

Online Combinatorial Optimization under Bandit Feedback

M. Sadegh Talebi *
*Department of Automatic Control KTH The Royal Institute of Technology

February 2016

Combinatorial Optimization

- Decision space $\mathcal{M} \subset\{0,1\}^{d}$
- Each decision $M \in \mathcal{M}$ is a binary d-dimensional vector.
- Combinatorial structure, e.g., matchings, spanning trees, fixed-size subsets, graph cuts, paths
- Weights $\theta \in \mathbb{R}^{d}$
- Generic combinatorial (linear) optimization

over $M \in \mathcal{M}$
- Sequential decision making over I rounds

Combinatorial Optimization

- Decision space $\mathcal{M} \subset\{0,1\}^{d}$
- Each decision $M \in \mathcal{M}$ is a binary d-dimensional vector.
- Combinatorial structure, e.g., matchings, spanning trees, fixed-size subsets, graph cuts, paths
- Weights $\theta \in \mathbb{R}^{d}$
- Generic combinatorial (linear) optimization

$$
\begin{gathered}
\operatorname{maximize} \\
M^{\top} \theta=\sum_{i=1}^{d} M_{i} \theta_{i} \\
\text { over } M \in \mathcal{M}
\end{gathered}
$$

- Sequential decision making over T rounds

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

- Known $\theta \Longrightarrow$ always select $M^{\star}:=\operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$.
- Weights θ could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector $X(n) \in \mathbb{R}^{d}$ - Stochastic: $X(n)$ i.i.d., $\mathbb{E}[X(n)]=\theta$. - Adversarial: $X(n)$ chosen beforehand by an adversary.
- Selecting M gives reward $M^{\top} X(n)=\sum_{i=1}^{d} M_{i} X_{i}(n)$.

> Sequential Learning: at each step n, select $M(n) \in \mathcal{M}$ based on the previous decisions and observed rewards

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

- Known $\theta \Longrightarrow$ always select $M^{\star}:=\operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$.
- Weights θ could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector $X(n) \in \mathbb{R}^{d}$ - Stochastic: $X(n)$ i.i.d., $\mathbb{E}[X(n)]=\theta$.
- Adversarial: $X(n)$ chosen beforehand by an adversary.
- Selecting $M_{\text {gives reward }} M^{\top} X(n)=\sum_{i=1}^{d} M_{i} X_{i}(n)$

> Sequential Learning: at each step n, select $M(n) \in \mathcal{M}$ based on the previous decisions and observed rewards

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

- Known $\theta \Longrightarrow$ always select $M^{\star}:=\operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$.
- Weights θ could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector $X(n) \in \mathbb{R}^{d}$
- Stochastic: $X(n)$ i.i.d., $\mathbb{E}[X(n)]=\theta$.
- Adversarial: $X(n)$ chosen beforehand by an adversary.
- Selecting M gives reward $M^{\top} X(n)=\sum_{i=1}^{d} M_{i} X_{i}(n)$
\square

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

- Known $\theta \Longrightarrow$ always select $M^{\star}:=\operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$.
- Weights θ could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector $X(n) \in \mathbb{R}^{d}$
- Stochastic: $X(n)$ i.i.d., $\mathbb{E}[X(n)]=\theta$.
- Adversarial: $X(n)$ chosen beforehand by an adversary.
- Selecting M gives reward $M^{\top} X(n)=\sum_{i=1}^{d} M_{i} X_{i}(n)$.

[^0]
Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

- Known $\theta \Longrightarrow$ always select $M^{\star}:=\operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$.
- Weights θ could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector $X(n) \in \mathbb{R}^{d}$
- Stochastic: $X(n)$ i.i.d., $\mathbb{E}[X(n)]=\theta$.
- Adversarial: $X(n)$ chosen beforehand by an adversary.
- Selecting M gives reward $M^{\top} X(n)=\sum_{i=1}^{d} M_{i} X_{i}(n)$.

> Sequential Learning: at each step n, select $M(n) \in \mathcal{M}$ based on the previous decisions and observed rewards

Regret

- Goal: Maximize collected rewards in expectation

$$
\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]
$$

- Or equivalently, minimize regret over T rounds:

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff $R(T)=o(T)$.

Regret

- Goal: Maximize collected rewards in expectation

$$
\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]
$$

- Or equivalently, minimize regret over T rounds:

$$
R(T)=\underbrace{\max _{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]}_{\text {oracle }}-\underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]}_{\text {your algorithm }} .
$$

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff $R(T)=o(T)$

Regret

- Goal: Maximize collected rewards in expectation

$$
\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]
$$

- Or equivalently, minimize regret over T rounds:

$$
R(T)=\underbrace{\max _{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]}_{\text {oracle }}-\underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]}_{\text {your algorithm }} .
$$

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff $R(T)=o(T)$.

Feedback

Choose $M(n)$ based on previous decisions and observed feedback

- Full information: $X(n)$ is revealed.
- Semi-bandit feedback: $X_{i}(n)$ is revealed iff $M_{i}(n)=1$.
- Bandit feedback: only the reward $M(n)^{\top} X(n)$ is revealed.

> Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

$$
\begin{aligned}
\text { Decision } M \in \mathcal{M} & \Longleftrightarrow \text { Arm } \\
\text { Element }\{1, \ldots, d\} & \Longleftrightarrow \text { Basic action }
\end{aligned}
$$

Feedback

Choose $M(n)$ based on previous decisions and observed feedback

- Full information: $X(n)$ is revealed.
- Semi-bandit feedback: $X_{i}(n)$ is revealed iff $M_{i}(n)=1$.
- Bandit feedback: only the reward $M(n)^{\top} X(n)$ is revealed.

> Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

$$
\begin{aligned}
\text { Decision } M \in \mathcal{M} & \Longleftrightarrow \text { Arm } \\
\text { Element }\{1, \ldots, d\} & \Longleftrightarrow \text { Basic action }
\end{aligned}
$$

Feedback

Choose $M(n)$ based on previous decisions and observed feedback

- Full information: $X(n)$ is revealed.
- Semi-bandit feedback: $X_{i}(n)$ is revealed iff $M_{i}(n)=1$.
- Bandit feedback: only the reward $M(n)^{\top} X(n)$ is revealed.

> Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

$$
\begin{aligned}
\text { Decision } M \in \mathcal{M} & \Longleftrightarrow \text { Arm } \\
\text { Element }\{1, \ldots, d\} & \Longleftrightarrow \text { Basic action }
\end{aligned}
$$

Each arm is composed of several basic actions.

Application 1: Spectrum Sharing

- K channels, L links
- $\mathcal{M} \equiv$ the set of matchings from $[L]$ to $[K]$
- $\theta_{i j} \equiv$ data rate on the connection (link- i, channel- j)
- $X_{i j}(n) \equiv$ success/failure indicator for transmission of link i on channel j

Application 2: Shortest-path Routing

- $\mathcal{M} \equiv$ the set of paths
- $\theta_{i} \equiv$ average transmission delay on link i
- $X_{i}(n) \equiv$ transmission delay of link i for n-th packet

Application 2: Shortest-path Routing

- Semi-bandit feedback: $(2,4,7,1,6)$ are revealed for chosen links (red).
- Bandit feedback: 20 is revealed for the chosen path.

Application 2: Shortest-path Routing

- Semi-bandit feedback: $(2,4,7,1,6)$ are revealed for chosen links (red).
- Bandit feedback: 20 is revealed for the chosen path.

Application 2: Shortest-path Routing

- Semi-bandit feedback: $(2,4,7,1,6)$ are revealed for chosen links (red).
- Bandit feedback: 20 is revealed for the chosen path.

Exploiting Combinatorial Structure

- Classical MAB (\mathcal{M} set of singletons; $|\mathcal{M}|=d$):
- Stochastic $R(T) \sim|\mathcal{M}| \log (T)$
- Adversarial $R(T) \sim \sqrt{|\mathcal{M}| T}$
- Generic combinatorial \mathcal{M}
- $|\mathcal{M}|$ could grow exponentially in $d \Longrightarrow$ prohibitive regret
- Arms are correlated; they share basic actions.
\Longrightarrow exploit combinatorial structure in \mathcal{M} to get $R(T) \sim C \log (T)$ or $R(T) \sim \sqrt{C T}$ where $C \ll|\mathcal{M}|$

How much can we reduce the regret by exploiting the combinatorial structure of \mathcal{M} ? How to optimally do so?

Exploiting Combinatorial Structure

- Classical MAB (\mathcal{M} set of singletons; $|\mathcal{M}|=d$):
- Stochastic $R(T) \sim|\mathcal{M}| \log (T)$
- Adversarial $R(T) \sim \sqrt{|\mathcal{M}| T}$
- Generic combinatorial \mathcal{M}
- $|\mathcal{M}|$ could grow exponentially in $d \Longrightarrow$ prohibitive regret
- Arms are correlated; they share basic actions.
\Longrightarrow exploit combinatorial structure in \mathcal{M} to get $R(T) \sim C \log (T)$ or $R(T) \sim \sqrt{C T}$ where $C \ll|\mathcal{M}|$

Exploiting Combinatorial Structure

- Classical MAB (\mathcal{M} set of singletons; $|\mathcal{M}|=d$):
- Stochastic $R(T) \sim|\mathcal{M}| \log (T)$
- Adversarial $R(T) \sim \sqrt{|\mathcal{M}| T}$
- Generic combinatorial \mathcal{M}
- $|\mathcal{M}|$ could grow exponentially in $d \Longrightarrow$ prohibitive regret
- Arms are correlated; they share basic actions.
\Longrightarrow exploit combinatorial structure in \mathcal{M} to get $R(T) \sim C \log (T)$ or $R(T) \sim \sqrt{C T}$ where $C \ll|\mathcal{M}|$

Exploiting Combinatorial Structure

- Classical MAB (\mathcal{M} set of singletons; $|\mathcal{M}|=d$):
- Stochastic $R(T) \sim|\mathcal{M}| \log (T)$
- Adversarial $R(T) \sim \sqrt{|\mathcal{M}| T}$
- Generic combinatorial \mathcal{M}
- $|\mathcal{M}|$ could grow exponentially in $d \Longrightarrow$ prohibitive regret
- Arms are correlated; they share basic actions.
\Longrightarrow exploit combinatorial structure in \mathcal{M} to get $R(T) \sim C \log (T)$ or $R(T) \sim \sqrt{C T}$ where $C \ll|\mathcal{M}|$

How much can we reduce the regret by exploiting the combinatorial structure of \mathcal{M} ?

How to optimally do so?

Map of Thesis

How much can we reduce the regret by exploiting the combinatorial structure of \mathcal{M} ? How to optimally do so?

Chapter	Combinatorial Structure \mathcal{M}	Reward X
Ch. 3	Generic	Bernoulli
Ch. 4	Matroid	Bernoulli
Ch. 5	Generic	Geometric
Ch. 6	Generic (with fixed cardinality)	Adversarial

Outline

(1) Combinatorial MABs: Bernoulli Rewards
(2) Stochastic Matroid Bandits
(3) Adversarial Combinatorial MABs

4 Conclusion and Future Directions

Outline

(1) Combinatorial MABs: Bernoulli Rewards
(2) Stochastic Matroid Bandits
(3) Adversarial Combinatorial MABs

4 Conclusion and Future Directions

Stochastic CMABs

Rewards:

- $X(n)$ i.i.d. , Bernoulli distributed with $\mathbb{E}[X(n)]=\theta \in[0,1]^{d}$
- $X_{i}(n), i \in[d]$ are independent across i
- $\mu_{M}:=M^{\prime} \theta$ average reward of arm M
- Average reward gap $\Delta_{M}=\mu^{\star}-\mu_{M}$
- Ontimality gan $\Lambda_{\min }=\min _{M \neq M *} \Lambda_{M}$

Algorithm	Regret
LLR (Gai et al., 2012)	$\mathcal{O}\left(\frac{m^{4} d}{\Delta_{\min }^{2}} \log (T)\right)$
CUCB (Chen et al., 2013)	$\mathcal{O}\left(\frac{m^{2} d}{\Delta_{\min }} \log (T)\right)$
CUCB (Kveton et al., 2015)	$\mathcal{O}\left(\frac{m d}{\Delta_{\min }} \log (T)\right)$
ESCB	$\mathcal{O}\left(\frac{\sqrt{\operatorname{mid}}}{\Delta_{\min }} \log (T)\right)$

Stochastic CMABs

Rewards:

- $X(n)$ i.i.d. , Bernoulli distributed with $\mathbb{E}[X(n)]=\theta \in[0,1]^{d}$
- $X_{i}(n), i \in[d]$ are independent across i
- $\mu_{M}:=M^{\top} \theta$ average reward of arm M
- Average reward gap $\Delta_{M}=\mu^{\star}-\mu_{M}$
- Optimality gap $\Delta_{\text {min }}=\min _{M \neq M^{*}} \Delta_{M}$

Algorithm	Regret
LLR (Gai et al., 2012)	$\mathcal{O}\left(\frac{m^{4} d}{\Delta_{\min }} \log (T)\right)$
CUCB (Chen et al., 2013)	$\mathcal{O}\left(\frac{m^{2} d}{\Delta_{\min }} \log (T)\right)$
CUCB (Kveton et al., 2015)	$\mathcal{O}\left(\frac{m d}{\Delta_{\min }} \log (T)\right)$
ESCB	$\mathcal{O}\left(\frac{\sqrt{m d}}{\Delta_{\min }} \log (T)\right)$

Stochastic CMABs

Rewards:

- $X(n)$ i.i.d. , Bernoulli distributed with $\mathbb{E}[X(n)]=\theta \in[0,1]^{d}$
- $X_{i}(n), i \in[d]$ are independent across i
- $\mu_{M}:=M^{\top} \theta$ average reward of arm M
- Average reward gap $\Delta_{M}=\mu^{\star}-\mu_{M}$
- Optimality gap $\Delta_{\text {min }}=\min _{M \neq M^{\star}} \Delta_{M}$

Algorithm	Regret
LLR (Gai et al., 2012)	$\mathcal{O}\left(\frac{m^{4} d}{\Delta_{\text {min }}^{2}} \log (T)\right)$
CUCB (Chen et al., 2013)	$\mathcal{O}\left(\frac{m^{2} d}{\Delta_{\text {min }}} \log (T)\right)$
CUCB (Kveton et al., 2015)	$\mathcal{O}\left(\frac{m d}{\Delta_{\text {min }}} \log (T)\right)$
ESCB	$\mathcal{O}\left(\frac{\sqrt{m i d}}{\Delta_{\text {min }}} \log (T)\right)$

Stochastic CMABs

Rewards:

- $X(n)$ i.i.d. , Bernoulli distributed with $\mathbb{E}[X(n)]=\theta \in[0,1]^{d}$
- $X_{i}(n), i \in[d]$ are independent across i
- $\mu_{M}:=M^{\top} \theta$ average reward of arm M
- Average reward gap $\Delta_{M}=\mu^{\star}-\mu_{M}$
- Optimality gap $\Delta_{\text {min }}=\min _{M \neq M^{\star}} \Delta_{M}$

Algorithm	Regret
LLR (Gai et al., 2012)	$\mathcal{O}\left(\frac{m^{4} d}{\Delta_{\min }} \log (T)\right)$
CUCB (Chen et al., 2013)	$\mathcal{O}\left(\frac{m^{2} d}{\Delta_{\min }} \log (T)\right)$
CUCB (Kveton et al., 2015)	$\mathcal{O}\left(\frac{m d}{\Delta_{\min }} \log (T)\right)$
ESCB	$\mathcal{O}\left(\frac{\sqrt{m d} d}{\Delta_{\min }} \log (T)\right)$

$m=$ maximal cardinality of arms

Optimism in the face of uncertainty

- Construct a confidence bound $\left[b^{-}, b^{+}\right]$for (unknown) μ s.t.

$$
\mu \in\left[b^{-}, b^{+}\right] \quad \text { with high probability }
$$

- Maximization problem \Longrightarrow we replace (unknown) μ by b^{+}, its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

- For arm M and time n, find confidence interval for μ_{M}

- Choose $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} b_{M}^{+}(n)$

Optimism in the face of uncertainty

- Construct a confidence bound $\left[b^{-}, b^{+}\right]$for (unknown) μ s.t.

$$
\mu \in\left[b^{-}, b^{+}\right] \quad \text { with high probability }
$$

- Maximization problem \Longrightarrow we replace (unknown) μ by b^{+}, its Upper Confidence Bound (UCB) index.
\square

Algorithm based on optimistic principle:

- For arm M and time n, find confidence interval for μ_{M}

- Choose $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} b_{M}^{+}(n)$

Optimism in the face of uncertainty

- Construct a confidence bound $\left[b^{-}, b^{+}\right]$for (unknown) μ s.t.

$$
\mu \in\left[b^{-}, b^{+}\right] \quad \text { with high probability }
$$

- Maximization problem \Longrightarrow we replace (unknown) μ by b^{+}, its Upper Confidence Bound (UCB) index.

> "Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

- For arm M and time n, find confidence interval for μ_{M}

- Choose $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} b_{M}^{+}(n)$

Optimism in the face of uncertainty

- Construct a confidence bound $\left[b^{-}, b^{+}\right]$for (unknown) μ s.t.

$$
\mu \in\left[b^{-}, b^{+}\right] \quad \text { with high probability }
$$

- Maximization problem \Longrightarrow we replace (unknown) μ by b^{+}, its Upper Confidence Bound (UCB) index.

> "Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

- For arm M and time n, find confidence interval for μ_{M} :

$$
\mathbb{P}\left[\mu_{M} \in\left[b_{M}^{-}(n), b_{M}^{+}(n)\right]\right] \geq 1-\mathcal{O}\left(\frac{1}{n \log (n)}\right)
$$

- Choose
$N(n) \in$ $\operatorname{argmax}_{M \in \mathcal{M}} b_{M}^{+}(n)$

Optimism in the face of uncertainty

- Construct a confidence bound $\left[b^{-}, b^{+}\right]$for (unknown) μ s.t.

$$
\mu \in\left[b^{-}, b^{+}\right] \quad \text { with high probability }
$$

- Maximization problem \Longrightarrow we replace (unknown) μ by b^{+}, its Upper Confidence Bound (UCB) index.
"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

- For arm M and time n, find confidence interval for μ_{M} :

$$
\mathbb{P}\left[\mu_{M} \in\left[b_{M}^{-}(n), b_{M}^{+}(n)\right]\right] \geq 1-\mathcal{O}\left(\frac{1}{n \log (n)}\right)
$$

- Choose $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} b_{M}^{+}(n)$

Optimistic Principle

Optimistic Principle

How to construct the index for arms?

Optimistic Principle

How to construct the index for arms?

Index Construction

- Naive approach: construct index for basic actions
\Longrightarrow index of arm $M=$ sum of indexes of basic action in arm M
- Empirical mean $\hat{\theta}_{i}(n)$, number of observations: $t_{i}(n)$.
- Hoeffding's inequality:

- Choose $\delta=\frac{1}{n^{3}}$

Index Construction

- Naive approach: construct index for basic actions
\Longrightarrow index of arm $M=$ sum of indexes of basic action in arm M
- Empirical mean $\hat{\theta}_{i}(n)$, number of observations: $t_{i}(n)$.
- Hoeffding's inequality:

$$
\mathbb{P}\left[\theta_{i} \in\left(\hat{\theta}_{i}(n)-\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}, \hat{\theta}_{i}(n)+\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}\right)\right] \geq 1-2 \delta
$$

- Choose $\delta=\frac{1}{n^{3}}$

Index Construction

- Naive approach: construct index for basic actions
\Longrightarrow index of arm $M=$ sum of indexes of basic action in arm M
- Empirical mean $\hat{\theta}_{i}(n)$, number of observations: $t_{i}(n)$.
- Hoeffding's inequality:

$$
\mathbb{P}\left[\theta_{i} \in\left(\hat{\theta}_{i}(n)-\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}, \hat{\theta}_{i}(n)+\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}\right)\right] \geq 1-2 \delta
$$

- Choose $\delta=\frac{1}{n^{3}}$

Index: $\quad b_{M}(n)=\underbrace{\sum_{i=1}^{d} M_{i} \hat{\theta}_{i}(n)}_{\hat{\mu}_{M}(n)}+\underbrace{\sum_{i=1}^{d} M_{i} \sqrt{\frac{3 \log (n)}{2 t_{i}(n)}}}_{\text {confidence radius }}$.

Index Construction

- Naive approach: construct index for basic actions
\Longrightarrow index of arm $M=$ sum of indexes of basic action in arm M
- Empirical mean $\hat{\theta}_{i}(n)$, number of observations: $t_{i}(n)$.
- Hoeffding's inequality:

$$
\mathbb{P}\left[\theta_{i} \in\left(\hat{\theta}_{i}(n)-\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}, \hat{\theta}_{i}(n)+\sqrt{\frac{\log (1 / \delta)}{2 t_{i}(n)}}\right)\right] \geq 1-2 \delta
$$

- Choose $\delta=\frac{1}{n^{3}}$

Index: $\quad b_{M}(n)=\underbrace{\sum_{i=1}^{d} M_{i} \hat{\theta}_{i}(n)}_{\hat{\mu}_{M}(n)}+\underbrace{\sum_{i=1}^{d} M_{i} \sqrt{\frac{3 \log (n)}{2 t_{i}(n)}}}_{\text {confidence radius }}$.

$$
\mu_{M} \in\left[\hat{\mu}_{M}(n)-\sum_{i=1}^{d} M_{i} \sqrt{\frac{3 \log (n)}{2 t_{i}(n)}}, \hat{\mu}_{M}(n)+\sum_{i=1}^{d} M_{i} \sqrt{\frac{3 \log (n)}{2 t_{i}(n)}}\right] \quad \text { w.p. } \geq 1-\frac{1}{n^{3}}
$$

Index Construction

- Our approach: constructing confidence interval directly for each arm M
- Motivated by concentration for sum of empirical KL-divergences.
- For a given δ, consider a set

with

Find an upper confidence bound for μ_{M} such that

Equivalently,
$\mu_{M} \leq \max _{\lambda \in B} M^{\top} \lambda$ w.p. at least $1-\delta$.

Index Construction

- Our approach: constructing confidence interval directly for each arm M
- Motivated by concentration for sum of empirical KL-divergences.
- For a given δ, consider a set

$$
B=\left\{\lambda \in[0,1]^{d}: \sum_{i=1}^{d} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \log (1 / \delta)\right\}
$$

with

$$
\mathrm{kl}(u, v):=u \log \frac{u}{v}+(1-u) \log \frac{1-u}{1-v}
$$

Find an upper confidence bound for μ_{M} such that

Equivalently,
$\mu_{M} \leq \max _{\lambda \in B} M^{\top} \lambda$ w.p. at least $1-\delta$.

Index Construction

- Our approach: constructing confidence interval directly for each arm M
- Motivated by concentration for sum of empirical KL-divergences.
- For a given δ, consider a set

$$
B=\left\{\lambda \in[0,1]^{d}: \sum_{i=1}^{d} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \log (1 / \delta)\right\}
$$

with

$$
\mathrm{kl}(u, v):=u \log \frac{u}{v}+(1-u) \log \frac{1-u}{1-v}
$$

Find an upper confidence bound for μ_{M} such that

$$
\mu_{M} \in\left[\times, \quad M^{\top} \lambda\right] \text { w.p. at least } 1-\delta, \quad \forall \lambda \in B
$$

Equivalently,

Index Construction

- Our approach: constructing confidence interval directly for each arm M
- Motivated by concentration for sum of empirical KL-divergences.
- For a given δ, consider a set

$$
B=\left\{\lambda \in[0,1]^{d}: \sum_{i=1}^{d} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \log (1 / \delta)\right\}
$$

with

$$
\mathrm{kl}(u, v):=u \log \frac{u}{v}+(1-u) \log \frac{1-u}{1-v}
$$

Find an upper confidence bound for μ_{M} such that

$$
\mu_{M} \in\left[\times, \quad M^{\top} \lambda\right] \text { w.p. at least } 1-\delta, \quad \forall \lambda \in B
$$

Equivalently,

$$
\mu_{M} \leq \max _{\lambda \in B} M^{\top} \lambda \text { w.p. at least } 1-\delta
$$

Proposed Indexes

Two new indexes:

- (1) Index b_{M} as the optimal value of the following problem:

$$
\begin{aligned}
b_{M}(n) & =\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \sum_{i=1}^{d} M_{i} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \underbrace{f(n)}_{\log (1 / \delta)},
\end{aligned}
$$

with $f(n)=\log (n)+4 m \log (\log (n))$.

- b_{M} is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier \& Cappé, 2011) to the case of combinatorial MABs
- (2) Index c_{M} :

Proposed Indexes

Two new indexes:

- (1) Index b_{M} as the optimal value of the following problem:

$$
\begin{aligned}
b_{M}(n) & =\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \sum_{i=1}^{d} M_{i} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \underbrace{f(n)}_{\log (1 / \delta)}
\end{aligned}
$$

with $f(n)=\log (n)+4 m \log (\log (n))$.

- b_{M} is computed by a line search (derived based on KKT conditions) of combinatorial MABs
- (2) Index c_{M} :

Proposed Indexes

Two new indexes:

- (1) Index b_{M} as the optimal value of the following problem:

$$
\begin{aligned}
b_{M}(n) & =\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \sum_{i=1}^{d} M_{i} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \underbrace{f(n)}_{\log (1 / \delta)},
\end{aligned}
$$

with $f(n)=\log (n)+4 m \log (\log (n))$.

- b_{M} is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier \& Cappé, 2011) to the case of combinatorial MABs

Proposed Indexes

Two new indexes:

- (1) Index b_{M} as the optimal value of the following problem:

$$
\begin{aligned}
b_{M}(n) & =\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \sum_{i=1}^{d} M_{i} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq \underbrace{f(n)}_{\log (1 / \delta)}
\end{aligned}
$$

with $f(n)=\log (n)+4 m \log (\log (n))$.

- b_{M} is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier \& Cappé, 2011) to the case of combinatorial MABs
- (2) Index c_{M} :

$$
c_{M}(n)=\hat{\mu}_{M}(n)+\sqrt{\frac{f(n)}{2} \sum_{i=1}^{d} \frac{M_{i}}{t_{i}(n)}} .
$$

Proposed Indexes

$$
\begin{aligned}
& b_{M}(n)=\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \\
& \sum_{i=1}^{d} M_{i} t_{i}(n) \mathrm{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq f(n) \\
& c_{M}(n)=\hat{\mu}_{M}(n)+\sqrt{\frac{f(n)}{2} \sum_{i=1}^{d} \frac{M_{i}}{t_{i}(n)}}
\end{aligned}
$$

Proposed Indexes

$$
\begin{aligned}
& b_{M}(n)=\max _{\lambda \in[0,1]^{d}} \sum_{i=1}^{d} M_{i} \lambda_{i} \\
& \text { subject to : } \sum_{i=1}^{d} M_{i} t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), \lambda_{i}\right) \leq f(n) \\
& c_{M}(n)=\hat{\mu}_{M}(n)+\sqrt{\frac{f(n)}{2} \sum_{i=1}^{d} \frac{M_{i}}{t_{i}(n)}}
\end{aligned}
$$

Theorem

For all $M \in \mathcal{M}$ and $n \geq 1: c_{M}(n) \geq b_{M}(n)$.

- Proof idea: Pinsker's inequality + Cauchy-Schwarz inequality

ESCB Algorithm

ESCB \equiv Efficient Sampling for Combinatorial Bandits

Algorithm 1 ESCB

for $n \geq 1$ do
Select arm $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} \zeta_{M}(n)$.
Observe the rewards, and update $t_{i}(n)$ and $\hat{\theta}_{i}(n), \forall i \in M(n)$. end for

ESCB-1 if $\zeta_{M}=b_{M}$, ESCB-2 if $\zeta_{M}=c_{M}$.

Regret Analysis

Theorem

The regret under ESCB satisfies

$$
R(T) \leq \frac{16 d \sqrt{m}}{\Delta_{\min }} \log (T)+\mathcal{O}(\log (\log (T)))
$$

- Proof idea
- $c_{M}(n) \geq b_{M}(n) \geq \mu_{M}$ with high probability
- Crucial concentration inequality (Magureanu et al., COLT 2014):

Regret Analysis

Theorem

The regret under ESCB satisfies

$$
R(T) \leq \frac{16 d \sqrt{m}}{\Delta_{\min }} \log (T)+\mathcal{O}(\log (\log (T)))
$$

- Proof idea
- $c_{M}(n) \geq b_{M}(n) \geq \mu_{M}$ with high probability
- Crucial concentration inequality (Magureanu et al., COLT 2014):

$$
\mathbb{P}\left[\max _{n \leq T} \sum_{i=1}^{d} M_{i} t_{i}(n) \mathrm{kl}\left(\hat{\theta}_{i}(n), \theta_{i}\right) \geq \delta\right] \leq C_{m}(\log (T) \delta)^{m} e^{-\delta} .
$$

Regret Lower Bound

How far are we from the optimal algorithm?

- Uniformly good algorithm $\pi: R^{\pi}(T)=\mathcal{O}(\log (T))$ for all θ.
- Notion of bad parameter: λ is bad if:
- (i) it is statistically indistinguishable from true parameter θ (in the sense of KL-divergence) \equiv reward distribution of optimal arm M^{\star} is the same under θ or λ,
- (ii) M^{\star} is not optimal under λ.
- Set of all bad parameters $B(\theta)$:

Regret Lower Bound

How far are we from the optimal algorithm?

- Uniformly good algorithm $\pi: R^{\pi}(T)=\mathcal{O}(\log (T))$ for all θ.
- Notion of bad parameter: λ is bad if:
- (i) it is statistically indistinguishable from true parameter θ (in the sense of $K L$-divergence $) \equiv$ reward distribution of optimal arm M^{\star} is the same under θ or λ,
- (ii) M^{\star} is not optimal under λ.
- Set of all bad parameters $B(\theta)$:

Regret Lower Bound

How far are we from the optimal algorithm?

- Uniformly good algorithm π : $R^{\pi}(T)=\mathcal{O}(\log (T))$ for all θ.
- Notion of bad parameter: λ is bad if:
- (i) it is statistically indistinguishable from true parameter θ (in the sense of KL-divergence) \equiv reward distribution of optimal arm M^{\star} is the same under θ or λ,
- (ii) M^{\star} is not optimal under λ.
- Set of all bad parameters $B(\theta)$:

$$
B(\theta)=\{\lambda \in[0,1]^{d}: \underbrace{\left(\lambda_{i}=\theta_{i}, \forall i \in M^{\star}\right)}_{\text {condition (i) }} \text { and } \underbrace{\max _{M \in \mathcal{M}} M^{\top} \lambda>\mu^{\star}}_{\text {condition (ii) }}\} .
$$

Regret Lower Bound

Theorem

$$
\begin{aligned}
c(\theta) & =\inf _{x \in \mathbb{R}_{+}^{|\mathcal{M}|}} \sum_{M \in \mathcal{M}} \Delta_{M} x_{M} \\
\text { subject to : } & \sum_{i=1}^{d} \operatorname{kl}\left(\theta_{i}, \lambda_{i}\right) \sum_{M \in \mathcal{M}} M_{i} x_{M} \geq 1, \quad \forall \lambda \in B(\theta) .
\end{aligned}
$$

- The first problem dependent tight LB
- Interpretation: each arm M must be sampled at least $x_{M}^{\star} \log (T)$ times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves \& Lai, 1997)

Regret Lower Bound

Theorem

For any uniformly good algorithm $\pi, \lim _{\inf }^{T \rightarrow \infty}$ $\frac{R^{\pi}(T)}{\log (T)} \geq c(\theta)$, with

$$
\begin{aligned}
c(\theta) & =\inf _{x \in \mathbb{R}_{+}^{|\mathcal{M}|}} \sum_{M \in \mathcal{M}} \Delta_{M} x_{M} \\
\text { subject to : } & \sum_{i=1}^{d} \mathrm{kl}\left(\theta_{i}, \lambda_{i}\right) \sum_{M \in \mathcal{M}} M_{i} x_{M} \geq 1, \quad \forall \lambda \in B(\theta) .
\end{aligned}
$$

- The first problem dependent tight LB
- Interpretation: each arm M must be sampled at least $x_{M}^{\star} \log (T)$ times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves \& Lai, 1997)

Regret Lower Bound

Theorem

For any uniformly good algorithm $\pi, \lim _{\inf }{ }_{T \rightarrow \infty} \frac{R^{\pi}(T)}{\log (T)} \geq c(\theta)$, with

$$
\begin{aligned}
c(\theta) & =\inf _{x \in \mathbb{R}_{+}^{|\mathcal{M}|}} \sum_{M \in \mathcal{M}} \Delta_{M} x_{M} \\
\text { subject to : } & \sum_{i=1}^{d} \mathrm{kl}\left(\theta_{i}, \lambda_{i}\right) \sum_{M \in \mathcal{M}} M_{i} x_{M} \geq 1, \quad \forall \lambda \in B(\theta) .
\end{aligned}
$$

- The first problem dependent tight LB
- Interpretation: each arm M must be sampled at least $x_{M}^{\star} \log (T)$ times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves \& Lai, 1997)

Towards An Explicit LB

$$
\text { How does } c(\theta) \text { scale with } d, m ?
$$

Proposition

For most prohiems $c(\theta)=\Omega(d-m)$.

- Intuitive since $d-m$ basic actions are not sampled when playing M^{\star}
- Proof idea
- Construct a covering set \mathcal{H} for suboptimal basic actions
- Keeping constraints for $M \in \mathcal{H}$

Definition

\mathcal{H} is a covering set for basic actions if it is a (inclusion-wise) maximal subset of $\mathcal{M} \backslash M^{\star}$ such that for all distinct $M, M^{\prime} \in \mathcal{H}$, we have

$$
\left(M \backslash M^{\star}\right) \cap\left(M^{\prime} \backslash M^{\star}\right)=\emptyset
$$

Towards An Explicit LB

$$
\text { How does } c(\theta) \text { scale with } d, m ?
$$

Proposition

For most problems $c(\theta)=\Omega(d-m)$.

- Intuitive since $d-m$ basic actions are not sampled when playing M^{\star}
- Proof idea
- Construct a covering set \mathcal{H} for suboptimal basic actions
- Keeping constraints for $M \in \mathcal{H}$

Definition

\mathcal{H} is a covering set for basic actions if it is a (inclusion-wise) maximal subset of $\mathcal{M} \backslash M^{\star}$ such that for all distinct $M, M^{\prime} \in \mathcal{H}$, we have

$$
\left(M \backslash M^{\star}\right) \cap\left(M^{\prime} \backslash M^{\star}\right)=\emptyset .
$$

Towards An Explicit LB

How does $c(\theta)$ scale with d, m ?

Proposition

For most problems $c(\theta)=\Omega(d-m)$.

- Intuitive since $d-m$ basic actions are not sampled when playing M^{\star}.
- Proof idea
- Construct a covering set \mathcal{H} for suboptimal basic actions
- Keeping constraints for $M \in \mathcal{H}$

Definition
 \mathcal{H} is a covering set for basic actions if it is a (inclusion-wise) maximal subset of $\mathcal{M} \backslash M^{\star}$ such that for all distinct $M, M^{\prime} \in \mathcal{H}$, we have

Towards An Explicit LB

How does $c(\theta)$ scale with d, m ?

Proposition

For most problems $c(\theta)=\Omega(d-m)$.

- Intuitive since $d-m$ basic actions are not sampled when playing M^{\star}.
- Proof idea
- Construct a covering set \mathcal{H} for suboptimal basic actions
- Keeping constraints for $M \in \mathcal{H}$

Definition

\mathcal{H} is a covering set for basic actions if it is a (inclusion-wise) maximal subset of $\mathcal{M} \backslash M^{\star}$ such that for all distinct $M, M^{\prime} \in \mathcal{H}$, we have

$$
\left(M \backslash M^{\star}\right) \cap\left(M^{\prime} \backslash M^{\star}\right)=\emptyset
$$

Numerical Experiments

Matchings in $\mathcal{K}_{m, m}$

Parameter θ :

$\theta_{i}= \begin{cases}a & i \in M^{\star} \\ b & \text { otherwise } .\end{cases}$
$c(\theta)=\frac{m(m-1)(a-b)}{2 \mathrm{kl}(b, a)}$
matchings $\mathcal{K}_{5,5}$
$a=0.7, b=0.5$

Outline

(1) Combinatorial MABs: Bernoulli Rewards

(2) Stochastic Matroid Bandits

(3) Adversarial Combinatorial MABs

4 Conclusion and Future Directions

Matroid

Combinatorial optimization over a matroid

- Of particular interest in combinatorial optimization
- Power of greedy solution
- Matroid constraints arise in many applications
- Cardinality constraints, partitioning constraints, coverage constraints

Matroid

Combinatorial optimization over a matroid

- Of particular interest in combinatorial optimization
- Power of greedy solution
- Matroid constraints arise in many applications
- Cardinality constraints, partitioning constraints, coverage constraints

Definition

Given a finite set E and $\mathcal{I} \subset 2^{E}$, the pair (E, \mathcal{I}) is called a matroid if:
(i) If $X \in \mathcal{I}$ and $Y \subseteq X$, then $Y \in \mathcal{I}$ (closed under subset).
(ii) If $X, Y \in \mathcal{I}$ with $|X|>|Y|$, then there is some element $\ell \in X \backslash Y$ such that $Y \cup\{\ell\} \in \mathcal{I}$ (augmentation property).

Matroid

- E is ground set, \mathcal{I} is set of independent sets.
- Basis: any inclusion-wise maximal element of \mathcal{I}
- Rank: common cardinality of bases

Example: Graphic Matroid (for graph $G=(V, H)$):

A basis is an spanning forest of the G

Matroid

- E is ground set, \mathcal{I} is set of independent sets.
- Basis: any inclusion-wise maximal element of \mathcal{I}
- Rank: common cardinality of bases

Example: Graphic Matroid (for graph $G=(V, H)$):

$$
(H, \mathcal{I}) \text { with } \mathcal{I}=\{F \subseteq H:(V, F) \text { is a forest }\} .
$$

A basis is an spanning forest of the G

Matroid Optimization

- Weighted matroid: is triple (E, \mathcal{I}, w) where w is a positive weight vector (w_{ℓ} is the weight of $\ell \in E$).
- Maximum-weight basis:

$$
\max _{X \in \mathcal{I}} \sum_{\ell \in X} w_{\ell}
$$

- Can be solved greedily: At each step of the algorithm, add a new element of E with the largest weight so that the resulting set remains in \mathcal{I}.

Matroid Bandits

- Weighted matroid $G=(E, \mathcal{I}, \theta)$
- Set of basic actions \equiv ground set of matroid E
- For each $i,\left(X_{i}(n)\right)_{n \geq 1}$ is i.i.d. with Bernoulli of mean θ_{i}
- Each arm is a basis of $G ; \mathcal{M} \equiv$ set of bases of G

Prior work:

- Uniform matroids (Anantharam et al. 1985): Regret LB
- Generic matroids (Kveton et al., 2014): OMM with regret

Matroid Bandits

- Weighted matroid $G=(E, \mathcal{I}, \theta)$
- Set of basic actions \equiv ground set of matroid E
- For each $i,\left(X_{i}(n)\right)_{n \geq 1}$ is i.i.d. with Bernoulli of mean θ_{i}
- Each arm is a basis of $G ; \mathcal{M} \equiv$ set of bases of G

Prior work:

- Uniform matroids (Anantharam et al. 1985): Regret LB
- Generic matroids (Kveton et al., 2014): OMM with regret $\mathcal{O}\left(\frac{d}{\Delta_{\text {min }}} \log (T)\right)$

Regret LB

Theorem

For all θ and every weighted matroid $G=(E, \mathcal{I}, \theta)$, the regret of uniformly good algorithm π satisfies

$$
\liminf _{T \rightarrow \infty} \frac{R^{\pi}(T)}{\log (T)} \geq c(\theta)=\sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)}-\theta_{i}}{\operatorname{kl}\left(\theta_{i}, \theta_{\sigma(i)}\right)},
$$

where for any i

$$
\sigma(i)=\arg \min _{\ell:\left(M^{\star} \backslash \ell\right) \cup\{i\} \in \mathcal{I}} \theta_{\ell} .
$$

- Tight LB, first explicit regret LB for matroid bandits
- Generalizes LB of (Anantharam et al., 1985) to matroids.
- Proof idea
- Specialization of Graves-Lai result
- Choosing $d-m$ box constraints in view of σ
- Lower bounding $\Delta_{M}, M \in \mathcal{M}$ in terms of σ

Regret LB

Theorem

For all θ and every weighted matroid $G=(E, \mathcal{I}, \theta)$, the regret of uniformly good algorithm π satisfies

$$
\liminf _{T \rightarrow \infty} \frac{R^{\pi}(T)}{\log (T)} \geq c(\theta)=\sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)}-\theta_{i}}{\operatorname{kl}\left(\theta_{i}, \theta_{\sigma(i)}\right)},
$$

where for any i

$$
\sigma(i)=\arg \min _{\ell:\left(M^{\star} \backslash \ell\right) \cup\{i\} \in \mathcal{I}} \theta_{\ell} .
$$

- Tight LB, first explicit regret LB for matroid bandits
- Generalizes LB of (Anantharam et al., 1985) to matroids.
- Proof idea
- Specialization of Graves-Lai result
- Choosing $d-m$ box constraints in view of σ
- Lower bounding $\Delta_{M}, M \in \mathcal{M}$ in terms of σ

Regret LB

Theorem

For all θ and every weighted matroid $G=(E, \mathcal{I}, \theta)$, the regret of uniformly good algorithm π satisfies

$$
\liminf _{T \rightarrow \infty} \frac{R^{\pi}(T)}{\log (T)} \geq c(\theta)=\sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)}-\theta_{i}}{\operatorname{kl}\left(\theta_{i}, \theta_{\sigma(i)}\right)}
$$

where for any i

$$
\sigma(i)=\arg \min _{\ell:\left(M^{\star} \backslash \ell\right) \cup\{i\} \in \mathcal{I}} \theta_{\ell} .
$$

- Tight LB, first explicit regret LB for matroid bandits
- Generalizes LB of (Anantharam et al., 1985) to matroids.
- Proof idea
- Specialization of Graves-Lai result
- Choosing $d-m$ box constraints in view of σ
- Lower bounding $\Delta_{M}, M \in \mathcal{M}$ in terms of σ

KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)

- Uses KL-UCB index attached to each basic action $i \in E$:

$$
\omega_{i}(n)=\max \left\{q>\hat{\theta}_{i}(n): t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), q\right) \leq f(n)\right\}
$$

with $f(n)=\log (n)+3 \log (\log (n))$.

- Relies on Greedy

Algorithm 2 KL-OSM

for $n \geq 1$
Select
using the GREEDY algorithm
Play $M(n)$, observe the rewards, and update $t_{i}(n)$ and $\hat{\theta}_{i}(n), \forall i \in M(n)$
end for

KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)

- Uses KL-UCB index attached to each basic action $i \in E$:

$$
\omega_{i}(n)=\max \left\{q>\hat{\theta}_{i}(n): t_{i}(n) \operatorname{kl}\left(\hat{\theta}_{i}(n), q\right) \leq f(n)\right\}
$$

with $f(n)=\log (n)+3 \log (\log (n))$.

- Relies on Greedy

Algorithm 3 KL-OSM

for $n \geq 1$ do
Select

$$
M(n) \in \arg \max _{M \in \mathcal{M}} \sum_{i \in M} \omega_{i}(n)
$$

using the Greedy algorithm.
Play $M(n)$, observe the rewards, and update $t_{i}(n)$ and $\hat{\theta}_{i}(n), \forall i \in M(n)$. end for

KL-OSM Regret

Theorem

For any $\varepsilon>0$, the regret under KL-OSM satisfies

$$
R(T) \leq(1+\varepsilon) c(\theta) \log (T)+\mathcal{O}(\log (\log (T)))
$$

- KL-OSM is asymptotically optimal:

- The first optimal algorithm for matroid bandits
- Runs in $\mathcal{O}(d \log (d) T)$ (in the independence oracle model)

KL-OSM Regret

Theorem

For any $\varepsilon>0$, the regret under KL-OSM satisfies

$$
R(T) \leq(1+\varepsilon) c(\theta) \log (T)+\mathcal{O}(\log (\log (T)))
$$

- KL-OSM is asymptotically optimal:

$$
\limsup _{T \rightarrow \infty} \frac{R(T)}{\log (T)} \leq c(\theta)
$$

- The first optimal algorithm for matroid bandits
- Runs in $\mathcal{O}(d \log (d) T)$ (in the independence oracle model)

Numerical Experiments: Spanning Trees

Outline

(1) Combinatorial MABs: Bernoulli Rewards

(2) Stochastic Matroid Bandits
(3) Adversarial Combinatorial MABs

4 Conclusion and Future Directions

Adversarial Combinatorial MABs

- Arms have the same cardinality m (but otherwise arbitrary)
- Rewards $X(n) \in[0,1]^{d}$ are arbitrary (oblivious adversary)
- Bandit feedback: only $M(n)^{\top} X(n)$ is observed at round n.
- Regret

$$
R(T)=\max _{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]-\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]
$$

$\mathbb{E}[\cdot]$ is w.r.t. random seed of the algorithm.

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$.
- Introduce exploration

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}.
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$
- Introduce exploration

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}.
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$
- Introduce exploration

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}.
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$.
- Introduce exploration

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}.
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$.
- Introduce exploration

CombEXP Algorithm

- Inspired by OSMD algorithm (Audibert et al., 2013)

$$
\max _{M \in \mathcal{M}} M^{\top} X=\max _{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X
$$

- Maintain a distribution $q=\alpha / m$ over basic actions $\{1, \ldots, d\}$.
- q induces a distribution p over arms \mathcal{M}.
- Sample M from p, play it, and receive bandit feedback.
- Update q (create \tilde{q}) based on feedback.
- Project $\tilde{\alpha}=m \tilde{q}$ onto $\operatorname{conv}(\mathcal{M})$.
- Introduce exploration

CombEXP Algorithm

Algorithm 4 CombEXP

Initialization: Set $q_{0}=\mu^{0}$ (uniform distribution over $[d]$), $\gamma, \eta \propto \frac{1}{\sqrt{T}}$
for $n \geq 1$ do
Mixing: Let $q_{n-1}^{\prime}=(1-\gamma) q_{n-1}+\gamma \mu^{0}$.
Decomposition: Select a distribution p_{n-1} over arms \mathcal{M} such that

$$
\sum_{M} p_{n-1}(M) M=m q_{n-1}^{\prime}
$$

Sampling: Select $M(n) \sim p_{n-1}$ and receive reward $Y_{n}=M(n)^{\top} X(n)$.
Estimation: Let $\Sigma_{n-1}=\mathbb{E}_{M \sim p_{n-1}}\left[M M^{\top}\right]$. Set $\tilde{X}(n)=Y_{n} \Sigma_{n-1}^{+} M(n)$.
Update: Set $\tilde{q}_{n}(i) \propto q_{n-1}(i) e^{\eta \tilde{X}_{i}(n)}, \forall i \in[d]$.
Projection: Set

$$
q_{n}=\arg \min _{p \in \operatorname{conv}(\mathcal{M})} \mathrm{KL}\left(\frac{1}{m} p, \tilde{q}_{n}\right) .
$$

end for

CombEXP: Regret

Theorem

$$
R^{\mathrm{CombEXP}}(T) \leq 2 \sqrt{m^{3} T\left(d+\frac{m^{1 / 2}}{\lambda_{\min }}\right) \log \mu_{\min }^{-1}}+\mathcal{O}(1)
$$

where $\lambda_{\text {min }}$ is the smallest nonzero eigenvalue of $\mathbb{E}\left[M M^{\top}\right]$ when M is uniformly distributed and

$$
\mu_{\min }=\min _{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_{i}
$$

For most problems $\lambda_{\min }=\Omega\left(\frac{m}{d}\right)$ and $\mu_{\min }^{-1}=\mathcal{O}(\operatorname{poly}(d / m))$:

CombEXP: Regret

Theorem

$$
R^{\mathrm{CombEXP}}(T) \leq 2 \sqrt{m^{3} T\left(d+\frac{m^{1 / 2}}{\lambda_{\min }}\right) \log \mu_{\min }^{-1}}+\mathcal{O}(1)
$$

where $\lambda_{\text {min }}$ is the smallest nonzero eigenvalue of $\mathbb{E}\left[M M^{\top}\right]$ when M is uniformly distributed and

$$
\mu_{\min }=\min _{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_{i}
$$

For most problems $\lambda_{\min }=\Omega\left(\frac{m}{d}\right)$ and $\mu_{\min }^{-1}=\mathcal{O}(\operatorname{poly}(d / m))$:

$$
R(T) \sim \sqrt{m^{3} d T \log \frac{d}{m}}
$$

CombEXP: Regret

Theorem

$$
R^{\mathrm{CombEXP}}(T) \leq 2 \sqrt{m^{3} T\left(d+\frac{m^{1 / 2}}{\lambda_{\min }}\right) \log \mu_{\min }^{-1}}+\mathcal{O}(1)
$$

where $\lambda_{\text {min }}$ is the smallest nonzero eigenvalue of $\mathbb{E}\left[M M^{\top}\right]$ when M is uniformly distributed and

$$
\mu_{\min }=\min _{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_{i}
$$

For most problems $\lambda_{\min }=\Omega\left(\frac{m}{d}\right)$ and $\mu_{\min }^{-1}=\mathcal{O}(\operatorname{poly}(d / m))$:

$$
R(T) \sim \sqrt{m^{3} d T \log \frac{d}{m}}
$$

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible

 \Longrightarrow CombEXP with approximate projection.
Proposition

Assume that the projection step of COMBEXP is solved up to accuracy

Then

- The same regret scaling as for exact projection
- Proof idea: Strong convexity of KT, wrt \|. \| $\|_{1}+$ Properties of projection with KL

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible \Longrightarrow CombEXP with approximate projection.

Proposition

Assume that the projection step of CombEXP is solved up to accuracy

$$
\mathcal{O}\left(\frac{1}{n^{2} \log ^{3}(n)}\right), \quad \forall n \geq 1
$$

Then

$$
R(T) \leq 2 \sqrt{2 m^{3} T\left(d+\frac{m^{1 / 2}}{\lambda_{\min }}\right) \log \mu_{\min }^{-1}}+\mathcal{O}(1)
$$

- The same regret scaling as for exact projection.
- Proof idea: Strong convexity of KL w.r.t. $\|\cdot\|_{1}+$ Properties of projection with KL

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible \Longrightarrow CombEXP with approximate projection.

Proposition

Assume that the projection step of CombEXP is solved up to accuracy

$$
\mathcal{O}\left(\frac{1}{n^{2} \log ^{3}(n)}\right), \quad \forall n \geq 1
$$

Then

$$
R(T) \leq 2 \sqrt{2 m^{3} T\left(d+\frac{m^{1 / 2}}{\lambda_{\min }}\right) \log \mu_{\min }^{-1}}+\mathcal{O}(1)
$$

- The same regret scaling as for exact projection.
- Proof idea: Strong convexity of KL w.r.t. $\|\cdot\|_{1}+$ Properties of projection with KL

CombEXP: Complexity

Theorem

Let

$$
c=\# \text { eq. } \operatorname{conv}(\mathcal{M}), \quad s=\# \text { ineq. } \operatorname{conv}(\mathcal{M})
$$

Then, if the projection step of CombEXP is solved up to accuracy $\mathcal{O}\left(n^{-2} \log ^{-3}(n)\right), \forall n \geq 1$, CombEXP after T rounds has time complexity

$$
\mathcal{O}\left(T\left[\sqrt{s}(c+d)^{3} \log (T)+d^{4}\right]\right)
$$

- Box inequality constraints: $\mathcal{O}\left(T\left[c^{2} \sqrt{s}(c+d) \log (T)+d^{4}\right]\right)$
- Proof idea
- Constructive proof of Carathéodory Theorem for decomposition
- Barrier method for projection

CombeXP: Complexity

Theorem

Let

$$
c=\# \text { eq. } \operatorname{conv}(\mathcal{M}), \quad s=\# \text { ineq. } \operatorname{conv}(\mathcal{M})
$$

Then, if the projection step of CombEXP is solved up to accuracy $\mathcal{O}\left(n^{-2} \log ^{-3}(n)\right), \forall n \geq 1$, CombEXP after T rounds has time complexity

$$
\mathcal{O}\left(T\left[\sqrt{s}(c+d)^{3} \log (T)+d^{4}\right]\right)
$$

- Box inequality constraints: $\mathcal{O}\left(T\left[c^{2} \sqrt{s}(c+d) \log (T)+d^{4}\right]\right)$.
- Proof idea
- Constructive proof of Carathéodory Theorem for decomposition
- Barrier method for projection

CombEXP: Complexity

Theorem

Let

$$
c=\# \text { eq. } \operatorname{conv}(\mathcal{M}), \quad s=\# \text { ineq. } \operatorname{conv}(\mathcal{M})
$$

Then, if the projection step of CombEXP is solved up to accuracy $\mathcal{O}\left(n^{-2} \log ^{-3}(n)\right), \forall n \geq 1$, CombEXP after T rounds has time complexity

$$
\mathcal{O}\left(T\left[\sqrt{s}(c+d)^{3} \log (T)+d^{4}\right]\right)
$$

- Box inequality constraints: $\mathcal{O}\left(T\left[c^{2} \sqrt{s}(c+d) \log (T)+d^{4}\right]\right)$.
- Proof idea
- Constructive proof of Carathéodory Theorem for decomposition
- Barrier method for projection

Prior Work

Algorithm	Regret (Symmetric Problems)
Lower Bound (Audibert et al., 2013)	$\Omega(m \sqrt{d T}), \quad$ if $d \geq 2 m$
ComBAND (Cesa-Bianchi \& Lugosi, 2012)	$\mathcal{O}\left(\sqrt{m^{3} d T \log \frac{d}{m}}\right)$
CombEXP	$\mathcal{O}\left(\sqrt{m^{3} d T \log \frac{d}{m}}\right)$

- Both ComBand and CombEXP are off the LB by a factor
- ComBand relies on (approximate) sampling from \mathcal{M} whereas CombEXP does convex optimization $\operatorname{over} \operatorname{conv}(\mathcal{M})$.

Prior Work

Algorithm	Regret (Symmetric Problems)
Lower Bound (Audibert et al., 2013)	$\Omega(m \sqrt{d T}), \quad$ if $d \geq 2 m$
ComBAND (Cesa-Bianchi \& Lugosi, 2012)	$\mathcal{O}\left(\sqrt{m^{3} d T \log \frac{d}{m}}\right)$
CombEXP	$\mathcal{O}\left(\sqrt{m^{3} d T \log \frac{d}{m}}\right)$

- Both ComBand and CombEXP are off the LB by a factor $\sqrt{m \log (d / m)}$.
- ComBand relies on (approximate) sampling from \mathcal{M} whereas CombEXP does convex optimization over $\operatorname{conv}(\mathcal{M})$.

Complexity Example: Matchings

Matchings in $\mathcal{K}_{m, m}$:

- $\operatorname{conv}(\mathcal{M})$ is the set of all doubly stochastic $m \times m$ matrices (Birkhoff polytope):

$$
\operatorname{conv}(\mathcal{M})=\left\{Z \in \mathbb{R}_{+}^{m \times m}: \sum_{k=1}^{m} z_{i k}=1, \forall i, \sum_{k=1}^{m} z_{k j}=1, \forall j\right\}
$$

- $c=2 m$ and $s=m^{2}$ (box constraints).

Complexity of ComEXP: $\mathcal{O}\left(m^{5} T \log (T)\right)$

- Complexity of CombBAND: $\mathcal{O}\left(m^{10} F(T)\right)$ for some super-linear function $F(T)$ (need for approximating a permanent at each round)

Complexity Example: Matchings

Matchings in $\mathcal{K}_{m, m}$:

- $\operatorname{conv}(\mathcal{M})$ is the set of all doubly stochastic $m \times m$ matrices (Birkhoff polytope):

$$
\operatorname{conv}(\mathcal{M})=\left\{Z \in \mathbb{R}_{+}^{m \times m}: \sum_{k=1}^{m} z_{i k}=1, \forall i, \sum_{k=1}^{m} z_{k j}=1, \forall j\right\}
$$

- $c=2 m$ and $s=m^{2}$ (box constraints).

Complexity of ComEXP: $\mathcal{O}\left(m^{5} T \log (T)\right)$

- Complexity of CombBand: $\mathcal{O}\left(m^{10} F(T)\right)$ for some super-linear function $F(T)$ (need for approximating a permanent at each round).

Outline

(1) Combinatorial MABs: Bernoulli Rewards

(2) Stochastic Matroid Bandits
(3) Adversarial Combinatorial MABs
(4) Conclusion and Future Directions

Conclusion

- Stochastic combinatorial MABs
- The first regret LB
- ESCB: best performance in terms of regret
- Stochastic matroid bandits
- The first explicit regret LB
- KL-OSM: the first optimal algorithm
- Adversarial combinatorial MABs
- CombEXP: the same regret as state-of-the-art but with lower computational complexity
- More in the thesis!

Conclusion

- Stochastic combinatorial MABs
- The first regret LB
- ESCB: best performance in terms of regret
- Stochastic matroid bandits
- The first explicit regret LB
- KL-OSM: the first optimal algorithm
- Adversarial combinatorial MABs
- CombEXP: the same regret as state-of-the-art but with lower computational complexity
- More in the thesis!

Conclusion

- Stochastic combinatorial MABs
- The first regret LB
- ESCB: best performance in terms of regret
- Stochastic matroid bandits
- The first explicit regret LB
- KL-OSM: the first optimal algorithm
- Adversarial combinatorial MABs
- CombEXP: the same regret as state-of-the-art but with lower computational complexity
- More in the thesis!

Future Directions: Stochastic

- Improvement to the proposed algorithms
- Tighter regret analysis of ESCB-1 (order-optimality conjecture)
- Can we amortize index computation?
- Analysis of Thompson SAmpling for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

Future Directions: Stochastic

- Improvement to the proposed algorithms
- Tighter regret analysis of ESCB-1 (order-optimality conjecture)
- Can we amortize index computation?
- Analysis of Thompson Sampling for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

Future Directions: Stochastic

- Improvement to the proposed algorithms
- Tighter regret analysis of ESCB-1 (order-optimality conjecture)
- Can we amortize index computation?
- Analysis of Thompson Sampling for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

Publications

- Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)
- An optimal algorithm for stochastic matroid bandit optimization with A. Proutiere (AAMAS 2016)
- Spectrum bandit optimization with M. Lelarge and A. Proutiere (ITW 2013)
- Stochastic online shortest path routing: The value of feedback with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE TAC)

Publications

- Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)
- An optimal algorithm for stochastic matroid bandit optimization with A. Proutiere (AAMAS 2016)
- Spectrum bandit optimization with M. Lelarge and A. Proutiere (ITW 2013)
- Stochastic online shortest path routing: The value of feedback with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE TAC)

Thanks for your attention!

[^0]: Sequential Learning: at each step n, select $M(n) \in \mathcal{M}$ based on the previous decisions and observed rewards

