Introduction to Reinforcement Learning
Part 2: Approximate Dynamic Programming

Rémi Munos

SequeL project: Sequential Learning
http://researchers.lille.inria.fr/~munos/

INRIA Lille - Nord Europe

Machine Learning Summer School, September 2011, Bordeaux
Outline of Part 2: Approximate dynamic programming

- Function approximation
- Bellman residual minimization
- Approximate value iteration: fitted VI
- Approximate policy iteration, LSTD, BRM
- Analysis of sample-based algorithms
References

General references on Approximate Dynamic Programming:

BRM, TD, LSTD/LSPI:

- BRM [Williams and Baird, 1993]
- TD learning [Tsitsiklis and Van Roy, 1996]
- LSTD [Bradtke and Barto, 1993], [Boyan, 1999], LSPI [Lagoudakis and Parr, 2003], [Munos, 2003]

Finite-sample analysis:

- AVI [Munos and Szepesvári, 2008]
- API [Antos et al., 2009]
- LSTD [Lazaric et al., 2010]
Approximate methods

When the state space is finite and small, use DP or RL techniques. However in most interesting problems, the state-space X is huge, possibly infinite:

- Tetris, Backgammon, ...
- Control problems often consider continuous spaces

We need to use function approximation:

- Linear approximation $\mathcal{F} = \{ f_\alpha = \sum_{i=1}^{d} \alpha_i \phi_i, \alpha \in \mathbb{R}^d \}$
- Neural networks: $\mathcal{F} = \{ f_\alpha \}$, where α is the weight vector
- Non-parametric: k-nearest neighboors, Kernel methods, SVM, ...

Write \mathcal{F} the set of representable functions.
Approximate dynamic programming

General approach: build an approximation $V \in \mathcal{F}$ of the optimal value function V^* (which may not belong to \mathcal{F}), and then consider the policy π greedy policy w.r.t. V, i.e.,

$$
\pi(x) \in \arg\max_{a \in A} \left[r(x, a) + \gamma \sum_y p(y|x, a) V(y) \right].
$$

(for the case of *infinite horizon with discounted rewards.)*

We expect that if $V \in \mathcal{F}$ is close to V^* then the policy π will be close-to-optimal.
Bound on the performance loss

Proposition 1.

Let V be an approximation of V^*, and write π the policy greedy w.r.t. V. Then

$$\|V^* - V^\pi\|_\infty \leq \frac{2\gamma}{1 - \gamma} \|V^* - V\|_\infty.$$

Proof.

From the contraction properties of the operators T and T^π and that by definition of π we have $T V = T^\pi V$, we deduce

$$\|V^* - V^\pi\|_\infty \leq \|V^* - T^\pi V\|_\infty + \|T^\pi V - T^\pi V^\pi\|_\infty$$

$$\leq \|T V^* - T V\|_\infty + \gamma \|V - V^\pi\|_\infty$$

$$\leq \gamma \|V^* - V\|_\infty + \gamma(\|V - V^*\|_\infty + \|V^* - V^\pi\|_\infty)$$

$$\leq \frac{2\gamma}{1 - \gamma} \|V^* - V\|_\infty.$$
Bellman residual

- Let us define the **Bellman residual** of a function V as the function $\mathcal{T}V - V$.
- Note that the Bellman residual of V^* is 0 (Bellman equation).
- If a function V has a low $\|\mathcal{T}V - V\|_\infty$, then is V close to V^*?

Proposition 2 (Williams and Baird, 1993).

We have

$$\|V^* - V\|_\infty \leq \frac{1}{1 - \gamma} \|\mathcal{T}V - V\|_\infty$$

$$\|V^* - V^\pi\|_\infty \leq \frac{2}{1 - \gamma} \|\mathcal{T}V - V\|_\infty$$
Proof of Proposition 2

Point 1: we have

\[\| V^* - V \|_\infty \leq \| V^* - \mathcal{T} V \|_\infty + \| \mathcal{T} V - V \|_\infty \]

\[\leq \gamma \| V^* - V \|_\infty + \| \mathcal{T} V - V \|_\infty \]

\[\leq \frac{1}{1 - \gamma} \| \mathcal{T} V - V \|_\infty \]

Point 2: We have \(\| V^* - V^\pi \|_\infty \leq \| V^* - V \|_\infty + \| V - V^\pi \|_\infty \).

Since \(\mathcal{T} V = \mathcal{T}^\pi V \), we deduce

\[\| V - V^\pi \|_\infty \leq \| V - \mathcal{T} V \|_\infty + \| \mathcal{T} V - V^\pi \|_\infty \]

\[\leq \| \mathcal{T} V - V \|_\infty + \gamma \| V - V^\pi \|_\infty \]

\[\leq \frac{1}{1 - \gamma} \| \mathcal{T} V - V \|_\infty , \]

thus, by using Point 1, it comes

\[\| V^* - V^\pi \|_\infty \leq \frac{2}{1 - \gamma} \| \mathcal{T} V - V \|_\infty . \]
Given a function space \mathcal{F} we can search for the function with minimum Bellman residual:

$$V_{BR} = \arg \min_{V \in \mathcal{F}} \| T V - V \|_{\infty}.$$

What is the performance of the policy π_{BR} greedy w.r.t. V_{BR}?

Proposition 3.

We have:

$$\| V^* - V^{\pi_{BR}} \|_{\infty} \leq \frac{2(1 + \gamma)}{1 - \gamma} \inf_{V \in \mathcal{F}} \| V^* - V \|_{\infty}. \quad (1)$$

Thus minimizing the Bellman residual in \mathcal{F} is a sound approach whenever \mathcal{F} is rich enough.
Proof of Proposition 3

We have

$$
\| TV - V \|_\infty \leq \| TV - TV^* \|_\infty + \| V^* - V \|_\infty \\
\leq (1 + \gamma) \| V^* - V \|_\infty.
$$

Thus V_{BR} satisfies:

$$
\| TV_{BR} - V_{BR} \|_\infty = \inf_{V \in \mathcal{F}} \| TV - V \|_\infty \\
\leq (1 + \gamma) \inf_{V \in \mathcal{F}} \| V^* - V \|_\infty.
$$

Combining with the result of Proposition 2, we deduce (1).
Possible numerical implementation

Assume that we possess a generative model:

$$\begin{array}{cccc}
\text{State } x & \xrightarrow{\text{Generative model}} & \text{Reward } r(x, a) \\
\text{Action } a & \xrightarrow{\text{Next state sample } y \sim p(\cdot|x, a)} & \text{sample estimate of } \mathcal{T}V(x_i) \\
\end{array}$$

- Sample n states $(x_i)_{1 \leq i \leq n}$ uniformly over the state space X,
- For each action $a \in A$, generate a reward sample $r(x, a)$ and m next state samples $(y_{i,a}^j)_{1 \leq j \leq m}$.
- Return the empirical Bellman residual minimizer:

$$\hat{V}_{BR} = \arg \min_{V \in F} \max_{1 \leq i \leq n} \max_{a \in A} \left| r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V(y_{i,a}^j) - V(x_i) \right|.$$
Approximate Value Iteration

Approximate Value Iteration: builds a sequence of $V_k \in \mathcal{F}$:

$$V_{k+1} = \Pi \mathcal{T} V_k,$$

where Π is a projection operator onto \mathcal{F} (under some norm $\| \cdot \|$).

Remark: Π is a non-expansion under $\| \cdot \|$, and \mathcal{T} is a contraction under $\| \cdot \|_{\infty}$. Thus if we use $\| \cdot \|_{\infty}$ for Π, then AVI converges. If we use another norm for Π (e.g., L_2), then AVI may not converge.
Performance bound for AVI

Apply AVI for K iterations.

Proposition 4 (Bertsekas & Tsitsiklis, 1996).

The performance loss $\| V^* - V^{\pi_K} \|_\infty$ resulting from using the policy π_K greedy w.r.t. V_K is bounded as:

$$
\| V^* - V^{\pi_K} \|_\infty \leq \frac{2\gamma}{(1 - \gamma)^2} \max_{0 \leq k < K} \frac{\| T V_k - V_{k+1} \|_\infty}{1 - \gamma} + \frac{2\gamma^{K+1}}{1 - \gamma} \| V^* - V_0 \|_\infty.
$$

Now if we use $\| \cdot \|_\infty$-norm for Π, then AVI converges, say to \tilde{V} which is such that $V = \Pi T \tilde{V}$. Write $\tilde{\pi}$ the policy greedy w.r.t. \tilde{V}. Then

$$
\| V^* - V^{\tilde{\pi}} \|_\infty \leq \frac{2}{(1 - \gamma)^2} \inf_{V \in \mathcal{F}} \| V^* - V \|_\infty.
$$
Proof of Proposition 4

Point 1: Write \(\epsilon = \max_{0 \leq k < K} \| T V_k - V_{k+1} \|_\infty \). For all \(0 \leq k < K \), we have

\[
\| V^* - V_{k+1} \|_\infty \leq \| T V^* - T V_k \|_\infty + \| T V_k - V_{k+1} \|_\infty
\leq \gamma \| V^* - V_k \|_\infty + \epsilon,
\]

thus, \(\| V^* - V_K \|_\infty \leq (1 + \gamma + \cdots + \gamma^{K-1}) \epsilon + \gamma^K \| V^* - V_0 \|_\infty \)

\[
\leq \frac{1}{1 - \gamma} \epsilon + \gamma^K \| V^* - V_0 \|_\infty
\]

and we conclude by using Proposition 1.

Point 2: If \(\Pi \) uses \(\| \cdot \|_\infty \) then \(\Pi T \) is a \(\gamma \)-contraction mapping, thus AVI converges, say to \(\tilde{V} \) satisfying \(\tilde{V} = \Pi T \tilde{V} \). And

\[
\| V^* - \tilde{V} \|_\infty \leq \| V^* - \Pi V^* \|_\infty + \| \Pi V^* - \tilde{V} \|_\infty
\]

with \(\| \Pi V^* - \tilde{V} \|_\infty = \| \Pi T V^* - \Pi T \tilde{V} \|_\infty \leq \gamma \| V^* - \tilde{V} \|_\infty \),

and the result follows from Proposition 1.
A possible numerical implementation

At each round k,

1. Sample n states $(x_i)_{1 \leq i \leq n}$

2. From each state x_i, for each action $a \in A$, use the generative model to obtain a reward $r(x_i, a)$ and m next state samples $(y_{i,a}^j)_{1 \leq j \leq m} \sim p(\cdot | x_i, a)$

3. Define the next approximation (say using L_∞-norm)

$$V_{k+1} = \arg \min_{V \in \mathcal{F}} \max_{1 \leq i \leq n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V_k(y_{i,a}^j) \right] \right|$$

This is still a numerically hard problem. However, using L_2 norm:

$$V_{k+1} = \arg \min_{V \in \mathcal{F}} \sum_{i=1}^{n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V_k(y_{i,a}^j) \right] \right|^2$$

is much easier!
Example: optimal replacement problem

1d-state: accumulated utilization of a product (ex. car).

Decisions: each year,

- **Replace**: replacement cost C, next state $y \sim d(\cdot)$,
- **Keep**: maintenance cost $c(x)$, next state $y \sim d(\cdot - x)$.

Goal: Minimize the expected sum of discounted costs.

The optimal value function solves the Bellman equation:

$$V^*(x) = \min \left\{ c(x) + \gamma \int_0^\infty d(y - x)V^*(y)dy, \quad C + \gamma \int_0^\infty d(y)V^*(y)dy \right\}$$

and the optimal policy is the argument of the min.
Maintenance cost and value function

Here, $\gamma = 0.6$, $C = 50$, $d(y) = \beta e^{-\beta y} 1_{y \geq 0}$, with $\beta = 0.6$. Maintenance costs = increasing function + punctual costs.
Linear approximation

Function space $\mathcal{F} = \left\{ f_\alpha(x) = \sum_{i=1}^{20} \alpha_i \cos(i\pi \frac{x}{x_{\text{max}}}), \alpha \in \mathbb{R}^{20} \right\}$.

Consider a uniform discretization grid with $n = 100$ states, $m = 100$ next-states. First iteration: $V_0 = 0$,

Bellman values $\{\hat{T}V_0(x_i)\}_{1 \leq i \leq n}$ Approximation $V_1 \in \mathcal{F}$ of $\hat{T}V_0$
Next iterations
Approximate Policy Iteration

Choose an initial policy π_0 and iterate:

1. **Approximate policy evaluation** of π_k:
 compute an approximation V_k of V^{π_k}.

2. **Policy improvement**: π_{k+1} is greedy w.r.t. V_k:

 $$\pi_{k+1}(x) \in \arg \max_{a \in A} \left[r(x, a) + \gamma \sum_{y \in X} p(y|x, a) V_k(y) \right].$$

The algorithm may not converge but we can analyze the asymptotic performance.

$$V^* - V^{\pi_k}$$

Asymptotic error
Performance bound for API

We relate the asymptotic performance \(\| V^* - V^{\pi_k} \|_\infty \) of the policies \(\pi_k \) greedy w.r.t. the iterates \(V_k \), in terms of the approximation errors \(\| V_k - V^{\pi_k} \|_\infty \).

Proposition 5 (Bertsekas & Tsitsiklis, 1996).

We have

\[
\limsup_{k \to \infty} \| V^* - V^{\pi_k} \|_\infty \leq \frac{2 \gamma}{(1 - \gamma)^2} \limsup_{k \to \infty} \| V_k - V^{\pi_k} \|_\infty
\]

Thus if we are able to well approximate the value functions \(V^{\pi_k} \) at each iteration then the performance of the resulting policies will be close to the optimum.
Proof of Proposition 5 [part 1]

Write \(e_k = V_k - V^{\pi_k} \) the approximation error, \(g_k = V^{\pi_{k+1}} - V^{\pi_k} \) the performance gain between iterations \(k \) and \(k+1 \), and
\(l_k = V^* - V^{\pi_k} \) the loss of using policy \(\pi_k \) instead of \(\pi^* \). The next policy cannot be much worst than the current one:

\[
\begin{align*}
g_k &\geq -\gamma(I - \gamma P^{\pi_{k+1}})^{-1}(P^{\pi_{k+1}} - P^{\pi_k}) e_k
\end{align*}
\]

Indeed, since \(T^{\pi_{k+1}} V_k \geq T^{\pi_{k}} V_k \) (as \(\pi_{k+1} \) is greedy w.r.t. \(V_k \)), we have:

\[
\begin{align*}
g_k &= T^{\pi_{k+1}} V^{\pi_{k+1}} - T^{\pi_{k+1}} V^{\pi_k} + T^{\pi_{k+1}} V^{\pi_k} - T^{\pi_{k+1}} V_k \\
&\quad + T^{\pi_{k+1}} V_k - T^{\pi_k} V_k + T^{\pi_k} V_k - T^{\pi_k} V^{\pi_k} \\
&\geq \gamma P^{\pi_{k+1}} g_k - \gamma(P^{\pi_{k+1}} - P^{\pi_k}) e_k \\
&\geq -\gamma(I - \gamma P^{\pi_{k+1}})^{-1}(P^{\pi_{k+1}} - P^{\pi_k}) e_k
\end{align*}
\]
Proof of Proposition 5 [part 2]

The loss at the next iteration is bounded by the current loss as:

\[l_{k+1} \leq \gamma P^{\pi^*} l_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k \]

Indeed, since \(T^{\pi^*} V_k \leq T^{\pi_{k+1}} V_k \),

\[l_{k+1} = T^{\pi^*} V^* - T^{\pi^*} V^{\pi_k} + T^{\pi^*} V^{\pi_k} - T^{\pi^*} V_k + T^{\pi^*} V_k - T^{\pi_{k+1}} V^{\pi_k} + T^{\pi_{k+1}} V^{\pi_k} - T^{\pi_{k+1}} V^{\pi_{k+1}} \]

\[\leq \gamma [P^{\pi^*} l_k - P^{\pi_{k+1}} g_k + (P^{\pi_{k+1}} - P^{\pi^*}) e_k] \]

and by using (2),

\[l_{k+1} \leq \gamma P^{\pi^*} l_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) + P^{\pi_{k+1}} - P^{\pi^*}] e_k \]

\[\leq \gamma P^{\pi^*} l_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k. \]
Bellman residual minimization
Approximate Value Iteration
Approximate Policy Iteration
Analysis of sample-based algo

Proof of Proposition 5 [part 3]

Writing $f_k = \gamma[P^{\pi_{k+1}}(I - \gamma P^{\pi_{k+1}})^{-1}(I - \gamma P^{\pi_k}) - P^{\pi^*}]e_k$, we have:

$$l_{k+1} \leq \gamma P^{\pi^*} l_k + f_k.$$

Thus, by taking the limit sup.,

$$(I - \gamma P^{\pi^*}) \limsup_{k \to \infty} l_k \leq \limsup_{k \to \infty} f_k$$

$$\limsup_{k \to \infty} l_k \leq (I - \gamma P^{\pi^*})^{-1} \limsup_{k \to \infty} f_k,$$

since $I - \gamma P^{\pi^*}$ is invertible. In L_∞-norm, we have

$$\limsup_{k \to \infty} \|l_k\| \leq \frac{\gamma}{1 - \gamma} \limsup_{k \to \infty} \|P^{\pi_{k+1}}(I - \gamma P^{\pi_{k+1}})^{-1}(I + \gamma P^{\pi_k}) + P^{\pi^*}\| \|e_k\|$$

$$\leq \frac{\gamma}{1 - \gamma} \left(\frac{1 + \gamma}{1 - \gamma} + 1\right) \limsup_{k \to \infty} \|e_k\| = \frac{2\gamma}{(1 - \gamma)^2} \limsup_{k \to \infty} \|e_k\|.$$
Approximate policy evaluation

For a given policy π we search for an approximation $V_\alpha \in \mathcal{F}$ of V^π. For example, by minimizing the approximation error

$$\inf_{V_\alpha \in \mathcal{F}} \| V_\alpha - V^\pi \|_2^2.$$

Writing $g(\alpha) = \frac{1}{2} \| V_\alpha - V^\pi \|_2^2$, we may consider a stochastic gradient algorithm:

$$\alpha \leftarrow \alpha - \eta \hat{\nabla} g(\alpha)$$

where an estimate $\hat{\nabla} g(\alpha) = \langle \nabla V_\alpha, V_\alpha - \sum_{t \geq 0} \gamma^t r_t \rangle$ of the gradient $\nabla g(\alpha) = \langle \nabla V_\alpha, V_\alpha - V^\pi \rangle$ may be obtained by using MC sampling of trajectories (x_t) following π.

Extension to $\text{TD}(\lambda)$ algorithms have been introduced:

$$\alpha \leftarrow \alpha + \eta \sum_{s \geq 0} \nabla_\alpha V_\alpha(x_s) \sum_{t \geq s} (\gamma \lambda)^{t-s} d_t.$$
TD-Gammon [Tesauro, 1994]

State = game configuration $x +$ player $j \rightarrow N \approx 10^{20}$.

Reward 1 or 0 at the end of the game.

The neural network returns an approximation of $V^*(x, j)$: probability that player j wins from position x, assuming that both players play optimally.
TD-Gammon algorithm

• At time t, the current game configuration is x_t
• Roll dices and select the action that maximizes the value V_α of the resulting state x_{t+1}
• Compute the temporal difference
 $$d_t = V_\alpha(x_{t+1}, j_{t+1}) - V_\alpha(x_t, j_t)$$
 (if this is a final position, replace $V_\alpha(x_{t+1}, j_{t+1})$ by $+1$ or 0)
• Update α_t according to
 $$\alpha_{t+1} = \alpha_t + \eta_t d_t \sum_{0 \leq s \leq t} \lambda^{t-s} \nabla_\alpha V_\alpha(x_s).$$

This is a variant of API using TD(λ) where there is a policy improvement step after each update of the parameter.
After several weeks of self playing → world best player.
According to human experts it developed new strategies, specially in openings.
TD(\(\lambda\)) with linear space

Consider a set of features \((\phi_i : X \rightarrow \mathbb{R})_{1 \leq i \leq d}\) and the linear space

\[
\mathcal{F} = \{ V_{\alpha}(x) = \sum_{i=1}^{d} \alpha_i \phi_i(x), \alpha \in \mathbb{R}^d \}.
\]

Run a trajectory \((x_t)\) by following policy \(\pi\).
After the transition \(x_t \xrightarrow{r_t} x_{t+1}\), compute the temporal difference
\(d_t = r_t + \gamma V_{\alpha}(x_{t+1}) - V_{\alpha}(x_t)\), and update

\[
\alpha_{t+1} = \alpha_t + \eta_t d_t \sum_{0 \leq s \leq t} (\lambda \gamma)^{t-s} \Phi(x_s).
\]

Proposition 6 (Tsitsiklis & Van Roy, 1996).
Assume that \(\sum \eta_t = \infty\) and \(\sum \eta_t^2 < \infty\), and there exists \(\mu \in \mathbb{R}^N\) such that \(\forall x, y \in X, \lim_{t \rightarrow \infty} \mathbb{P}(x_t = y | x_0 = x) = \mu(y)\). Then \(\alpha_t\) converges, say to \(\alpha^*\). And we have

\[
\| V_{\alpha^*} - V^\pi \|_\mu \leq \frac{1 - \lambda \gamma}{1 - \gamma} \inf_{\alpha} \| V_{\alpha} - V^\pi \|_\mu.
\]
Least Squares Temporal Difference

[Bradtke & Barto, 1996, Lagoudakis & Parr, 2003]
Consider a linear space \mathcal{F} and Π_μ the projection with norm $L_2(\mu)$, where μ is a distribution over X.
When the fixed-point of $\Pi_\mu T^\pi$ exists, we call it **Least Squares Temporal Difference** solution V_{TD}.

$$V_{TD} = \Pi_\mu T^\pi V_{TD}$$

$$V^\pi = \Pi_\mu V^\pi$$

$$T^\pi V_{TD}$$

$$T^\pi$$

$$\mathcal{F}$$
Characterization of the LSTD solution

The Bellman residual $\mathcal{T}^\pi V_{TD} - V_{TD}$ is orthogonal to the space \mathcal{F}, thus for all $1 \leq i \leq d$,

$$\langle r^\pi + \gamma P^\pi V_{TD} - V_{TD}, \phi_i \rangle_\mu = 0$$

$$\langle r^\pi, \phi_i \rangle_\mu + \sum_{j=1}^{d} \langle \gamma P^\pi \phi_j - \phi_j, \phi_i \rangle_\mu \alpha_{TD,j} = 0,$$

where α_{TD} is the parameter of V_{TD}. We deduce that α_{TD} is solution to the linear system (of size d):

$$A\alpha = b,$$

with

$$\begin{align*}
A_{i,j} & = \langle \phi_i, \phi_j - \gamma P^\pi \phi_j \rangle_\mu \\
b_i & = \langle \phi_i, r^\pi \rangle_\mu
\end{align*}$$
Performance bound for LSTD

In general there is no guarantee that there exists a fixed-point to $\Pi_\mu T^\pi$ (since T^π is not a contraction in $L_2(\mu)$-norm).
However, when μ is the stationary distribution associated to π (i.e., such that $\mu P^\pi = \mu$), then there exists a unique LSTD solution.

Proposition 7.

Consider μ to be the stationary distribution associated to π. Then T^π is a contraction mapping in $L_2(\mu)$-norm, thus $\Pi_\mu T^\pi$ is also a contraction, and there exists a unique LSTD solution V_{TD}. In addition, we have the approximation error:

$$\|V^\pi - V_{TD}\|_\mu \leq \frac{1}{\sqrt{1 - \gamma^2}} \inf_{V \in \mathcal{F}} \|V^\pi - V\|_\mu. \quad (3)$$
Proof of Proposition 7 [part 1]

First let us prove that \(\| P_\pi \|_\mu = 1 \). We have:

\[
\| P^\pi V \|_\mu^2 = \sum_x \mu(x) \left(\sum_y p(y|x, \pi(x)) V(y) \right)^2 \\
\leq \sum_x \sum_y \mu(x) p(y|x, \pi(x)) V(y)^2 \\
= \sum_y \mu(y) V(y)^2 = \| V \|_\mu^2.
\]

We deduce that \(\mathcal{T}^\pi \) is a contraction mapping in \(L_2(\mu) \):

\[
\| \mathcal{T}^\pi V_1 - \mathcal{T}^\pi V_2 \|_\mu = \gamma \| P^\pi (V_1 - V_2) \|_\mu \leq \gamma \| V_1 - V_2 \|_\mu,
\]

and since \(\Pi_\mu \) is a non-expansion in \(L_2(\mu) \), then \(\Pi_\mu \mathcal{T}^\pi \) is a contraction in \(L_2(\mu) \). Write \(V_{TD} \) its (unique) fixed-point.
Proof of Proposition 7 [part 2]

We have \[\| V^\pi - V_{TD} \|_\mu^2 = \| V^\pi - \Pi_\mu V^\pi \|_\mu^2 + \| \Pi_\mu V^\pi - V_{TD} \|_\mu^2, \]
but \[\| \Pi_\mu V^\pi - V_{TD} \|_\mu^2 = \| \Pi_\mu V^\pi - \Pi_\mu T^\pi V_{TD} \|_\mu^2 \]
\[\leq \| T^\pi V^\pi - T V_{TD} \|_\mu^2 \leq \gamma^2 \| V^\pi - V_{TD} \|_\mu^2. \]

Thus \[\| V^\pi - V_{TD} \|_\mu^2 \leq \| V^\pi - \Pi_\mu V^\pi \|_\mu^2 + \gamma^2 \| V^\pi - V_{TD} \|_\mu^2, \]
from which the result follows.
Bellman Residual Minimization (BRM)

Another approach consists in searching for the function \mathcal{F} that minimizes the Bellman residual for the policy π:

$$V_{BR} = \arg \min_{V \in \mathcal{F}} \| T^\pi V - V \|,$$

for some norm $\| \cdot \|$.

![Diagram](image)
Characterization of the BRM solution

Let μ be a distribution and V_{BR} be the BRM using $L_2(\mu)$-norm. The mapping $\alpha \rightarrow \|\mathcal{T}^\pi V_\alpha - V_\alpha\|_\mu^2$ is quadratic and its minimum is characterized by its gradient $= 0$: for all $1 \leq i \leq d$,

$$\langle r^\pi + \gamma P^\pi V_\alpha - V_\alpha, \gamma P^\pi \phi_i - \phi_i \rangle_\mu = 0$$

$$\langle r^\pi + (\gamma P^\pi - I) \sum_{j=1}^d \phi_j \alpha_j, (\gamma P^\pi - I) \phi_i \rangle_\mu = 0$$

We deduce that α_{BR} is solution to the linear system (of size d):

$$A\alpha = b,$$

with

$$A_{i,j} = \langle \phi_i - \gamma P^\pi \phi_i, \phi_j - \gamma P^\pi \phi_j \rangle_\mu$$

$$b_i = \langle \phi_i - \gamma P^\pi \phi_i, r^\pi \rangle_\mu$$
Performance of BRM

Proposition 8.
We have

$$\| V^\pi - V_{BR} \| \leq \|(I - \gamma P^\pi)^{-1} (1 + \gamma \| P^\pi \|) \inf_{V \in F} \| V^\pi - V \|. \quad (5)$$

Now, if μ is the stationary distribution for π, then $\| P^\pi \|_\mu = 1$ and $\|(I - \gamma P^\pi)^{-1}\|_\mu = \frac{1}{1 - \gamma}$, thus

$$\| V^\pi - V_{BR} \|_\mu \leq \frac{1 + \gamma}{1 - \gamma} \inf_{V \in F} \| V^\pi - V \|_\mu.$$

Note that the BRM solution has performance guarantees even when μ is not the stationary distribution (contrary to LSTD). See discussion in [Lagoudakis & Parr, 2003] and [Munos, 2003].
Proof of Proposition 8

Point 1: For any function V, we have

$$V^\pi - V = V^\pi - T^\pi V + T^\pi V - V = \gamma P^\pi (V^\pi - V) + T^\pi V - V$$
$$\quad (I - \gamma P^\pi)(V^\pi - V) = T^\pi V - V,$$

thus

$$\| V^\pi - V_{BR} \| \leq \|(I - \gamma P^\pi)^{-1}\| \| T^\pi V_{BR} - V_{BR} \|$$

and

$$\| T^\pi V_{BR} - V_{BR} \| = \inf_{V \in \mathcal{F}} \| T^\pi V - V \| \leq (1 + \gamma \| P^\pi \|) \inf_{V \in \mathcal{F}} \| V^\pi - V \|,$$

and (5) follows.

Point 2: Now when we consider the stationary distribution, we have already seen that $\| P^\pi \|_\mu = 1$, which implies that

$$\|(I - \gamma P^\pi)^{-1}\|_\mu \leq \sum_{t \geq 0} \gamma^t \| P^\pi \|_\mu^t \leq \frac{1}{1 - \gamma}.$$
Approximate Policy Iteration algorithm: We studied how to compute an approximation V_k of the value function V^π_k for any policy π_k. Now the policy improvement step is:

$$\pi_{k+1}(x) \in \arg \max_{a \in A} \sum_y p(y|x, a)[r(x, a, y) + \gamma V_k(y)].$$

In RL, the transition probabilities and rewards are unknown. How to adapt this methodology? Again, two same ideas:

1. Use sampling methods
2. Use Q-value functions
We now wish to approximate the Q-value function $Q^\pi : X \times A \rightarrow \mathbb{R}$ for any policy π, where

$$Q^\pi(x, a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r(x_t, a_t) | x_0 = x, a_0 = a, a_t = \pi(x_t), t \geq 1 \right].$$

Consider a set of features $\phi_i : X \times A \rightarrow \mathbb{R}$ and the linear space \mathcal{F}

$$\mathcal{F} = \{ Q_\alpha(x, a) = \sum_{i=1}^{d} \alpha_i \phi_i(x, a), \alpha \in \mathbb{R}^d \}.$$
Least-Squares Policy Iteration

[Lagoudakis & Parr, 2003]

- **Policy evaluation:** At round k, run a trajectory $(x_t)_{1 \leq t \leq n}$ by following policy π_k. Write $a_t = \pi_k(x_t)$ and $r_t = r(x_t, a_t)$.

 Build the matrix \hat{A} and the vector \hat{b} as

 $$
 \hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t)[\phi_j(x_t, a_t) - \gamma \phi_j(x_{t+1}, a_{t+1})],
 $$

 $$
 \hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(x_t, a_t)r_t.
 $$

 and we compute the solution $\hat{\alpha}_{TD}$ of $\hat{A}\alpha = \hat{b}$.

 (Note that $\hat{\alpha}_{TD} \xrightarrow{a.s.} \alpha_{TD}$ when $n \to \infty$, since $\hat{A} \xrightarrow{a.s.} A$ and $\hat{b} \xrightarrow{a.s.} b$).

- **Policy improvement:**

 $$
 \pi_{k+1}(x) \in \arg \max_{a \in A} Q_{\hat{\alpha}_{TD}}(x, a).
 $$
BRM alternative

We require a **generative model**. At each iteration k, we generate n i.i.d. samples $x_t \sim \mu$, and for each sample, we make a call to the generative model to obtain 2 independent samples y_t and $y'_t \sim p(\cdot|x_t, a_t)$. Write $b_t = \pi_k(y_t)$ and $b'_t = \pi_k(y'_t)$.

We build the matrix \hat{A} and the vector \hat{b} as

$$
\hat{A}_{i,j} = \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(x_t, a_t) - \gamma \phi_i(y_t, b_t) \right] \left[\phi_j(x_t, a_t) - \gamma \phi_j(y'_t, b'_t) \right],
$$

$$
\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t, a_t) - \gamma \frac{\phi_i(y_t, b_t) + \phi_i(y'_t, b'_t)}{2} \right] r_t.
$$

We also have the property that $\hat{A} \xrightarrow{a.s.} A$ and $\hat{b} \xrightarrow{a.s.} b$ of the BRM system, thus $\hat{\alpha}_{BR} \xrightarrow{a.s.} \alpha_{BR}$.
Theoretical guarantees so far

For example, Approximate Value Iteration:

\[
\| V^* - V^{\pi_K} \|_\infty \leq \frac{2\gamma}{(1-\gamma)^2} \max_{0 \leq k < K} \| \mathcal{T} V_k - V_{k+1} \|_\infty + O(\gamma^K). \\
\]

Projection error

Sample-based algorithms minimizing an empirical L_∞-norm

\[
V_{k+1} = \arg \min_{V \in \mathcal{F}} \max_{1 \leq i \leq n} \| \mathcal{T} V_k(x_i) - V(x_i) \|
\]

suffer from 2 problems:

- Numerically intractable
- Cannot relate $\| \mathcal{T} V_k - V_{k+1} \|_\infty$ to $\max_i |\mathcal{T} V_k(x_i) - V_{k+1}(x_i)|$
L₂-based algorithms

We would like to use sample-based algorithms minimizing an empirical $L₂$-norm:

$$V_{k+1} = \arg \min_{V \in \mathcal{F}} \sum_{i=1}^{n} \left| \hat{T}V_k(x_i) - V(x_i) \right|^2,$$

which is just a **regression problem!**

- Numerically tractable
- Generalization bounds exits: with high probability,

$$\|T V_k - V_{k+1}\|^2 \leq \frac{1}{n} \sum_{i=1}^{n} \left| \hat{T}V_k(x_i) - V(x_i) \right|^2 + c \sqrt{\frac{VC(\mathcal{F})}{n}}$$

But we need $\|T V_k - V_{k+1}\|_\infty$, not $\|T V_k - V_{k+1}\|_2$!
L_p-norm analysis of ADP

Under smoothness assumptions on the MDP, the propagation error of all usual ADP algorithms can be analyzed in L_p-norm ($p \geq 1$).

Proposition 9 (Munos, 2003, 2007).

Assume there is a constant $C \geq 1$ and a distribution μ such that $\forall x \in X, \forall a \in A,$

$$p(\cdot|x, a) \leq C\mu(\cdot).$$

- **Approximate Value Iteration:**

 $$\|V^* - V^{\pi K}\|_\infty \leq \frac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|\mathcal{T}V_k - V_{k+1}\|_{p, \mu} + O(\gamma^K).$$

- **Approximate Policy Iteration:**

 $$\|V^* - V^{\pi K}\|_\infty \leq \frac{2\gamma}{(1-\gamma)^2} C^{1/p} \max_{0 \leq k < K} \|V_k - V^{\pi_k}\|_{p, \mu} + O(\gamma^K).$$

We now have all ingredients for a finite-sample analysis of ADP.
Bellman residual minimization
Approximate Value Iteration
Approximate Policy Iteration
Analysis of sample-based algo

Finite-sample analysis of AVI

Sample n states i.i.d. $x_i \sim \mu$. From each state x_i, each $a \in A$, generate m next state samples $y_{i,a}^j \sim p(\cdot|x_i, a)$. Iterate K times:

$$V_{k+1} = \arg \min_{V \in \mathcal{F}} \sum_{i=1}^{n} \left| V(x_i) - \max_{a \in A} \left[r(x_i, a) + \gamma \frac{1}{m} \sum_{j=1}^{m} V_k(y_{i,a}^j) \right] \right|^2$$

Proposition 10 (Munos and Szepesvári, 2007).

For any $\delta > 0$, with probability at least $1 - \delta$, we have:

$$\| V^* - V^{\pi_K} \|_\infty \leq \frac{2\gamma}{(1 - \gamma)^2} C^{1/p} d(\mathcal{T} \mathcal{F}, \mathcal{F}) + O(\gamma^K)$$

$$\quad + O \left(\frac{V(\mathcal{F}) \log(1/\delta)}{n} \right)^{1/4} + O \left(\frac{\log(1/\delta)}{m} \right)^{1/2},$$

where $d(\mathcal{T} \mathcal{F}, \mathcal{F}) \overset{\text{def}}{=} \sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} \| \mathcal{T} g - f \|_{2, \mu}$ is the Bellman residual of the space \mathcal{F}, and $V(\mathcal{F})$ the pseudo-dimension of \mathcal{F}.
More works on finite-sample analysis of ADP/RL

This is important to know how many samples n are required to build an ϵ-approximation of the optimal policy.

- Policy iteration using a single trajectory [Antos et al., 2008]
- LSTD/LSPI [Lazaric et al., 2010]
- BRM [Maillard et al., 2010]
- LSTD with random projections [Ghavamzadeh et al., 2010]
- Lasso-TD [Ghavamzadeh et al., 2011]

Active research topic which links RL and statistical learning theory.