
Foundations of Data and Knowledge Bases
Preliminaries:

Mathematical Notation

Joachim Niehren

Links: Linking Dynamic Data
Inria Lille

September 7, 2022

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 1 / 28

Outline

1 Functions and Relations

2 Kleene Star: Repetition

3 (First-Order) Terms
Abstract Syntax
Inductive Definitions
Arithmetic Expressions

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 2 / 28

Sets and Relations

Sets

Booleans: B = {0, 1}
natural numbers: N = {1, 2, . . .}
natural numbers of zero: N0 = N ∪ {0}

Relations

for sets A,B,A1, . . . ,An where n ∈ N0 we define sets of:

pairs: A× B = {(a, b) | a ∈ A, b ∈ B}
n-tuples: A1 × . . .× An = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}
The set A1 × . . .× An is called the type of such a tuple.

subsets: 2A = {B | B ⊆ A}, the power set of A

n-ary relations: 2A1×...×An

An n-ary relation is a table with n columns. The elements of column i
belong to Ai for all 1 ≤ i ≤ n.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 3 / 28

Functions

partial functions:

A→partial B = {f ⊆ A× B | ∀a ∈ A. ∃≤1b ∈ B. (a, b) ∈ f }

For any partial function f we write f (a) = b iff (a, b) ∈ f and define
the domain of f by:

dom(f) = {a ∈ A | ∃b ∈ B.f (a) = b}

(total) functions: A→ B = {f ⊆ A→partial B | dom(f) = A}
We write f : A→ B instead of f ∈ A→ B

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 4 / 28

Exercise [Homework until next time]

1 How many elements has the function space A→ B for two sets A and
B? How many elements has A→ B?

2 Let A be a set. Define a bijection cf : 2A → (A→ B) that maps
subsets B of A to their characteristic functions cf (B).

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 5 / 28

Named Tuples

A named tuple is like a tuple except that its components are given names.
Let N be a set of finite set of names and A another set.

Definition

A named tuple t with names in N and elements in A is a function
t : N → A.

If N = {n1 . . . , nm} with pairwise distinct ni then we write:

t = [n1/a1, . . . , nm/am] iff t(ni) = ai for all ni ∈ N

A named tuple is sometimes called a record, which are denoted as
t = {n1:a1, . . . , nm:am} in JSON, the Java Script Object Notation.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 6 / 28

Typing of Named Tuples

A type of a named tuple states to which subset of A the elements of its
components have to belong.

Typing

We say tat a named tuple t has type τ : N → 2A if t(n) ∈ τ(n) for all
n ∈ N.

Exercise

How can you identify the set of n tuples in A1 × . . .× An with some set of
named tuples? Which names can you use? And which type? Provide a
bijection between the set of n-tuples and your set of named tuples.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 7 / 28

Named Relations
A named relation is like a relation, except that its columns are named.

Definition

Let N be a set of names and A a set. A named relation r with names in N
and elements in A is a subset of name tuples with names in N and
elements in A.

Typing

We say that a named relation r has type τ : N → 2A if r is a subsets of
named tuples of type τ .

Exercise

How can you identify the set of relations in 2A1×...×An with some set of
named relations? Which names can you use? And which type? Provide a
bijection between the set of n-ary relations and your set of named n-ary
relations?

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 8 / 28

Outline

1 Functions and Relations

2 Kleene Star: Repetition

3 (First-Order) Terms
Abstract Syntax
Inductive Definitions
Arithmetic Expressions

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 9 / 28

Transitive Closure
Let A be a set and R ⊆ A× A a binary relation on A. For all i ∈ N define:

Composition of Steps via R

R0 = {(a, a) | a ∈ A} 0 steps
R1 = R 1 step
R i = {(a1, a3) | (a1, a2) ∈ R i−1, (a2, a3) ∈ R} i steps, where i ∈ N

Iterating Steps via R

R+ = ∪∞i=1R
i transitive closure

R∗ = R0 ∪ R+ reflexive transitive closure

Example

R = {(Lille,Paris), (Paris, Lyon), (Lyon,Marseille)}
R+ = R ∪ {(Lille, Lyon), (Lille,Marseille), (Paris,Marseille)}
R∗ = R+ ∪ {(Lille, Lille), (Paris,Paris), (Lyon, Lyon), (Marseille,Marseille)}

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 10 / 28

Words

Alphabet

set of letters: Σ

Words in Σ∗

Σ0 = {ε}
Σi = {w ·a | w ∈ Σi−1, a ∈ Σ}
Σ+ = ∪∞i=1Σi

Σ∗ = Σ+ ∪ Σ0

How to define Concatenation?

for all w ,w ′ ∈ Σ∗ define w ◦ w ′ ∈ Σ∗

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 11 / 28

Outline

1 Functions and Relations

2 Kleene Star: Repetition

3 (First-Order) Terms
Abstract Syntax
Inductive Definitions
Arithmetic Expressions

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 12 / 28

Examples for Terms

terms are finite trees with fixed arities

can be obtained by parsing concrete syntax of:
I arithmetic expressions (2 + 5) · 3 + 6 · 2
I equations x + 5 = 2 · y
I regular expressions (a∗ + b∗ · c)∗

I logic formulas p ∨ q ∧ ¬p

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 13 / 28

Terms as Abstract Syntax

Concrete syntax

of an expression is a sequence of constants, operators, and parenthesis.

Abstract syntax

of an expression is a term

obtained by from concrete syntax of the expression by parsing with
respect to some grammar

expresses the nesting structure of all operators, which is often induced
by parenthesis or operator preferences

ignores all details of concrete syntax, such as parenthesis and operator
preferences.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 14 / 28

Two Perspectives on Terms

Terms as nested structures

basic values

n-tuples of basic values

n-tuples of m-tuples of basic values

. . .

Terms as graphs

useful for graph algorithms

more difficult for recursive algorithms along the term structure

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 15 / 28

Signature=Vocabulary

Ranked Signature ∆ = (Σ, ar)

a set Σ of symbols

a function ar : Σ→ N0

Constants a ∈ Σ

are symbols with ar(a) = 0

basic values

Operators f ∈ Σ

are symbols of ar(f) ≥ 1

constructors of tuples of values

write f (., .) for operator of arity 2, etc.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 16 / 28

Inductive Definition of Terms

Set of terms Term≤m∆ of depth ≤ m

Term≤0
∆ = {a ∈ Σ | ar(a) = 0}

Term≤m+1
∆ = {f (t1, . . . , tn) | f ∈ Σ, ar(f) = n, t1, . . . , tn ∈ Term≤m∆ }

∪ Term≤m∆

Set of all terms

Term∆ = ∪∞m=0Term
≤m
∆

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 17 / 28

Recursive Definition of Terms

Set of terms Term∆

is the least set that contains

all constants a ∈ Σ and

all pairs f (t1, . . . , tn) consisting of an operator f ∈ Σ of arity
ar(f) = n and a tuple (t1, . . . , tn) ∈ (Term∆)n

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 18 / 28

Notation

Mathematical

Σn = {f ∈ Σ | ar(f) = n}

Term∆ = Σ0 ∪ ∪n≥0 Σn × (Term∆)n

Backus-Naur form (BNF)

t ∈ Term∆ ::= a | f (t1, . . . , tn) where n = ar(f) > 0 and ar(a) = 0.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 19 / 28

Arithmetic Expressions

Terms over signature

∆ = N ∪ {+(., .), ·(., .)} where all natural numbers are constants
ar(n) = 0.

Backus-Naur form

t ∈ Term∆ ::= n | +(t1, t2) | ·(t1, t2) where n ∈ N

Mathematical notation

Term∆ = N ∪ {·,+} × (Term∆ × Term∆)

Examples

we identify 2 + 3 · 5 with term +(2, ·(3, 5))

2 + 3 · 5 is different from its value 17, but it can be evaluated to it.

how to define an evaluator eval : Term∆ → N?

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 20 / 28

Evaluator

define eval : Term∆ → N by:

eval(n) = n
eval(t1 + t2) = eval(t1) + eval(t2)
eval(t1 · t2) = eval(t1) · eval(t2)

for instance: eval((2 + 3) · 5) = 25

note that the symbols + and · are overload; they are used as term
constructors on the left and as the arithmetic functions on natural
numbers on the right.

the type of the function eval resolves the ambiguity by overloading we
could also annotate the function by its type to make the distinction,
and write +N resp. ·N for instance.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 21 / 28

Exercises [Homework]

3 Define the depth of an arithmetic term formally such that the depth
of a constant is 0.

4 Define the number of nodes of an arithmetic term formally.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 22 / 28

Equality

Structural equality on terms

We define structural equality == ⊆ TermΣ × TermΣ such that for all
f ∈ Σ with ar(f) = n, terms t, t1, . . . , tn ∈ TermΣ and constants a ∈ Σ:

a) f (t1, . . . , tn) == t iff t matches f (t ′1, . . . , t
′
n) for some t ′1, . . . , t

′
n such

that ti = t ′i for all 1 ≤ i ≤ n

b) a == t if t = a is the same constant of Σ

Node equality

Consider the term
t = f (g(a, b), f (g(a, b), a)

the subterms of t at nodes 1 and 2·1 are equal to g(a, b) even though
these two nodes are different.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 23 / 28

Exercises

5 Compute the value of an arithmetic term in a programming language
of your choice.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 24 / 28

Exercises: Assignment 3 at UCC’2017

6 Reconsider arithmetic terms with the following abstract syntax:

t ∈ T ::= 1 | +(t, t)

Define a function nl : T → Nat in the language of mathematics such
that nl(t) is the number of leafs for any t ∈ T . Define the same
function in the programming language Python.

7 Consider propositional formulas that have the following abstract
syntax:

f ∈ F ::= and(f , f) | or(f , f) | true | false

Define a function eval : F → B in the language of mathematics that
evaluates formulas f ∈ F to Booleans eval(f). Define the same
function in the programming language Python.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 25 / 28

Exercises

8 Let Vars be a set. Consider propositional formulas with variables that
have the following abstract syntax:

f ∈ F ′ ::= and(f , f) | or(f , f) | x = 1 | x = 0

where x ∈ Vars. Can you define true and false by equivalent formulas
in F ′?

9 For any f ∈ F ′, let V (f) be the set of variables that occur f . Define
V (f) formally in the language of mathematics, and also in Python.

10 Define a function eval ′ : F ′ × (Vars→ B)→ B in the language of
mathematics, that evaluates any formula f ∈ F ′ to a Boolean
eval ′(f , α) when given a variable assignment α : Vars→ B as second
input argument. Define the same function in the programming
language Python.

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 26 / 28

Exercises

11 We call a formula f ∈ F satisfiable, if there exists a variable
assignment that makes f true, i.e., if there exists α : Vars→ B with
eval ′(f , α) = 1. Let sat : F ′ → B be the function such that
sat(f) = 1 iff f is satisfiable. Can you define the function sat in the
Python? You have to find an algorithm that the computes sat, and
implement your algorithm in Python. What is the worst case running
time of your algorithm?

12 Which is the most famous problem that is known to be NP-complete?
How is it related to the above decision problem sat?

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 27 / 28

Exercises

13 Consider the relational database with two elements D = {0, 1} and
two monadic relations, Zero = {0} and One = {1}. It can be queried
by formulas φ with the following abstract syntax where x ranges over
variable in a set Vars:

φ ::= Zero(x) | One(x) | φ ∧ φ′ | φ ∨ φ′

An answer of a database query φ is a variable assignment
α : Vars→ D that makes φ true on D. How difficult is it to decide
whether a query φ has an answer for the above database?

Joachim Niehren (Inria Lille) Foundations of Data and Knowledge Bases September 7, 2022 28 / 28

	Functions and Relations
	Kleene Star: Repetition
	(First-Order) Terms
	Abstract Syntax
	Inductive Definitions
	Arithmetic Expressions

