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Relational Databases

Applications

Information systems (SAP)
Banking systems
Music store
...

Online shops
Travel booking
Hotel booking
...

SQL

programming language: relations as values
programming systems: Postgres, Oracle

References

1. Database Systems: The Complete Book. By H. Garcia-Molina, J.
Ullman, and J. Widom. 2001 (1000 pages)
2. Foundation of Database: S. Abiteboul, R. Hull, V. Vianu. 1994 (400
pages)
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Example: Movie Database
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SQL Aggregate Query

s e l e c t
Movies . t i t l e , L o c a t i o n . a d d r e s s

from
Movies , L o c a t i o n , P a r i s c o p e

where
Movies . d i r e c t o r = ‘ ‘ Bergman ’ ’

and Movies . t i t l e = P a r i s c o p e . t i t l e
and P a r i s c o p e . t h e a t r e = L o c a t i o n . t h e a t e r
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SQL Aggregate Query

s e l e c t
Movies . t i t l e , COUNT( L o c a t i o n . a d d r e s s )

from
Movies , L o c a t i o n , P a r i s c o p e

where
Movies . d i r e c t o r = ‘ ‘ Bergman ’ ’

and Movies . t i t l e = P a r i s c o p e . t i t l e
and P a r i s c o p e . t h e a t r e = L o c a t i o n . t h e a t e r

GROUP BY Movies . t i t l e
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Database Schema Σ

Relational Vocabulary

Σ = {R1[A1], . . . ,Rn[An]} ∪ Consts
where

R1, . . . ,Rn relation symbols
A1, . . . ,An finite subsets of attributes
Consts set of constants

Movie Example

Σ = { Movies[Title,Director ,Actor ]
Location[Theatre,Address,′ Phone Number ′]
Pariscope[Theatre,Title, Schedule]} ] Consts

Consts = UTF8∗
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Database (Instance)

Tuples and Relations with Attributes A

τ : A→ D tuples with values in D
r ⊆ DA relation with values in D

Finite Σ-Structure

D = (D, I )
where

D domain is a finite set of data values (strings, integers, floats)
I (R[A]) ⊆ DA interpretation as relation for all R[A] ∈ Σ
I (c) ∈ D interpreation in domain
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Relational Algebra on D

Operators on relations r ⊆ DA and r ′ ⊆ DA′
:

Join (like Cartesian product)

r on r ′ = {τ ∪ τ ′ | τ ∈ r , τ ′ ∈ r ′} if A ∩ A′ = ∅

Union and Differences of Relations

r ∪ r ′ and r \ r ′ if A = A′
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Relational Algebra on D
Operators on relations r ⊆ DA and r ′ ⊆ DA′

:

Projection

πA′(r) = {τ|A′ | τ ∈ r} if A′ ⊆ A

Selection by Constraints

σa=d(r) = {τ | τ(a) = d , τ ∈ r} where d ∈ D
σa=a′(r) = {τ | τ(a) = τ(a′), τ ∈ r}

where
a, a′ ∈ A and c ∈ Consts

Renaming of Attributes

ρθ(r) = {τ ◦ θ | τ ∈ r} where θ : A→ A′ bijection
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Database Queries

Expressions Q build from Σ and the operators of relational algebra:

Q,Q ′ ::= R[A] where R[A] ∈ Σ
| all [A] for finite subsets A of attributes
| Q on Q ′ join
| Q \ Q ′ difference
| Q ∪ Q ′ union
| πA(Q) for finite subsets A of attributes
| σC (Q) for constraints C of form a = a′ or a = c where c ∈ Σ
| ρθ(Q) for bijections θ : A→ A′
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Well-Typed Queries

The type of a relations is the set of its attributes.

R[A] ∈ Σ

R[A] : A

Q : A Q ′ : A′ A ∩ A′ = ∅
Q on Q ′ : A ∪ A′

true

all [A] : A

Q : A Q ′ : A

Q ∪ Q ′ : A
. . .

Only well-typed queries are permitted.
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Answer Sets

Any query Q defines set of tuples for each database D = (D, I ) with
schema Σ:

JQKD ⊆ DA if Q : A

By homorphic interpretation in the relational algebra over D:

JR[A]KD = I (R[A])
Jall [A]KD = DA = {τ | τ : A→ D}
JQ on Q ′KD = JQKD on JQ ′KD

JQ \ Q ′KD = JQKD \ JQ ′KD

JπA′(Q)KD = πA′(JQKD)
Jσa=a′(Q)KD = σa=a′(JQKD)
Jσa=c(Q)KD = σa=I (c)(JQKD)
Jρθ(Q)KD = ρθ(JQKD)
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SQL Queries to Relational Algebra Queries

Reconsider Example Query

s e l e c t Movies . t i t l e , L o c a t i o n . a d d r e s s
from Movies , L o c a t i o n , P a r i s c o p e
where Movies . d i r e c t o r = ‘ ‘ Bergman ’ ’

and Movies . t i t l e = P a r i s c o p e . t i t l e
and P a r i s c o p e . t h e a t r e = L o c a t i o n . t h e a t e r

Corresponding Relational Algebra Query

π{MTitle,Address}(
σDirector=′Bergman′(
σMTitle=PTitle(
σPTheatre=LTheater (
ρ[Title/MTitle](Movies[Title,Director ,Actor ]) on
ρ[Theatre/LTheater ](Location[Theatre,Address,′ Phone Number ′] on
ρ[Theatre/PTheater ,Title/PTitle](Pariscope[Theatre,Title,Schedule]])
))))
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Exercises

Define Q ∩ Q ′ where Q : A and Q ′ : A in the relational algebra.
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Exercises

Define Q ∩ Q ′ where Q : A and Q ′ : A in the relational algebra.

Q ∩ Q ′ = Q ∪ Q ′

where

Q ′′ = all [A] \ Q ′′ for all Q ′′ : A
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Exercises

Define Q ∩ Q ′ where Q : A and Q ′ : A in the relational algebra.

Q ∩ Q ′ = Q ∪ Q ′

where

Q ′′ = all [A] \ Q ′′ for all Q ′′ : A

Can you define it without using union and difference?
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Exercises

Define Q ∩ Q ′ where Q : A and Q ′ : A in the relational algebra.

Q ∩ Q ′ = Q ∪ Q ′

where

Q ′′ = all [A] \ Q ′′ for all Q ′′ : A

Can you define it without using union and difference?
for an arbitrary bijection θ : {a1, . . . , an} → A:

πA(σa1=θ(a1) . . . (σan=θ(an)(Q on ρθ(Q ′)) . . .))
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Exercises

Define Q ∩ Q ′ where Q : A and Q ′ : A in the relational algebra.

Q ∩ Q ′ = Q ∪ Q ′

where

Q ′′ = all [A] \ Q ′′ for all Q ′′ : A

Can you define it without using union and difference?
for an arbitrary bijection θ : {a1, . . . , an} → A:

πA(σa1=θ(a1) . . . (σan=θ(an)(Q on ρθ(Q ′)) . . .))

So, union is redundant in the relational algebra!

Q ∪ Q ′ = Q ∩ Q ′
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Syntax

FO Σ-Formulas=FO Queries

We use attributes as variables, so let EleVars be the set of attributes.

φ, φ′ ::= R(a1:x1, . . . , an:xn) | x = y | x = c | φ ∧ φ′ | ¬φ | ∃x .φ

where R[a1, . . . , an] ∈ Σ relation symbols, c ∈ Σ constants, and
x , y , x1, . . . , xn ∈ EleVars variables.

We will sometimes write R(x1, . . . , xn) instead of R(a1:x1, . . . , an:xn) if
attributes are totally ordered and a1 < . . . < an.

Conjunctive Queries

FO Σ-formulas with conjunction and existential quantification, but without
negation.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 16 / 48



Semantics

Compile FO queries to relational algebra queries.

raq(R(a1:x1, . . . , an:xn)) = ρ[a1/x1...an/xn](R[A])
raq(φ ∧ φ′) = raq(φ) on all [V (φ′) \ V (φ)]

∩ raq(φ′) on all [V (φ) \ V (φ′)]
raq(x = y) = σx=y (all [x , y ])
raq(x = c) = σx=c(all [x ])
raq(∃x .φ) = πV (φ)\{x}(raq(φ))
raq(¬φ) = all [V (φ)] \ raq(φ)
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FO Queries = Relational Algebra Queries

Theorem

Any conjunctive query can be converted into a relational algebra query
without difference in polynomial time, and vice versa.

Proof.

“⇒” By above compiler, and the fact that intersection can be expressed
without difference.
”⇐”: An exercise
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FO Queries = Relational Algebra Queries

Theorem

Any conjunctive query can be converted into a relational algebra query
without difference in polynomial time, and vice versa.

Proof.

“⇒” By above compiler, and the fact that intersection can be expressed
without difference.
”⇐”: An exercise

foq(R[A]) = R(a1:a1, . . . , an:an)
foq(Q on Q ′) = foq(Q) ∧ foq(Q ′)
foq(σa=c(Q)) = foq(Q) ∧ a = c
foq(σa=a′(Q)) = foq(Q) ∧ a = a′

foq(πA′(Q)) = ∃A′′.foq(Q) where Q : A and A′′ = A \ A′
foq(ρθ(Q)) = foq(Q)θ
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Query Answering

Input

database + query

Output

1. existence of answers
2. the answer set
3. the number of answers
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Hardness

Theorem

Existence of answers for conjunctive queries is NP-complete

Proof.

Consider the signature Σ = {and [1, 2, 3], or [1, 2, 3], not[1, 2], 0, 1} and
consider the Σ-structure with the truth tables of the Boolean functions as
database. Any SAT formula can the be encoded into a conjunctive
Σ-formula in polynomial time.

(x ∨ y) ∧ z becomes ∃o. and(o, z , 1) ∧ or(x , y , o)

Corollary

Existence of answers for select-from-where SQL queries is NP-complete.

Ahhrrrg, our most basic SQL example is this class!
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ACQs

For Binary Signatures

The undirect graph G of the conjunctive query φ is acyclic.

G has edge {x , y} iff R(x , y) is in φ for some binary R

Examples

R(x , y) ∧ R(y , z) is an ACQ but not R(x , y) ∧ R(y , z) ∧ R(z , x).
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ACQs

For General Signatures

More complicated . . .: α-acyclicity, β-acyclicity, γ-acyclicity . . . not today.

Example

The SQL select-from-where example query corresponds to the following
conjunctive query, which is α-acyclic :

∃xtheater . Movies(xtitle ,
′ Bergman′, ) ∧ Pariscope(xtheater , xtitle , )∧

Location(xtheater , xaddress , )
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ACQ’s are Feasible (Mostly)

Theorem (Yannakakis Generalization (Capelli, Pichler 2016))

The number of answers of an ACQ Q without quantifiers on a database D
can be computed in polynomial time.

Corollary (Yannakakis 1981)

The existence of answers for an ACQ Q on a database D can be decided
in polynomial time.

Theorem (Mengel/Durand 2015)

Computing the number of answers of a general ACQ Q on a database D is
]P-hard.
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Bounded Hypertree Width

Theorem

For any class of conjunctive querys of bounded hypertree width C , there
exists polynomial time compiler mapping any pair (Q,D) with Q ∈ C to a
pair (Q ′,D′) such that Q ′ ∈ ACQ and JQKD = JQ ′KD′

.

For instance, R(x , y) ∧ R(y , z) ∧ R(z , x) has tree width 2. Given a
database D it can be rewritten to the ACQ R(x , y) ∧ T (y , z , x) where T
is interpeted in D′ as JR(y , z) ∧ R(z , x)KD.
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Counting

ACQ

R(x , y) ∧ S(x , z) ∧ T (y , t)

Database

R x y #

1 0 n4
1 1 n5

S x z #

1 0 n0
1 1 n1

T y t #

0 0 n2
1 1 n3

Computation

n0 = n1 = n2 = n3 = 1
n4 = (n0 + n1) · n2 = 2
n5 = (n0 + n1) · n3 = 2
count = n4 + n5 = 4
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Boolean Circuits

∨

∧

z = 1

∨x = 1

∧

y = 0

∧

z = 0

x = 0y = 1

x y z

0 1 0
0 1 1
1 0 1
1 1 0
1 1 1
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Deterministic Decomposable Boolean Circuits (dDNNFs)

deterministic disjunction

decomposable conjunction

∨

∧

z = 1

∨x = 1

∧

y = 0

∧

z = 0

x = 0y = 1
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Yannakakis Fully Generalized

ACQ

Q(x , y , z , t) = R(x , y) ∧ S(x , z) ∧ T (y , t)

Database

R x y C

1 0 g4
1 1 g5

S x z C

1 0 g0
1 1 g1

T y t C

0 0 g2
1 1 g3

Computation

g0 = (z = 0) g1 = (z = 1) g2 = (t = 0) g3 = (t = 1)
g4 = (g0 ∨ g1) ∧ g2 ∧ (x = 1) ∧ (y = 0)
g5 = (g0 ∨ g1) ∧ g3 ∧ (x = 1) ∧ (y = 0)
dDNNF = g4 ∨ g5
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The Result dDNNF

∨

∧ ∧

x = 1 y = 0 t = 0 ∨x = 1 y = 1 t = 1

z = 1 z = 0

Counting based on the dDNNF

Evaluate circuit with interpretation in semiring:
leafs 1
∧ ·
∨ +

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 34 / 48



Outline

1 Relational Databases
SQL
Relational Algebra
FO Logic
Hardness of Database Problems
Acyclic Conjunctive Queries

2 Yannakakis’ Algorithm
Generalization to Counting
Boolean Circuits: dDNNFs
Quantifier-free ACQs to dDNNFs

3 Dependency Weighted Aggregation
Motivation in Data Mining
Dependency Weighted Aggregation for Database Queries
Computation for dDNNFs

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 35 / 48



Outline

1 Relational Databases
SQL
Relational Algebra
FO Logic
Hardness of Database Problems
Acyclic Conjunctive Queries

2 Yannakakis’ Algorithm
Generalization to Counting
Boolean Circuits: dDNNFs
Quantifier-free ACQs to dDNNFs

3 Dependency Weighted Aggregation
Motivation in Data Mining
Dependency Weighted Aggregation for Database Queries
Computation for dDNNFs

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 36 / 48



Averages Approximate Random Values

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2

On the available sample the average rating is:

3 + 4 + 2 + 1 + 8 + 3 + 9 + 2

8
= 4.

For samples of independent observations, probability theory says that the
avarage rating of the sample converges to the estimated average rating of
the random variable.
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Dependent Observations

However, the ratings in the sample are rarely independent:

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2

How can we deal with this?
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Compensating Dependencies for One Attribute

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2
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Compensating Dependencies for One Attribute

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2
W0 + W1 + W2 + W3 ≤ 1 (Argan)

W4 + W5 ≤ 1 (Cyrano)

W6 + W7 ≤ 1 (Frida)
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Compensating Dependencies for One Attribute

Id Spectator Movie Rating W

0 Argan Ça commence aujourd’hui 3 1/4

1 Argan Le monocle rit jaune 4 1/4

2 Argan Les barbouzes 2 1/4

3 Argan People : Jet Set 2 1 1/4

4 Cyrano Les barbouzes 8 1/2

5 Cyrano People : Jet Set 2 3 1/2

6 Frida Le monocle rit jaune 9 1/2

7 Frida People : Jet Set 2 2 1/2
W0 + W1 + W2 + W3 ≤ 1 (Argan)

W4 + W5 ≤ 1 (Cyrano)

W6 + W7 ≤ 1 (Frida)
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Compensating Dependencies for One Attribute

Id Spectator Movie Rating W

0 Argan Ça commence aujourd’hui 3 1/4

1 Argan Le monocle rit jaune 4 1/4

2 Argan Les barbouzes 2 1/4

3 Argan People : Jet Set 2 1 1/4

4 Cyrano Les barbouzes 8 1/2

5 Cyrano People : Jet Set 2 3 1/2

6 Frida Le monocle rit jaune 9 1/2

7 Frida People : Jet Set 2 2 1/2

This yields a weighted average: 0.25·(3+4+2+1)+0.5·(8+3+9+2)
3 = 4.5.
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Compensating Dependencies on Both Attributes

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2
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Compensating Dependencies on Both Attributes

Id Spectator Movie Rating
0 Argan Ça commence aujourd’hui 3

1 Argan Le monocle rit jaune 4

2 Argan Les barbouzes 2

3 Argan People : Jet Set 2 1

4 Cyrano Les barbouzes 8

5 Cyrano People : Jet Set 2 3

6 Frida Le monocle rit jaune 9

7 Frida People : Jet Set 2 2
W0 + W1 + W2 + W3 ≤ 1 (Argan)

...

W3 + W5 + W7 ≤ 1 (People : Jet Set 2)
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Compensating Dependencies on Both Attributes

Id Spectator Movie Rating W

0 Argan Ça commence aujourd’hui 3 1/2

1 Argan Le monocle rit jaune 4 1/6

2 Argan Les barbouzes 2 1/6

3 Argan People : Jet Set 2 1 1/6

4 Cyrano Les barbouzes 8 5/6

5 Cyrano People : Jet Set 2 3 1/6

6 Frida Le monocle rit jaune 9 5/6

7 Frida People : Jet Set 2 2 1/6
W0 + W1 + W2 + W3 ≤ 1 (Argan)

...

W3 + W5 + W7 ≤ 1 (People : Jet Set 2)
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Compensating Dependencies on Both Attributes

Id Spectator Movie Rating W

0 Argan Ça commence aujourd’hui 3 1/2

1 Argan Le monocle rit jaune 4 1/6

2 Argan Les barbouzes 2 1/6

3 Argan People : Jet Set 2 1 1/6

4 Cyrano Les barbouzes 8 5/6

5 Cyrano People : Jet Set 2 3 1/6

6 Frida Le monocle rit jaune 9 5/6

7 Frida People : Jet Set 2 2 1/6

This yields a weighted average: 1/2·3+1/6·(4+2+1+3+2)+5/6·(8+9)
3 ' 5.9.
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Dependency Weighted Aggregates

Fractional Matching Number fmn(S)

Maximal value of W1 + . . .+ Wn subject to the linear constraints.

Dependency Weighted Aggregate dwa(S)

7∑
i=1

WiRatingi

such that W1 + . . .+ Wn maximal value subject to the linear constraints.

Theorem (Ramon et. al 2013)

Dependency weighted aggegates of samples dwa(S) converges to
estimated rating when S grows.
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Linear Programs

The fractional matching number is defined by a linear program of
polynomial size in of sample S .

Lemma

fmn(S) can be computed in time polynomial in the size S and also dwa(S).
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Question

What happens if we are given a query Q and a database D such that
S = Q(D)?

Lemma

fmn(S) has non-zero value ⇐⇒ S 6= ∅

Proposition

For conjunctive queries Q on databases D, fmn(Q(D)) cannot be
computed in polynomial time.

Theorem (Capelli, Crosetti, Niehren, Ramon 2019)

For ACQs Q on databases D, fmn(Q(D)) and dwa(Q(D)) can be
computed in polynomial time.

Use the dDNNF representing Q(D) computed by the full generalization of
Yannakakis’ algorithm!
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Linear Program on Circuit

Input Leafs

p1 ... pn

f=d

o1 on

Wo1 + ...+ Won ≤ 1
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Linear Program on Circuit

∨-Gates

p1 ... pn

∨

o1 on

c1

i1

... cn

in

Wi1 + ...+ Win = Wo1 + ...+ Won
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Linear Program on Circuit

∧-Gates

p1 ... pn

∧

o1 on

c1

i1

c2

i2

Wi1 = Wi2 = Wo1 + ...+ Won
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Solutions Correspond

An edge e of the dDNNF C represent the set C (e) of all tuples τ accepted
by C via e.

We =
∑

τ∈C(e)

Wτ
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Conclusion

- Query answering for select-from-where SQL-queries is hard

- Yannakakis’s algorithm is a powerful algorithm that compiles a
quantifier-free ACQ and a database to a dDNNFs.

- Answer aggregation for dDNNFs can be computed in polynomial time.

- Dependency weighted aggregates for dDNNFs can be computed in
polynomial time.
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