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Abstract

We propose a simple unsupervised approach
which exclusively relies on WordNet (Miller,
1995) for predicting graded lexical entailment
(GLE) in English. Inspired by the seminal work
of Resnik (1995), our method models GLE as
the sum of two information-theoretic scores:
a symmetric semantic similarity score and an
asymmetric specificity loss score, both exploit-
ing the hierarchical synset structure of Word-
Net. Our approach also includes a simple dis-
ambiguation mechanism to handle polysemy in
a given word pair. Despite its simplicity, our
method achieves performance above the state
of the art (Spearman ρ = 0.75) on HyperLex
(Vulic et al., 2017), the largest GLE dataset,
outperforming all previous methods, including
specialized word embeddings approaches that
use WordNet as weak supervision.

1 Introduction

A crucial aspect of language understanding is the
ability to draw inferences between sentences. In
many cases, these inferences are directly licensed
by the semantics of words: e.g., the sentence a
duck is in the room entails an animal is in the room
simply because the concept of duck entails that
of animal. These cases of (taxonomic) Lexical
Entailment (LE) hold for words whose extensional
denotations form a partial order: that is, the set of
ducks is included in the set of birds which is itself
included in the set of animals.

The taxonomic structure of lexical concepts is
a defining aspect of human semantic memory and
has been extensively studied in cognitive science
as well as in NLP due to its multiple related appli-
cations. Initial research milestones include the con-
struction of the WordNet lexical database (Beck-
with et al., 2021; Miller, 1995), and the first dis-
tributional approaches for automatically detecting
hypernym-hyponym pairs (Hearst (1992); Snow
et al. (2004); Baroni et al. (2012); Dagan et al.

X Y LE Score
duck animal 5.92
duck bird 5.75
conflict disagreement 5.20
competence ability 4.64
aura light 3.69
sofa chair 3.38
butter cream 2.69
noun adjective 0.50
rhyme dinner 0.00

Table 1: The human lexical entailment scores (0-6)
for a small subset of the Hyperlex (Vulic et al., 2017)
dataset. Each row should be read as: X entails Y to a
degree of LE score.

(2013) inter alia). More recently, an important
strand of research has led to the development of
word representation models that are able to geomet-
rically express asymmetric relations like LE in the
embedding space (Roller and Erk, 2016; Vilnis and
McCallum, 2015; Nickel and Kiela, 2017).

Inspired by the pioneering works of Rosch
(1975) and Kamp and Partee (1995), Vulic et al.
(2017) have challenged the traditional view that
LE is a binary relation, showing that it is instead a
graded relation, based on human judgements (i.e.,
X entails Y to a certain degree). The concomitant
release of Hyperlex,1 a data set of English word
pairs scored by humans for the LE relation, has
spurred new research into developing models for
predicting Graded Lexical Entailment (GLE). A
small subset of the dataset is presented in Table 1.

An intriguing research question is whether exist-
ing hand-crafted lexical hierarchies like WordNet
are indeed able to capture GLE. Preliminary ex-
periments by Vulic et al. (2017); Vulic and Mrksic
(2017) report largely negative results: their best
WordNet-only based system achieves a mere 0.234
Spearman correlation score with human judgments

1https://github.com/cambridgeltl/hyperlex

https://github.com/cambridgeltl/hyperlex


from Hyperlex. These poor performance results
are blamed on the binary coding of the hypernym-
hyponym relation in WordNet. Yet LEAR (Vulic
and Mrksic, 2017), the best GLE system to date
achieving a 0.682 Spearman correlation score, uses
WordNet as a source of constraints for specializing
static word embedding models to the task. As static
word embeddings alone achieve poor performance
for GLE, the question of the contribution of Word-
Net in the LEAR improved performance remains
open.

In this paper, we propose a simple method that
directly and solely exploits the internal structure of
WordNet to predict GLE. Our approach relies on In-
formation Content (IC), a continuous information-
theoretic measure introduced in Resnik (1995) to
model semantic similarity in WordNet. Specifically,
we propose to model GLE as a trade-off between a
symmetric semantic similarity score and an asym-
metric specificity loss score, both of which are
defined in terms of IC. Our method is completed
with a disambiguation mechanism to address the
fact that (G)LE is sense, rather than word specific,
and is therefore sensitive to polysemy, an issue that
has been largely overlooked in previous work: e.g.,
the noun plant entails building only in its working
plant sense, and not in its botanical sense. This sim-
ple method achieves a 0.744 Spearman correlation
score with human judgements, outperforming all
previous systems, including specialized word em-
beddings methods and supervised models, as well
as systems based on contextual language models.

To sum-up, our main contributions are threefold.
First, we show that the internal structure of Word-
Net, as revealed by information-theoretic measures
and completed by a disambiguation mechanism, is
a reliable predictor of the graded nature of LE. Sec-
ond, our simple WordNet-only based approach pro-
vides a new state-of-the-art for GLE, outperforming
previous methods that specialize word embeddings
to the LE task using WordNet as weak supervision.
Third, we provide a detailed analysis of our method
showing the role of the two information-theoretic
terms and the importance of sense disambiguation.
We also present a simplified version of our scor-
ing function without any frequency information in
the computation of IC, which further improves the
correlation score (0.753), thus emphasizing the sin-
gular importance of Wordnet hierarchical structure
for GLE.

2 Proposed Method

Given a(n) (ordered) pair of words (X,Y ), instan-
tiating a pair of latent (i.e., unknown) concepts
(sX , sY ), we aim to predict a score gle(X,Y ) in-
dicating to what degree sX entails sY . Specifically,
we propose to compute the score gle(X,Y ) as the
sum of two terms:

gle(X,Y ) = Sim(ŝX , ŝY ) + SpecLoss(ŝX , ŝY )
(1)

where ŝX and ŝY are estimations of the latent con-
cepts sX and sY . The first term Sim(ŝX , ŝY )
stands for a (symmetric) semantic similarity func-
tion, capturing the fact that LE requires concepts
to be semantically close. The second (asymmet-
ric) term SpecLoss(ŝX , ŝY ) encodes another im-
portant aspect of LE, namely the fact that there is
generally a loss of specificity incurred by using ŝX
(e.g., dog) instead of ŝY (e.g., animal), as the set
denotation of ŝX is included in that of ŝY .2

While the general idea of modeling GLE as a
trade-off between a similarity term and a speci-
ficity term is already present in Vulic et al. (2017),
the originality of our approach is to exclusively
define these terms using the hierarchical structure
of WordNet, a lexical semantic graph made up of
word senses (aka synsets) and relations between
these synsets. This structure is accessed through
information-theoretic measures that we define now.

Information Content (IC) At first glance, Word-
Net might appear inadequate to model GLE be-
cause it encodes the hypernym-hyponym relation
as a binary relation. But this claim is oblivious of
two main facts. First, WordNet has some built-in
gradedness as it models the hypernym-hyponym
relation as a transitive relation. Second, the binary
nature of the taxonomic links in WordNet can be
easily bypassed by resorting to the notion of IC.
This information-theoretical notion provides a con-
tinuous value for synsets by fully exploiting the tree
structure associated with the hypernym-hyponym
relation. Following Shannon (1951), Resnik (1995)
proposes to quantify the information content (aka
self-entropy) of each lexical concept s as the log
of its inverse probability by IC(s) = log(1/P (s)).
While one can simply estimate P (s) via the word
frequencies associated with s in a large text corpus,
the crucial innovation of Resnik (1995) was to use

2Synonyms are an obvious exception, as they trivially en-
tail each other while having the same denotation hence speci-
ficity.



the taxonomic tree structure of WordNet in this
estimation. Specifically, P (s) is estimated as

P (s) =

∑
h∈Hypo(s)wc(h)∑

k wc(k)
(2)

where wc(s) is the word count for synset s in a
large corpus 3 (in our case, Wikipedia), Hypo(s)
denotes the set of all hyponym descendants of s (s
included), and k stands over all synsets in Word-
Net. By fully exploiting the hierarchical structure
of WordNet, the notion of IC intuitively captures
the monotonic relation between the generality (resp.
specificity) of concepts, as measured by their height
(resp. depth) in the taxonomy, and their informa-
tiveness.

Similarity We define Sim as the IC-based simi-
larity measure introduced in Lin (1998). The sim-
ilarity between two synsets ŝX and ŝY is defined
as the ratio between the information shared by the
two concepts, modeled by the IC value of their
least common subsumer node (denoted as lcs be-
low), and the information needed to fully describe
the two concepts, modeled as the sum of their ICs,
leading to

Sim(ŝX , ŝY ) =
2 IC(lcs(ŝX , ŝY ))

IC(ŝX) + IC(ŝY )
. (3)

Specificity Loss The above similarity measure
is arguably a poor predictor of GLE if used
alone. This measure will assign high scores to
co-hyponyms (e.g., cat and dog) and equal scores
to the same hypernym-hyponym pair whatever the
order. We therefore need to complement this mea-
sure with another, asymmetric measure that is able
to quantify the fact that the entailed concept is
typically less informative. For this, we define the
specifity loss by

SpecLoss(ŝX , ŝY ) = 1− IC(ŝY )

IC(ŝX)
. (4)

This function returns values closer to 1.0 when the
ŝX is more specific than ŝY and lower (possibly
negative) values when ŝY is more specific than ŝX .

The example of co-hyponyms shows the impor-
tance of the trade-off between the two scores. In-
deed, while the similarity is maximized, the speci-
ficity loss is minimized as both synsets have similar

3wc(s) is the occurrence count of all words associated
with s in WordNet, where a word count is normalized by its
total number of synsets.

IC values, resulting in a sum that indicates rela-
tively low GLE strength. Similarly, when ŝX is a
hypernym of ŝY , the similarity score will be high
but the specificity score will be low (even negative)
and reduce the sum to a more appropriate score.

Synset Disambiguation Turning to the issue of
estimating the latent synsets sX and sY , we pro-
pose to jointly select a pair of synsets with

ŝX , ŝY = argmax
sX∈S(X),sY ∈S(Y )

Sim(sX , sY ) (5)

where S(X) and S(Y ) denote the set of possible
synsets for X and Y , respectively. That is, we
select the pair of synsets with the maximum simi-
larity value. For example, given the words plant
and building, this method should hopefully select
the synset corresponding to plant as a working
plant, not the synset corresponding its botanical
sense. We hypothesize that humans implicitly per-
form such joint sense selection when asked to score
the relation between plant and building.

3 Experiments

This section presents our experimental framework
and results of our approach against various base-
lines and competing systems.4

3.1 Dataset and Settings

Our evaluation dataset is the Hyperlex
dataset (Vulic et al., 2017), which contains
2616 English word pairs (2163 noun pairs and
453 verb pairs). Extracted from WordNet, the
pairs from the dataset were scored on a 0-6 scale
by human subjects based on the prompt "To
what degree is X a type of Y ?". 5 Scores of the
different systems are compared using Spearman’s
ρ correlation (Spearman, 1904). As our method is
fully unsupervised, we can evaluate it and other
competing unsupervised methods and baselines on
the entire Hyperlex dataset.

For ensuring fair comparison with supervised
competitors, we also report the performance of our
method on specific test subsets of Hyperlex. Specif-
ically, we rely on the two test subsets provided by
the Hyperlex authors: a random subset (25% of the
pairs) and a train/validation/test split without any

4Our code and data are publicly available at: https://
gitlab.inria.fr/magnet/GLE_emnlp.

5It is important to note the use of WordNet in creating
Hyperlex was restricted to word pair selection, so no structural
information from WordNet has influenced the human scores.

https://gitlab.inria.fr/magnet/GLE_emnlp
https://gitlab.inria.fr/magnet/GLE_emnlp


lexical overlap (see Vulic et al. (2017) for more
details). Finally, note that we use a text dump of
Wikipedia for counting word occurrences for IC
calculation and frequency baselines.

3.2 Unsupervised Systems

Static Word Embeddings and WordNet Base-
lines Our baseline systems are taken or inspired
from Vulic et al. (2017). These include a cosine
similarity function based on Word2Vec (Mikolov
et al., 2013) and the best WordNet-only method re-
ported in Vulic et al. (2017), using the Wu-Palmer
similarity (Wu and Palmer, 1994). Finally, Vulic
et al. (2017) introduce a strong baseline (ρ score of
0.279) that combines a specificity term, defined in
terms of a concept frequency ratio (i.e., 1− wc(X)

wc(Y )

for a word pair (X,Y )), and a Word2Vec cosine
similarity term acting as a threshold.6 We propose
a variation of this approach, by instead summing
the Word2Vec vector cosine similarity and the con-
cept frequency ratio. Recall that static embeddings
collapse all word senses, thus prevent the use of
disambiguation technique in these methods.

CLM-based Methods The success of contex-
tual language models (CLM) on many tasks led
us to study their usage for GLE. We tested sev-
eral techniques of deriving static representations
from contextual representations following Apid-
ianaki (2023). We found that the best perform-
ing one was the method introduced by Misra et al.
(2021) (called taxonomic verification) for the re-
lated task of graded typicality; in this case, the
method uses a GPT-2-XL (Radford et al., 2019)
pretrained model. 7 In this approach, taxonomic
sentences of the form "A(n) X is a(n) Y" are scored
by the model, calculating P (Y |A(n) X is a(n)).
Notice that such contextual prompts allow for some
implicit joint disambiguation of the two words.

Specialized Static Embeddings The last com-
petitor is the current state-of-the-art LEAR sys-
tem (Vulic and Mrksic, 2017), which is based
on static embeddings specialized for LE through
WordNet-derived constraints. Other systems
which also use WordNet constraints are Hyper-
Vec (Nguyen et al., 2017) and Poincaré Embed-
dings (Nickel and Kiela, 2017) but their reported

6See Equation (13) in Vulic et al. (2017).
7The other pretrained models we tested were bert-base

and bert-large (Devlin et al., 2018), roberta-large (Liu
et al., 2019), deberta-v3-large (He et al., 2021), and
pythia-1b (Biderman et al., 2023).

performance is lower on the GLE task.

Comparing Unsupervised Methods As shown
in Table 2, all three baseline systems from Vulic
et al. (2017) achieve a ρ score below 0.3. Our
baseline combining the concept frequency ratio
and a Word2Vec cosine similarity achieves a 0.314
ρ score. Our CLM-based method achieves a 0.425
ρ score which is the best score achieved so far on
the GLE task using CLMs. The best competitor
to date is the LEAR system with a 0.686 ρ score
(taken from Vulic and Mrksic (2017)). 8

Our WordNet-based method, denoted by
WordNet-SSD, reaches a 0.744 ρ score. To our
knowledge, this is the best correlation score re-
ported so far on Hyperlex. And it is indeed quite
close to the human inter-annotator agreement cor-
relation score of 0.854, which we can take as an
upper bound on this task. These results strongly
suggest that the hierarchical structure of WordNet
provide enough information to accurately model
graded LE, and that previous WordNet-based ap-
proaches have so far failed at properly leveraging
this information.

3.3 Supervised Baselines and Competing
Systems

We also compare our method’s performance to that
of the supervised approach presented in Vulic et al.
(2017). This method trains a supervised linear re-
gression model on Word2Vec embeddings. As an-
other baseline, we also train a supervised linear re-
gression model using BERT token embeddings, in-
stead of Word2Vec embeddings. Results on the two
test splits of Hyperlex are presented in Table 3. The
regression model with static embeddings achieves
a Spearman’s ρ of 0.53 and 0.45 for the random
and lexical test splits, respectively, and of 0.420
and 0.257 when using BERT embeddings. On the
same splits, our unsupervised method significantly
outperforms these supervised models, reaching ρ
scores of 0.605 and 0.636, respectively.

4 Analysis

This section analyses the different components of
our approach via several targeted ablation studies.

8Note that the system in Wang et al. (2020) is based on the
LEAR system, but evaluated the SemEval 2020 English task
2, which is a different (fourth) subset of Hyperlex, achieving
a Spearman’s ρ of 0.696. We evaluated our method on this
subset as well, achieving a Spearman’s rho of 0.741.



Method all
Word2Vec Sim 0.205
WordNet-Wu-Palmer 0.234
Frequency ratio with threshold 0.279
Frequency ratio with sim sum 0.314
Taxonomic with CLMs (GPT2-XL) 0.425
LEAR 0.686
WordNet-SSD 0.744
Inter-annotator agreement 0.854

Table 2: Spearman’s ρ on all Hyperlex word pairs for
the methods presented in section 3.2.

Method random lexical
Linear Reg. (W2V) 0.530 0.450
Linear Reg. (BERT) 0.420 0.257
WordNet-SSD 0.605 0.636

Table 3: Spearman’s ρ on test splits of the Hyperlex
dataset. Note that the first two are supervised, while
ours is unsupervised.

Similarity without Specificity or vice-versa We
present correlations for the individual similarity
and relative specificity functions compared to that
of their sum in Table 4. It shows that specificity
alone does better than similarity and that the com-
bination does a lot better than any of the two.

Impact of Disambiguation We evaluate our
method without synset disambiguation. For this,
we do not use Equation 5 for selecting pairs of
synsets but instead average the entailment scores
over all possible linked synsets pairs in each word
pair. The results are reported in Table 5. The last
column shows that handling polysemy generally
improves correlation scores, while the first three
columns further show that the higher polysemy in
a pair, the higher the gain.

Importance of the structure of WordNet Our
WordNet similarity and specificity loss measures
are defined in terms of IC values, which use the tree
structure of WordNet to aggregate frequency counts
over an auxiliary dataset for synsets. In order to
assess the relative importance of the WordNet struc-

Method all
WordNet Similarity only 0.393
WordNet Specificity only 0.521

Table 4: Spearman’s ρ for our method with Sim only
and SpecLoss only.

Number of synsets 2-5 6-11 12+ All
WordNet-SSD-AVG 0.539 0.514 0.284 0.467
WordNet-SSD 0.780 0.750 0.661 0.744

Table 5: Spearman’s ρ over subsets of the Hyperlex
dataset along the total number of associated synsets with
the word pair where WordNet-SSD-AVG denotes the
method with averaging.

Method all
WordNet-Sim-noFreq 0.405
WordNet-SpecLoss-noFreq 0.550
WordNet-SSD-noFreq 0.753

Table 6: Spearman’s ρ when using WordNet-SSD with
IC without frequency. We also give the scores when
using similarity or specificity only.

ture and that of the frequencies in the final correla-
tion scores, we design a new IC measure that does
not use word frequencies. Specifically, we simply
replaced every word count value with a dummy 1.0
value, in effect assigning uniform probabilities to
all synsets. For a synset s, its IC value is computed
by IC(s) = − log(|Hypo(s)|/N) where N is the
number of synsets in WordNet. Results are shown
in Table 6. They show that not using frequency val-
ues yields even better correlation scores, furthering
our claim that the WordNet structure is essential
for GLE.

5 Conclusion

We presented a new state of the art method for
predicting GLE between word pairs, which solely
relies on the structure of WordNet accessed through
information-theoretic measures. This new result
contradicts previous results arguing that the binary
nature of WordNet relations prevented to use Word-
Net for graded LE. It also shows that a direct use
of WordNet performs better than using static word
embeddings specialized with WordNet-extracted
constraints, suggesting that such methods have not
been able to fully leverage the rich structural in-
formation of WordNet. Our work also emphasizes
the importance of polysemy in this task, an issue
being largely ignored in previous work. We tested
different CLM-based methods but so far, to the best
of our knowledge, no CLM-based method is able
to solve the GLE task, thus raising the question
whether (enhanced) CLMs are able to model the hi-
erarchical structure of concepts inherent to human
semantic memory.



Limitations

Due to its reliance on WordNet, the proposed ap-
proach is currently not applicable to other lan-
guages than English. Similarly, the approach is
limited in terms of its vocabulary: scoring the lexi-
cal entailment of word pairs not covered in Word-
Net is again not currently possible.

Ethics Statement

Acknowledgements

We would like to thank the anonymous EMNLP
reviewers for their feedback and suggestions on
this paper. This research was funded by Inria Ex-
ploratory Action COMANCHE, as well as by the
joint IMPRESS project between Inria and DFKI.

References
Marianna Apidianaki. 2023. From word types to tokens

and back: A survey of approaches to word mean-
ing representation and interpretation. Computational
Linguistics, 49(2):465–523.

Marco Baroni, Raffaella Bernardi, Ngoc Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In 13th Con-
ference of the European Chapter of the Association
for computational Linguistics, pages 23–32.

Richard Beckwith, Christiane Fellbaum, Derek Gross,
and George A Miller. 2021. Wordnet: A lexical
database organized on psycholinguistic principles. In
Lexical acquisition: Exploiting on-line resources to
build a lexicon, pages 211–232. Psychology Press.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397–2430. PMLR.

Ido Dagan, Dan Roth, and Fabio Massimo Sammons,
Mark an Zanzotto. 2013. Recognizing textual entail-
ment: Models and applications. Synthesis Lectures
on Human Language Technologies, 6(4):1–220.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. CoRR, abs/2111.09543.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 14th International Conference on
Computational Linguistics, pages 539–545.

Hans Kamp and Barbara Partee. 1995. Context-
dependence in the analysis of linguistic meaning.
Cognition, 57(2):129–191.

Dekang Lin. 1998. An information-theoretic definition
of similarity. In 15th International Conference in
Machine Learning, pages 296–304.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In 26th Advances in Neural Information Processing
Systems, volume 26.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Kanishka Misra, Allyson Ettinger, and Julia Taylor
Rayz. 2021. Do language models learn typicality
judgments from text? In Proceedings of the 43rd
Annual Conference of the Cognitive Science Society.

Kim Anh Nguyen, Maximilian Köper, Sabine
Schulte im Walde, and Ngoc Thang Vu. 2017. Hi-
erarchical embeddings for hypernymy detection and
directionality. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 233–243.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representations.
In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages
6341–6350.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Philip Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. arXiv preprint
cmp-lg/9511007.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2163–2172.

Eleanor Rosch. 1975. Cognitive representations of se-
mantic categories. Journal of experimental psychol-
ogy: General, 104(3):192.

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Claude E Shannon. 1951. Prediction and entropy
of printed english. Bell system technical journal,
30(1):50–64.

Ryon Snow, Daniel juravsky, and Andrew Y. Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems 17, pages 1297–1304.

Charles Spearman. 1904. The proof and measurement
of association between two things. volume 15, pages
72–101. University of Illinois Press.

Luke Vilnis and Andrew McCallum. 2015. Word repre-
sentations via gaussian embedding. In 3rd Interna-
tional Conference on Learning Representations.

Ivan Vulic, Daniela Gerz, Douwe Kiela, Felix Hill, and
Anna Korhonen. 2017. Hyperlex: A large-scale eval-
uation of graded lexical entailment. Computational
Linguistics, 43(4):781–835.

Ivan Vulic and Nikola Mrksic. 2017. Specialising word
vectors for lexical entailment. In 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 1134–
1145.

Shike Wang, Yuchen Fan, Xiangying Luo, and Dong
Yu. 2020. SHIKEBLCU at SemEval-2020 task 2: An
external knowledge-enhanced matrix for multilingual
and cross-lingual lexical entailment. In Proceedings
of the Fourteenth Workshop on Semantic Evaluation.

Zhibiao Wu and Martha Palmer. 1994. Verb semantics
and lexical selection. In Proceedings of the 32nd
Annual Meeting of the Association for Computational
Linguistics, pages 133–138.


