path planning Hot air balloon
W. Perruquetti Path planning
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Flatness: Hot air balloon

+ 2nd STEP (Open loop control and simulation):

uN =
∂θambiant

∂z1
(yNflat)ẏ

N
flat +

1

α

(
y
N(3)
flat +

1

τ2
ÿNflat

)

+
1

ατ1(yNflat)
(ÿNflat +

1

τ2
ẏNflat), (13)

yNflat(t) = yi + (yf − yi)
(t− ti)2

(tf − ti)2

(
3− 2

t− ti
tf − ti

)
, (14)

ẏNflat(t) =
(yf − yi)(t− ti)

(tf − ti)2

(
6− 2

t− ti
tf − ti

)
, (15)

ÿNflat(t) = −12
(yf − yi)
(tf − ti)3

, (16)

y
N(3)
flat (t) = 0. (17)
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Flatness: Hot air balloon

Simulink
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Flatness: Hot air balloon

Open loop control
W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Controllability
Flatness

Flatness: Hot air balloon

+ 3rd STEP: Heating process (sizing) If |v| ≤ vmax and
|a| ≤ amax then

∣∣∣∣
(yf − yi)(t− ti)

(tf − ti)2

(
6− 2

t− ti
tf − ti

)∣∣∣∣ ≤ vmax (18)

∣∣∣∣12
(yf − yi)
(tf − ti)3

∣∣∣∣ ≤ amax (19)

A.N: vmax = 5 m/s, amax = 0.05 m/s2, δy = 1000 m, δt = 3 h

4.4 ≤ 5m/s (20)

3.215× 10−7 ≤ 5× 10−2m/s2 (21)

W. Perruquetti Path planning
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Flatness: Hot air balloon

uN =
∂θambiant

∂z1
(yflat)ẏ

N
flat +

1

α

(
y

(3)
flat +

1

τ2
ÿNflat

)

+
1

ατ1(yNflat)
(ÿNflat +

1

τ2
ẏNflat) (22)

max (each term)

uNmax =
90

10000
(3.7) +

1

0.05

(
2.0576× 10−5

)
(23)

uNmax = 5.5× 10−2 (24)

Be careful computation done with p = 0 otherwise more power !!
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Flatness: Hot air balloon

+ 4th STEP: Closed Loop system (and simulation)

e = z1 − z1c(t), z1c(t) = yNflat(t). (25)

u =
∂θambiant

∂z1
(yflat)ẏflat +

1

α

(
y

(3)
flat +

1

τ2
ÿflat

)
+

1

α
v

+
1

ατ1(yflat)
(ÿflat +

1

τ2
ẏflat) (26)

y
(3)
flat = v + ṗ, sup |ṗ| ≤ π (27)

y
N(3)
flat = 0 (28)

v = −Ksign(e)− k0e− k1ė− k2ë (29)

e(3) + k2ë+ k1ė+ k0e = ṗ−Ksign(e)
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Flatness: Hot air balloon

Closed loop controlW. Perruquetti Path planning
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Path planning: Problem formulation
Manipulator

Configuration: q = (q1, . . . , qn), q ∈ Mq (state),M is the

configuration space (state space).
Dynamics: using Euler Lagrange L = Ec − Ep,
d
dt

( ∂L
∂q̇i

)− ∂L
∂qi

+ ∂D
∂q̇i

= Di.

J(q)q̈ + C(q, q̇) +G(q) = τ

Posture (EF position and orientation):

x = (x1, . . . , x6), x ∈ Mx, whereMx is the work space
or operational space of dim = 6; Position (x1, x2, x3) =
coordinates of On+1 and orientation (x4, x5, x6) is given by
the rotation matrix

T
n
0 (q) = T

1
0 (q1)T

2
1 (q2) . . . T

n
n−1(qn)

Direct geometric model (manipulator):

Mobile Robot

Configuration: q = (q1, . . . , qn), q ∈ Mq (state),M is the

configuration space (state space).
Kinematic model: Non holonomic constraint H(q)q̇ = 0,
where H is a full rank (n−m× n)−matrix, leading to state
equation (Kinematic model is a driftless system):

q̇ = G(q)u, q ∈ Rn
, u ∈ Rm

Dynamic model: using Euler Lagrange

J(q)u̇ + C(q, q̇, u) +G(q) = τ
Posture ((x, y)−position and orientation θ):

x = (x, y, θ), x ∈ Mx, whereMx is the work space or
operational space of dim = 3
Direct geometric model (mobile robot):

f : Mq → Mx
q 7→ x = f(q)

(30)

(frequently x is a part of q).

+ Constraints from physics : |v| < vmax, |a| < amax, . . .,
+ Controllability, flatness (full parametrization using flat outputs)

W. Perruquetti Path planning
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Path planning: Problem formulation
Manipulator

Path planning of the Posture (EF position and orientation):

x = (x1, . . . , x6), x ∈ Mx be carefulMx is a subspace of

R6 (not all positions are reachable!)

ẋ = Jf q̇ (31)

J(q)q̈ + C(q, q̇) +G(q) = u (32)

Main problem is to transform an admissible path for x into a
trajectory in q (flat outputs).

Mobile Robot

Path planning of the Posture : X = (x, y, θ), X ∈ Mx,

q̇ = B(q)u (33)

J(q)q̈ + C(q, q̇) +G(q) = u (34)

Main problem is to transform an admissible path for x into a
trajectory in terms of flat outputs

6

-

xI

xF

Space Mx

W

Figure 1: TriangulationConstraints from physics : |v| < vmax, |a| < amax, . . .
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Path planning: Problem formulation

ż = f(z) + g(z)u (35)

yflat = h(z) (36)

z is the state (q, q̇) Posture : x = P (yflat) (see the difference
between manipulator and mobile robots)

Path : [0, 1] → Mx (37)

s 7→ Path(s) ∈Mx (38)
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Path planning: Problem formulation

Problem: Let us define Myflat
such that

yflat ∈Myflat
⇒ x ∈Mx.

Find

yNflat : [0, 1] → Myflat
(39)

s 7→ yNflat(s) (40)

such that
Path([0, 1]) = (P ◦ yNflat)([0, 1])

Main obstruction is that P is not one-to-one !!

W. Perruquetti Path planning
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Path planning: Problem formulation

Once the yNflat is obtained from the flatness property one gets:

the nominal state trajectory (reference trajectory for tracking)

xN = ϕx(yNflat, ẏ
N
flat, . . . , y

N(r−1)
flat )

the nominal control (open loop control)

uN = ϕu(yNflat, ẏ
N
flat, . . . , y

N(r)
flat ).
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Path planning: a simple example
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Path planning: Polynomial interpolation

+ Let Pi = (xi, yi), i = 1, . . . , r be given points in the plan R2,
one would like to find a polynomial P such that:

P (xi) = yi, i = 1, . . . , r (41)

Theorem

A necessary and sufficient condition such that there exists a unique
polynomial L with degree at most equal to r satisfying (41) is that
xi 6= xj ,∀i 6= j.
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Path planning: Polynomial interpolation

Lagrange polynomial interpolation:

L(x) =

r∑

i=1

Li(x)yi, (42)

Li(x) =
r∏

i=1,i 6=j

x− xi
xj − xi

(43)

If yi = f(xi) for a given function f there exist results about the
interpolation error, the choice of the control points xi and the
convergence rate.
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Path planning: Polynomial interpolation

+ If we look at an interpolating polynomial which satisfy (41) and

P ′(xi) = y′i, i = 1, . . . , r (44)

Theorem

A necessary and sufficient condition such that there exists a unique
polynomial H with degree at most equal to 2r + 1 satisfying (41)
and (44) is that xi 6= xj ,∀i 6= j.
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Path planning: Polynomial interpolation

Hermite polynomial interpolation:

H(x) =

r∑

i=1

Hi(x)yi +

r∑

i=1

Vi(x)y′i, (45)

Hi(x) = (1− 2(x− xi)L′i(xi))L2
i (x) (46)

Vi(x) = (x− xi)2L2
i (x) (47)

Li(x) =

r∏

i=1,i 6=j

x− xi
xj − xi

(48)

If yi = f(xi) for a given function f there exist results about the
interpolation error, the choice of the control points xi and the
convergence rate.
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Path planning: Splines functions

Bernstein Polynomial:

Bn
k (x) = Ck

n(1− x)n−kxk, 0 ≤ k ≤ n,Ck
n =

n!

k!(n− k)!
(49)

We have the following properties:

Bn+1
0 (x) = (1− x)Bn

0 (x) (50)

Bn+1
k (x) = xBn

k−1(x) + (1− x)Bn
k (x) (51)

Bn+1
n+1(x) = xBn

n(x) (52)

(53)

Roots : 0 (k), 1 (n− k)
Optimum at x = k

n .
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Path planning: Splines functions

n∑

k=0

Bn
k (x) = 1 (54)

n∑

k=0

k

n
Bn
k (x) = x (55)

n∑

k=0

k(k − 1)

n(n− 1)
Bn
k (x) = x2 (56)

Bn
k (x) basis: any polynomial P (x) =

∑n
k=0 akx

k is a linear
combination of the Bn

k (x)

P (x) =

n∑

k=0

bkB
n
k (x)
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Path planning: Splines functions

Plan R2 :

the Bézier points (or control points) are given by ( in , bi), for
i = 0, . . . , n,

the polygonal line joinning the Bézier points is called the
Bézier polygone,

the Bézier polygone contains the graphe of P which contains
itself the points (0, b0), (1, bn)

in order to modify the form just modify the Bézier points.
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Path planning: Splines functions

One can get recursively the values of P and its successive
derivatives using the De Casteljau Algorithm from the Bézier
coefficients:

brs(x) =

s∑

i=r

biB
s−r
i−r (x), 0 ≤ r ≤ s ≤ n (57)

brr(x) = br (58)

brs(x) = (1− x)br,s−1 + xbr+1,s (59)

P (x) = b0n(x) (60)

P (k)(x) =
n!

(n− k)!
∆kb0n(x) (61)

(62)
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Path planning: Splines functions

+ Let Pi = (xi, yi), i = 1, . . . , n be given points in the plan R2,
let us define a sequence of mapping from [0, 1]:

B0(Pi)(t) = Pi, ∀i = 1, . . . , r (63)

Bk(Pi, . . . , Pi+k)(t) = (1− t)Bk−1(P0, . . . , Pi+k−1)(t) (64)

+tBk−1(Pi+1, . . . , Pi+k) (65)

(66)
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+ Bézier curve associated to the Pi is the parameterized arc
defined by:

Bn(P0, . . . , Pn) : t 7→ Bn(P0, . . . , Pn)(t)

Denoting by Brs : t 7→ Bs−r(Pr, . . . , Ps)(t) for r ≤ s ∈ N we have

Brs(t) =

s∑

i=r

Bs−r
i−r (t)Pi (67)

B0n(t) =

n∑

i=0

Bn
i (t)Pi (68)

(69)
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Path planning: 2 d.d.l manipulator

q1

q2
m1

m2

J(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τext (70)

where τ is the control and τext = 0 is the load (actually there is no
load).
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Path planning: 2 d.d.l manipulator

The x-axis is vertical and y-axis is horizontal: the end effector has
position

(x, y) = (l1 cos(q1) + l2 cos(q1 + q2), l1 sin(q1) + l2 sin(q1 + q2)),

X = f(q),

Note that we have a one to one map. And using the classical
notation ci1,i2,...,in = cos(qi1 + qi2 + . . .+ ain), si1,i2,...,in =
sin(qi1 + qi2 + . . .+ ain) the posture is given by

(x, y) = (l1c1 + l2c12, l1s1 + l2s12)
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Path planning: 2 d.d.l manipulator

One can also use polar coordinates

z = ρ exp(iθ) = l1 exp(iq1) + l2 exp(i(q1 + q2)) (71)

= exp(iq1)(l1 + l2 exp(iq2)), (72)

ρ =
√

(l1 + l2c2)2 + l22s
2
2, (73)

θ = q1 + arctan

(
l2s2

l1 + l2c2

)
(74)
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Path planning: 2 d.d.l manipulator

J(q) =

(
a11(q2) a12(q2)
a12(q2) a22

)
,

a11(q2) = m1l
2
1 +m2l

2
1 +m2l

2
2 + 2m2l1l2 cos(q2),

a12(q2) = m2l
2
2 +m2l1l2 cos(q2),

a22 = m2l
2
2,

C(q, q̇) = m2l2l1 sin(q2)

(
−q̇2

2 − 2q̇1q̇2

q̇2
1

)
,

G = −g
(
m2l2 sin(q1 + q1) + (m1 +m2) l1 sin(q1)

m2l2 sin(q1 + q1)

)
,

τ =

(
u1

u2

)
.

(75)
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Numerical values: l1 = 1 (m), l2 = 0.5 m, m1 = 1 kg, m2 = 0.4
kg,g = 9.81 m.s−2.
Considering the masses of the links and some external load, the
terms ∆M(q),∆C(q, q̇),∆G(q) and τext must be introduced.
Assuming that the linear masses of the links are respectively 0.2
kg/m and 0.1 kg/m
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Flat output : yflat = (q1, q2), Myflat
= S2

Posture: z = l1 exp(iq1) + l2 exp(i(q1 + q2)) = P (yflat)
Path: chosen as a circle of radius l1+l2

2 :

Path : [0, 1] → Mx (76)

s 7→ Path(s) =
l1 + l2

2
exp(2iπs) ∈Mx (77)
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Path planning: 2 d.d.l manipulator

yNflat : [0, 1] → Myflat
(78)

s 7→ yNflat(s) = (q1(s), q2(s))T (79)

such that

l1 + l2
2

exp(is) = (l1 exp(iq1(s)) + l2 exp(i(q1(s) + q2(s)))
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4
[
(l1 + l2c2)2 + l22s

2
2

]
= (l1 + l2)2 (80)

2πs = q1 + arctan

(
l2s2

l1 + l2c2

)
(81)

One can chose a constant angle for q2 such that 80 hold which
ends the path planning!! But in that case we did not take into
account velocities (initial and final), constraints and dynamics...
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Path planning: (2,0)-mobile robot

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w (82)

Flat Outputs: (x, y). Indeed for (82):

θ = arctan

(
ẏ

ẋ

)
(83)

v = ±
√
ẋ2 + ẏ2 (84)

w =
ẋÿ − ẏẍ
ẋ2 + ẏ2

(85)
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Path planning: (2,0)-mobile robot

Path planning: find y = f(x) such that

f(xi) = yi (86)

f(xf ) = yf (87)

f ′(xi) = tan(θi) (88)

f ′(xf ) = 0 (89)

Polynomial interpolation:

f(x) = a0 + a1d+ a2d
2 + a3d

3, d =
x− xi
xf − xi

f ′(x) = d′(a1 + 2a2d+ 3a3d
2), d′(x) =

1

xf − xi
W. Perruquetti Path planning
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


yi
tan(θi)
yf
0


 =




1 0 0 0
0 d′ 0 0
1 1 1 1
0 d′ 2d′ 3d′







a0

a1

a2

a3







a0

a1

a2

a3


 =




1 0 0 0
0 1/d′ 0 0
−3 −2/d′ 3 −1/d′

2 1/d′ −2 1/d′







yi
tan(θi)
yf
0



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Path planning: (2,0)-mobile robot




a0

a1

a2

a3


 =




yi
tan(θi)
d′

3(yf − yi)− 2 tan(θi)
d′

−2(yf − yi) + tan(θi)
d′




α =
tan(θi)

d′
= tan(θi)(xf − xi)

d =
x− xi
xf − xi

y = f(x) = yi + αd+ [3(yf − yi)− 2α] d2 + [−2(yf − yi) + α] d3.
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Needs to find a time parametrization of the flat outputs:

x = xN (t)

satisfying the following conditions

xN (ti) = xi (90)

xN (tf ) = xf (91)

ẋN (ti) = 0 (92)

ẋN (tf ) = 0 (93)

Polynomial interpolation:

xN (τ) = b0 + b1τ + b2τ
2 + b3τ

3, τ =
t− ti
tf − ti

ẋN (τ) = τ̇
(
b1 + 2b2τ + 3b3τ

2
)
, τ̇ =

1

tf − tiW. Perruquetti Path planning
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


xi
0
xf
0


 =




1 0 0 0
0 τ̇ 0 0
1 1 1 1
0 τ̇ 2τ̇ 3τ̇







b0
b1
b2
b3







b0
b1
b2
b3


 =




1 0 0 0
0 1/τ̇ 0 0
−3 −2/τ̇ 3 −1/τ̇
2 1/τ̇ −2 1/τ̇







xi
0
xf
0


 =




xi
0

3(xf − xi)
−2(xf − xi)




xN (t) = xi + (xf − xi)τ2(3− 2τ), τ =
t− ti
tf − ti
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Open loop control:

v = ±
√
ẋ2 + ẏ2 (94)

w =
ẋÿ − ẏẍ
ẋ2 + ẏ2

(95)

yN (t) = f(xN (t)), (96)

ẏN (t) = ẋN (t)f ′(xN (t)) (97)

ÿN (t) = ẍN (t)f ′(xN (t)) + ẋN2(t)f ′′(xN (t)) (98)

vN (t) = ẋN (t)
√

1 + f ′2(xN (t)) (99)

wN (t) =
f ′′(xN (t))

1 + f ′2(xN (t))
(100)
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On the way to integration

Philosophy integrated layer :
“Strategic layer” (goal planning) + “Tactical layer” (guidance,
navigation) + “Reflexive layer” (obstacle avoidance)

Solution

+ Generate and execute a (sub)-optimal path planning which
satisfy:

geometric formation and communications constraints,

obstacle avoidance constraints,

given boundary conditions,

other constraints: time constraints (rescue missions), energy
constraints (batteries duration, . . . )
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Sub-graph path planning and constraints propagation

In both cases with or without leaders the overall group will be
divided into small sub-groups.

+ with leader recursive tree (look at soon and father nodes) +
constraints propagation

+ without leader associate to each nodes a weight, the bigger
means that this node has more informations on its neighbors,
. . .
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Sub-graph path planning and constraints propagation

In order to obtain a feasible path for the ith robot (knowing its
position and the ones of its neighbors which are feeding the ith

robot with some informations):
+use the ith row of Gc or Gf .
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General constraints

We would like to include in the path planning the following
constraints :

1 some constraints due to physics (energy limitation, maximal
velocity and acceleration of the robots)

2 obstacle avoidance,

3 collision avoidance with the robots and other mobile objects,

4 distances between robots (communications),

5 geometry of the formation

6 . . .
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Somme settings

Group of Ni
a mobile robots related to the ith mobile robot evolving

in a partially known space with some obstacles (No obstacles).

each obstacle Om (m ∈ {1, . . . , No}) is covered by a disc
centered at (xom, y

o
m) with radius rom (if complex geometry use

a covering of discs).

IN the set {1, . . . , N},
the nth ∈ IN mobile robot denoted by An and located at
(xn, yn) occupies a space modeled by a disc of radius rn
centered at (xn, yn).

robot An: Xn and Un denotes respectively the state variables
and the control variables.

aIndex i (dropped sometimes) will refer to some properties or known objects
linked to the ith mobile robot. N = Ni!
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Path planning for networked mobile robots

+ For our group we shall find the trajectories and the control
inputs which minimize the functional

J =

∫ tf

t0

C(X1, . . . , XN , U1, . . . , UN )dt,

where t0 is the fixed initial time (assumed to be equal to zero), tf
is the fixed or unknown a final time and C is the cost function.
The trajectories must join the known terminal states Xn(0) and
Xn(tf ) with n ∈ IN and satisfy the following constraints:

aif time optimal path planning !
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Path planning for networked mobile robots

∀t ∈ [0, tf ], ∀(n, n′) ∈ IN × IN , n 6= n′,

C1 the control bounds:

‖Un‖ ≤ Umaxn ,

S1
n = Umaxn − ‖Un‖ ≥ 0

C2 the collision avoidance between robot An and the No

obstacles. Each obstacle Om (m ∈ INo) is assumed to be a
disc of center located at (xom, y

o
m) and of radius rom. These

constraints are:

S2
nm = d(An, Om)2 − (rn + rom)2 ≥ 0

d(An, Om) =
√

(xn − xom)2 + (yn − yom)2
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Path planning for networked mobile robots

C3 the collision avoidance between robots An and An′ :

S3
nn′ = d(An, An′)

2 − (rn + rn′)
2 ≥ 0

d(An, An′) =
√

(xn − xn′)2 + (yn − yn′)2

C4 the distance between each robot has to be bounded so that
the distance of communication is satisfied:

S4
nn′ = d2

max − d(An, An′)
2 ≥ 0.
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Penalty

The constrained optimization problem is transformed into an
equivalent unconstrained problem by the construction of the
following penalized function Ω and weights µ:

Jp =

∫ tf

t0

C(X1, . . . , XN , U1, . . . , UN )dt+

∫ tf

t0

N∑

n=1

{
µ1
nΩ
(
S1
n

)}
dt

+

∫ tf

0

N∑

n=1

No∑

m=1

{
µ2
nmΩ(S2

nm)
}
dt+

∫ tf

0

N∑

n=1

N∑

n′=1
n′ 6=n

{
µ3
nn′Ω

(
S3
nn′
)}
dt

+

∫ tf

0

N∑

n=1

N∑

n′=1
n′ 6=n

{
µ4
nn′Ω(S4

nn′)
}
dt. (101)
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Penalty

The penalty function Ω and the weight µ penalize the cost J when
the constraints are violated. The choice of this function determines
the convergence of the proposed algorithm. Here, the chosen
penalty may be:

Ω : M 7→
{

0 if M ≥ 0
M2 otherwise.
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Flatness is back

+ Many physical systems are flat [?],

+ (82) and (7) are flat: zn = [z1n, z2n]T ∈ R2 are the flat
outputs.

+ Let Z = (z1, . . . , zN ) be the flat outputs of the global system
made of the N robots.
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Flatness is back

The problem of finding curves that take the system from the initial
to the final condition is reduced to find sufficiently smooth curves
that satisfies terminal constraints. Once the trajectory constraints
are mapped into the flat output space, optimal trajectories are
planned in this space. Therefore, the flatness property enables to
eliminate the dynamic constraints.
+ (101) can be expressed in function of the flat outputs and a
finite number r of their time derivatives:

Jp =

∫ tf

0
L(Z(t), Ż(t), . . . , Z(r)(t))dt.
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On the way to NPP

Thus, the optimal control problem is:

min
Z

∫ tf

0
L(Z(t), Ż(t), . . . , Z(r)(t))dt (102)

subject to terminal constraints: ∀n ∈ IN : Xn(0) Xn(tf ) given. In
order to numerically solve (102), the flat outputs are parameterized
by using a basis of functions. That is to say, ∀i ∈ {1, 2}, ∀n ∈ IN ,

zin(t) =

P∑

j=1

ain,jhj(t),

where ain,j ∈ R and P is the dimension of basis functions
H = {h1, . . . , hP }.
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On the way to NPP

Problem (102) becomes:

min
ain,j

∫ tf

0
L(Z(t), Ż(t), . . . , Z(r)(t))dt. (103)

Then, the time domain is truncated into smaller intervals by
quadratic laws. Let Nsample be the number of sampled time,
problem (103) is approximated by the nonlinear programming:

min
ain,j

Nsample∑

k=1

σkL(Z(tk), Ż(tk), . . . , Z
(r)(tk)) (104)

subject to boundary constraints, where the weight σk and the time
tk (∀k ∈ INsample , 0 ≤ tk ≤ tf ) are chosen by different methods
(trapezoidal, rectangle, Gauss-Legendre, . . . ).
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Functions basis H: first used in Milam et al. 2001 [?]

+ The function basis H governs the convergence speed of the
algorithm: B-spline functions (numerically feasible).
Let σ = {t0 < t1 < ... < tP = tf} be a subdivision of [t0, tf ] where
P is a non zero fixed integer. Using σ let the knot vector
Q = {q1, . . . , qT } be a set of T non-decreasing numbers called
knots with q1 = t0 = 0 and qT = tf . To define B-spline basis
functions, we need to introduce degree d of these basis functions.
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σ = {t0 t1 tP−1 tP = tf}

yf (t) =
T∑

i=1

Ni,2 (t) ai

. . . . . . . . .

Q = {q1 = . . . = qk = t0 qk+1 = t1 qk+p = . . . = qT = tP = tf .}

1
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Definition

The ith B-spline basis function of degree d = T − P − 1, denoted
by Ni,d(t), ∀i ∈ IP , is recursively defined as follows [?]:

Ni,0(t) =

{
1 if qi ≤ t < qi+1

0 otherwise

Ni,d(t) =
t− qi

qi+d − qiNi,d−1(t)

+
qi+d+1 − t

qi+d+1 − qi+1
Ni+1,d−1(t)
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B-splines properties

B-splines properties are [?]:

1 compact support: Ni,d are zeroing outside [qi, qi+d+1]⇒
impact near the considered point (good for numerical
implementation). Indeed the gradient descent method for
(104) leads to a sparse Hessian matrix (most of entries are
zeros).

2 Ni,d(t)is a polynomial function in the variable t with degree d.

3 Ni,d(t) ≥ 0, ∀d, i, t.
4 Easily differentiable with a strong smoothness degree :

B-splines are Csi−1. The jth−derivative can be obtained from

N
(j)
i,d

(t) =
d− 1

d− i− j

[
(t− qi)

(qi+d − qi)
N

(j)
i,d−1

(t) +
qi+d+1 − t

qi+d+1 − qi+1

N
(j)
i+1,d−1

(t)

]
(105)

with j = 0, ..., k − 1.
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STEP 1
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Ce qui conduit à une procédure d’optimisation directe décomposée
en deux étapes:

? initialisation : planification d’une trajectoire initiale pour le
centre de masse de la flottille en ne gardant que les obstacles
de tailles trop importantes pour maintenir les distances
inter-robots : ces obstacles doivent être contournés par la
flottille. Translation de la trajectoire obtenue pour obtenir des
trajectoires initiales pour chacun des robots respectant les
conditions initiales et finales (xn,initial, yn,initial).

? Calcul : paramétrisation de sorties plates de chaque robot par
W. Perruquetti Path planning
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des B-splines de degrés d = 2 :

xn(tk) = xn,initial(tk) +

P∑

j=1

a1n,jBj,2(tk)

yn(tk) = yn,initial(tk) +

P∑

j=1

a2n,jBj,2(tk)

avec tk ∈ [t0, tf ], k ∈ INéchantillons
. Obtention des coefficients

a1n,j et a2n,j assurant (104).:

détermination du gradient de (104) divisé en cinq
contributions: coût initial (C), et les quatre contraintes
C1–C4.
itération de l’algorithme de descente du gradient jusqu’à
obtention de trajectoire qui satisfassent les contraintes C1–C4..
en utilisant la platitude on en déduit le contrôle nominal en
boucle ouverte pour chaque robot.
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+ Algorithm NP + B-spline + gradient descent method (follows
the negative gradient of function (104)).
+ Flat outputs are zn = (xn, yn)⇒ find the optimal flat outputs.

Two steps

Two main phases:

? initialization: motion planning for the gravity center of the
formation.

? computation: design of the flat outputs for each robot in the
full map.
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STEP 1 zoom of initialization procedure

In order to initialize our algorithm, the procedure is to find:

? the terminal configurations of the formation gravity center
(xg, yg, θg).

? a final time guess and its associated trajectory (the curve that
satisfies the terminal constraints with the appropriate initial
and final orientation).

? obstacles set O1 for which the strategy applied is a bypass.
The decision criterion depends on the size of the obstacle and
distance dmax.

? the optimal trajectory for the gravity center by gradient
descent when the O1 obstacles are only considered. It satisfies
the collision avoidance with set O1 and the control bounds.

? to deduce trajectories xn,initial and yn,initial for each robot.
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STEP 2 zoom of computation

For each robot n ∈ IN , the terminal configurations are:





xn(0) = xn,0
yn(0) = yn,0
θn(0) = θn,0
vn(0) = 0





xn(tf ) = xn,1
yn(tf ) = yn,1
θn(tf ) = θn,1
vn(tf ) = 0

.

The terms of finite dimensional B-spline curves of degree r = 2 are
added:

xn(tk) = xn,initial(tk) +

P∑

j=1

a1n,jNj,2(tk)

yn(tk) = yn,initial(tk) +

P∑

j=1

a2n,jNj,2(tk)

with tk ∈ [0, tf ], k ∈ INsample.
The goal is to find coefficients a1n,j and a2n,j in order to solve
(104). These coefficients are optimized by the gradient descent.
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STEP 2 zoom of computation

In order to find the robots trajectories that respect all the
constraints (C1)-(C4), the computation phase is

? to determine the gradient of function (104) which is divided
into five contributions: the time minimization, the control
bounds, the obstacle avoidance, the collision avoidance and
the respect of distances between robots.

? to apply iteratively the gradient descent until trajectories that
satisfy the constraints are found.

? to deduce the control inputs for each robot.

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Problem formulation
Polynomial interpolation
Path Planning for manipulator
Path Planning for mobile robots
Path Planning for networked mobile robots

Animation

Video

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Problem formulation
Polynomial interpolation
Path Planning for manipulator
Path Planning for mobile robots
Path Planning for networked mobile robots

Animation

Video

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Problem formulation
Polynomial interpolation
Path Planning for manipulator
Path Planning for mobile robots
Path Planning for networked mobile robots

Animation

Video

W. Perruquetti Path planning



Introduction
Controllability, Flatness

Path planning

Problem formulation
Polynomial interpolation
Path Planning for manipulator
Path Planning for mobile robots
Path Planning for networked mobile robots

Animation

Video

W. Perruquetti Path planning


	Introduction
	Controllability, Flatness
	Controllability
	Flatness

	Path planning
	Problem formulation
	Polynomial interpolation
	Path Planning for manipulator
	Path Planning for mobile robots
	Path Planning for networked mobile robots


