

# Online Combinatorial Optimization under Bandit Feedback

M. Sadegh Talebi \*

\*Department of Automatic Control KTH The Royal Institute of Technology

February 2016

# Combinatorial Optimization

• Decision space  $\mathcal{M} \subset \{0,1\}^d$ 

- Each decision  $M \in \mathcal{M}$  is a binary *d*-dimensional vector.
- Combinatorial structure, e.g., matchings, spanning trees, fixed-size subsets, graph cuts, paths

## • Weights $heta \in \mathbb{R}^d$

• Generic combinatorial (linear) optimization

maximize 
$$M^{\top} \theta = \sum_{i=1}^{d} M_i \theta_i$$
  
over  $M \in \mathcal{M}$ 

 $\bullet$  Sequential decision making over T rounds

# Combinatorial Optimization

• Decision space  $\mathcal{M} \subset \{0,1\}^d$ 

- Each decision  $M \in \mathcal{M}$  is a binary *d*-dimensional vector.
- Combinatorial structure, e.g., matchings, spanning trees, fixed-size subsets, graph cuts, paths
- Weights  $\theta \in \mathbb{R}^d$
- Generic combinatorial (linear) optimization

maximize 
$$M^{\top} \theta = \sum_{i=1}^{d} M_i \theta_i$$
  
over  $M \in \mathcal{M}$ 

• Sequential decision making over  ${\boldsymbol{T}}$  rounds

# Combinatorial Optimization under Uncertainty

## Sequential decision making over T rounds

- Known  $\theta \Longrightarrow$  always select  $M^{\star} := \operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$ .
- Weights  $\theta$  could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector  $X(n) \in \mathbb{R}^d$ 
  - Stochastic: X(n) i.i.d.,  $\mathbb{E}[X(n)] = \theta$ .
  - Adversarial: X(n) chosen beforehand by an adversary.
- Selecting M gives reward  $M^{\top}X(n) = \sum_{i=1}^{d} M_i X_i(n)$ .

# Combinatorial Optimization under Uncertainty

### Sequential decision making over T rounds

- Known  $\theta \Longrightarrow$  always select  $M^{\star} := \operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$ .
- Weights  $\theta$  could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector  $X(n) \in \mathbb{R}^d$ 
  - Stochastic: X(n) i.i.d.,  $\mathbb{E}[X(n)] = \theta$ .
  - Adversarial: X(n) chosen beforehand by an adversary.
- Selecting M gives reward  $M^{\top}X(n) = \sum_{i=1}^{d} M_i X_i(n)$ .

## Sequential decision making over $\boldsymbol{T}$ rounds

- Known  $\theta \Longrightarrow$  always select  $M^{\star} := \operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$ .
- Weights  $\theta$  could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector  $X(n) \in \mathbb{R}^d$ 
  - Stochastic: X(n) i.i.d.,  $\mathbb{E}[X(n)] = \theta$ .
  - Adversarial: X(n) chosen beforehand by an adversary.
- Selecting M gives reward  $M^{\top}X(n) = \sum_{i=1}^{d} M_i X_i(n)$ .

## Sequential decision making over $\boldsymbol{T}$ rounds

- Known  $\theta \Longrightarrow$  always select  $M^{\star} := \operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$ .
- Weights  $\theta$  could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector  $X(n) \in \mathbb{R}^d$ 
  - Stochastic: X(n) i.i.d.,  $\mathbb{E}[X(n)] = \theta$ .
  - Adversarial: X(n) chosen beforehand by an adversary.
- Selecting M gives reward  $M^{\top}X(n) = \sum_{i=1}^{d} M_i X_i(n)$ .

## Sequential decision making over $\boldsymbol{T}$ rounds

- Known  $\theta \Longrightarrow$  always select  $M^{\star} := \operatorname{argmax}_{M \in \mathcal{M}} M^{\top} \theta$ .
- Weights  $\theta$  could be initially unknown or unpredictably varying.
- At time n, environment chooses a reward vector  $X(n) \in \mathbb{R}^d$ 
  - Stochastic: X(n) i.i.d.,  $\mathbb{E}[X(n)] = \theta$ .
  - Adversarial: X(n) chosen beforehand by an adversary.
- Selecting M gives reward  $M^{\top}X(n) = \sum_{i=1}^{d} M_i X_i(n)$ .



#### • Goal: Maximize collected rewards in expectation

$$\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right].$$

• Or equivalently, minimize **regret** over T rounds:

$$R(T) = \underbrace{\max_{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]}_{\text{oracle}} - \underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]}_{\text{your algorithm}}.$$

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff R(T) = o(T).

Regret

• Goal: Maximize collected rewards in expectation

$$\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right].$$

• Or equivalently, minimize regret over T rounds:

$$R(T) = \underbrace{\max_{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]}_{\text{oracle}} - \underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]}_{\text{your algorithm}}.$$

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff R(T) = o(T).

Regret

• Goal: Maximize collected rewards in expectation

$$\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right].$$

• Or equivalently, minimize regret over T rounds:

$$R(T) = \underbrace{\max_{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right]}_{\text{oracle}} - \underbrace{\mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right]}_{\text{your algorithm}}.$$

- Quantifies cumulative loss of not choosing the best decision (in hindsight).
- Algorithm is learning iff R(T) = o(T).

## Feedback

Choose  ${\cal M}(n)$  based on previous decisions and observed feedback

- Full information: X(n) is revealed.
- Semi-bandit feedback:  $X_i(n)$  is revealed iff  $M_i(n) = 1$ .
- Bandit feedback: only the reward  $M(n)^{\top}X(n)$  is revealed.

Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

**Combinatorial MAB:** 

Decision  $M \in \mathcal{M} \iff \operatorname{Arm}$ Element  $\{1, \dots, d\} \iff \operatorname{Basic action}$ 

Each arm is composed of several basic actions.

## Feedback

Choose  ${\cal M}(n)$  based on previous decisions and observed feedback

- Full information: X(n) is revealed.
- Semi-bandit feedback:  $X_i(n)$  is revealed iff  $M_i(n) = 1$ .
- Bandit feedback: only the reward  $M(n)^{\top}X(n)$  is revealed.

Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

**Combinatorial MAB:** 

Decision  $M \in \mathcal{M} \iff \operatorname{Arm}$ Element  $\{1, \dots, d\} \iff \operatorname{Basic action}$ 

Each arm is composed of several basic actions.

## Feedback

Choose  ${\cal M}(n)$  based on previous decisions and observed feedback

- Full information: X(n) is revealed.
- Semi-bandit feedback:  $X_i(n)$  is revealed iff  $M_i(n) = 1$ .
- Bandit feedback: only the reward  $M(n)^{\top}X(n)$  is revealed.

Sequential learning is modeled as a Multi-Armed Bandit (MAB) problem.

**Combinatorial MAB:** 

Decision  $M \in \mathcal{M} \iff \operatorname{Arm}$ Element  $\{1, \dots, d\} \iff \operatorname{Basic action}$ 

Each arm is composed of several basic actions.

# Application 1: Spectrum Sharing



- K channels, L links
- $\mathcal{M} \equiv$  the set of matchings from [L] to [K]
- $\theta_{ij} \equiv \text{data rate on the connection (link-$ *i*, channel-*j* $)}$
- $X_{ij}(n) \equiv$  success/failure indicator for transmission of link i on channel j



- $\mathcal{M} \equiv$  the set of paths
- $\theta_i \equiv$  average transmission delay on link i
- $X_i(n) \equiv$  transmission delay of link *i* for *n*-th packet



• Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).

Bandit feedback: 20 is revealed for the chosen path.



- Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).
- Bandit feedback: 20 is revealed for the chosen *path*.



- Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).
- Bandit feedback: 20 is revealed for the chosen *path*.

- Classical MAB ( $\mathcal{M}$  set of singletons;  $|\mathcal{M}| = d$ ):
  - Stochastic  $R(T) \sim |\mathcal{M}| \log(T)$
  - Adversarial  $R(T) \sim \sqrt{|\mathcal{M}|T}$
- Generic combinatorial  ${\cal M}$ 
  - $\bullet ~ |\mathcal{M}|$  could grow exponentially in  $d \Longrightarrow$  prohibitive regret
  - Arms are correlated; they share basic actions.

 $\implies$  exploit combinatorial structure in  $\mathcal{M}$  to get  $R(T) \sim C \log(T)$  or  $R(T) \sim \sqrt{CT}$  where  $C \ll |\mathcal{M}|$ 

How much can we reduce the regret by exploiting the combinatorial structure of  $\mathcal{M}$ ? How to optimally do so?

- Classical MAB ( $\mathcal{M}$  set of singletons;  $|\mathcal{M}| = d$ ):
  - Stochastic  $R(T) \sim |\mathcal{M}| \log(T)$
  - Adversarial  $R(T) \sim \sqrt{|\mathcal{M}|T}$
- Generic combinatorial  ${\cal M}$ 
  - $|\mathcal{M}|$  could grow exponentially in  $d \Longrightarrow$  prohibitive regret
  - Arms are correlated; they share basic actions.

 $\implies$  exploit combinatorial structure in  $\mathcal{M}$  to get  $R(T) \sim C \log(T)$  or  $R(T) \sim \sqrt{CT}$  where  $C \ll |\mathcal{M}|$ 

How much can we reduce the regret by exploiting the combinatorial structure of  $\mathcal{M}$ ? How to optimally do so?

- Classical MAB ( $\mathcal{M}$  set of singletons;  $|\mathcal{M}| = d$ ):
  - Stochastic  $R(T) \sim |\mathcal{M}| \log(T)$
  - Adversarial  $R(T) \sim \sqrt{|\mathcal{M}|T}$
- Generic combinatorial  ${\cal M}$ 
  - $|\mathcal{M}|$  could grow exponentially in  $d \Longrightarrow$  prohibitive regret
  - Arms are correlated; they share basic actions.

 $\Longrightarrow$  exploit combinatorial structure in  $\mathcal M$  to get  $R(T)\sim C\log(T)$  or  $R(T)\sim \sqrt{CT}$  where  $C\ll |\mathcal M|$ 

How much can we reduce the regret by exploiting the combinatorial structure of *M*? How to optimally do so?

- Classical MAB ( $\mathcal{M}$  set of singletons;  $|\mathcal{M}| = d$ ):
  - Stochastic  $R(T) \sim |\mathcal{M}| \log(T)$
  - Adversarial  $R(T) \sim \sqrt{|\mathcal{M}|T}$
- Generic combinatorial  ${\cal M}$ 
  - $|\mathcal{M}|$  could grow exponentially in  $d \Longrightarrow$  prohibitive regret
  - Arms are correlated; they share basic actions.

 $\Longrightarrow$  exploit combinatorial structure in  $\mathcal M$  to get  $R(T)\sim C\log(T)$  or  $R(T)\sim \sqrt{CT}$  where  $C\ll |\mathcal M|$ 

How much can we reduce the regret by exploiting the combinatorial structure of  $\mathcal{M}$ ? How to optimally do so?

# How much can we reduce the regret by exploiting the combinatorial structure of $\mathcal{M}$ ? How to optimally do so?

| Chapter | Combinatorial Structure $\mathcal{M}$ | Reward X    |
|---------|---------------------------------------|-------------|
| Ch. 3   | Generic                               | Bernoulli   |
| Ch. 4   | Matroid                               | Bernoulli   |
| Ch. 5   | Generic                               | Geometric   |
| Ch. 6   | Generic (with fixed cardinality)      | Adversarial |

1 Combinatorial MABs: Bernoulli Rewards

## 2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs



## 1 Combinatorial MABs: Bernoulli Rewards

## 2 Stochastic Matroid Bandits

- 3 Adversarial Combinatorial MABs
- 4 Conclusion and Future Directions

## **Rewards:**

- X(n) i.i.d. , Bernoulli distributed with  $\mathbb{E}[X(n)] = \theta \in [0,1]^d$
- $X_i(n), \ i \in [d]$  are independent across i
- $\mu_M := M^{\top} \theta$  average reward of arm M
- Average reward gap  $\Delta_M = \mu^* \mu_M$

• Optimality gap  $\Delta_{\min} = \min_{M \neq M^*} \Delta_M$ 

| Algorithm                  | Regret                                                           |
|----------------------------|------------------------------------------------------------------|
| LLR (Gai et al., 2012)     | $\mathcal{O}\left(\frac{m^4 d}{\Delta_{\min}^2}\log(T)\right)$   |
| CUCB (Chen et al., 2013)   | $\mathcal{O}\left(\frac{m^2 d}{\Delta_{\min}}\log(T)\right)$     |
| CUCB (Kveton et al., 2015) | $\mathcal{O}\left(\frac{md}{\Delta_{\min}}\log(T)\right)$        |
| ESCB                       | $\mathcal{O}\left(\frac{\sqrt{m}d}{\Delta_{\min}}\log(T)\right)$ |

## **Rewards:**

- X(n) i.i.d. , Bernoulli distributed with  $\mathbb{E}[X(n)] = \theta \in [0,1]^d$
- $X_i(n), \ i \in [d]$  are independent across i
- $\mu_M := M^{\top} \theta$  average reward of arm M
- Average reward gap  $\Delta_M = \mu^\star \mu_M$

• Optimality gap  $\Delta_{\min} = \min_{M \neq M^*} \Delta_M$ 

| Algorithm                  | Regret                                                           |
|----------------------------|------------------------------------------------------------------|
| LLR (Gai et al., 2012)     | $\mathcal{O}\left(\frac{m^4 d}{\Delta_{\min}^2}\log(T)\right)$   |
| CUCB (Chen et al., 2013)   | $\mathcal{O}\left(\frac{m^2 d}{\Delta_{\min}}\log(T)\right)$     |
| CUCB (Kveton et al., 2015) | $\mathcal{O}\left(\frac{md}{\Delta_{\min}}\log(T)\right)$        |
| ESCB                       | $\mathcal{O}\left(\frac{\sqrt{m}d}{\Delta_{\min}}\log(T)\right)$ |

## **Rewards:**

- X(n) i.i.d. , Bernoulli distributed with  $\mathbb{E}[X(n)] = \theta \in [0,1]^d$
- $X_i(n), \ i \in [d]$  are independent across i
- $\mu_M := M^{\top} \theta$  average reward of arm M
- Average reward gap  $\Delta_M = \mu^\star \mu_M$
- Optimality gap  $\Delta_{\min} = \min_{M \neq M^{\star}} \Delta_M$

| Algorithm                  | Regret                                                           |
|----------------------------|------------------------------------------------------------------|
| LLR (Gai et al., 2012)     | $\mathcal{O}\left(\frac{m^4 d}{\Delta_{\min}^2}\log(T)\right)$   |
| CUCB (Chen et al., 2013)   | $\mathcal{O}\left(\frac{m^2 d}{\Delta_{\min}}\log(T)\right)$     |
| CUCB (Kveton et al., 2015) | $\mathcal{O}\left(\frac{md}{\Delta_{\min}}\log(T)\right)$        |
| ESCB                       | $\mathcal{O}\left(\frac{\sqrt{m}d}{\Delta_{\min}}\log(T)\right)$ |

## **Rewards:**

- X(n) i.i.d. , Bernoulli distributed with  $\mathbb{E}[X(n)] = \theta \in [0,1]^d$
- $X_i(n), \ i \in [d]$  are independent across i
- $\mu_M := M^{\top} \theta$  average reward of arm M
- Average reward gap  $\Delta_M = \mu^\star \mu_M$
- Optimality gap  $\Delta_{\min} = \min_{M \neq M^*} \Delta_M$

| Algorithm                  | Regret                                                           |
|----------------------------|------------------------------------------------------------------|
| LLR (Gai et al., 2012)     | $\mathcal{O}\left(\frac{m^4 d}{\Delta_{\min}^2}\log(T)\right)$   |
| CUCB (Chen et al., 2013)   | $\mathcal{O}\left(\frac{m^2 d}{\Delta_{\min}}\log(T)\right)$     |
| CUCB (Kveton et al., 2015) | $\mathcal{O}\left(\frac{md}{\Delta_{\min}}\log(T)\right)$        |
| ESCB                       | $\mathcal{O}\left(\frac{\sqrt{m}d}{\Delta_{\min}}\log(T)\right)$ |

- Construct a confidence bound  $[b^-,b^+]$  for (unknown)  $\mu$  s.t.  $\mu\in[b^-,b^+] \quad {\rm with\ high\ probability}$
- Maximization problem  $\implies$  we replace (unknown)  $\mu$  by  $b^+$ , its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:
For arm M and time n, find confidence interval for µ<sub>M</sub>:

$$\mathbb{P}\left[\mu_M \in \left[b_M^-(n), \ b_M^+(n)\right]\right] \ge 1 - \mathcal{O}\left(\frac{1}{n\log(n)}\right)$$

- Construct a confidence bound  $[b^-,b^+]$  for (unknown)  $\mu$  s.t.  $\mu\in [b^-,b^+] \quad {\rm with\ high\ probability}$
- Maximization problem  $\implies$  we replace (unknown)  $\mu$  by  $b^+$ , its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:
For arm M and time n, find confidence interval for µ<sub>M</sub>:

$$\mathbb{P}\left[\mu_M \in \left[b_M^-(n), \ b_M^+(n)\right]\right] \ge 1 - \mathcal{O}\left(\frac{1}{n\log(n)}\right)$$

- Construct a confidence bound  $[b^-,b^+]$  for (unknown)  $\mu$  s.t.  $\mu\in [b^-,b^+] \quad {\rm with\ high\ probability}$
- Maximization problem  $\implies$  we replace (unknown)  $\mu$  by  $b^+$ , its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

Algorithm based on optimistic principle:
For arm M and time n, find confidence interval for μ<sub>M</sub>:

$$\mathbb{P}\left[\mu_M \in [b_M^-(n), \ b_M^+(n)]\right] \ge 1 - \mathcal{O}\left(\frac{1}{n\log(n)}\right)$$

- Construct a confidence bound  $[b^-,b^+]$  for (unknown)  $\mu$  s.t.  $\mu\in[b^-,b^+] \quad {\rm with\ high\ probability}$
- Maximization problem  $\implies$  we replace (unknown)  $\mu$  by  $b^+$ , its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

### Algorithm based on optimistic principle:

• For arm M and time n, find confidence interval for  $\mu_M$ :

$$\mathbb{P}\left[\mu_M \in \left[b_M^-(n), \ b_M^+(n)\right]\right] \ge 1 - \mathcal{O}\left(\frac{1}{n\log(n)}\right)$$

- Construct a confidence bound  $[b^-,b^+]$  for (unknown)  $\mu$  s.t.  $\mu\in[b^-,b^+] \quad {\rm with\ high\ probability}$
- Maximization problem  $\implies$  we replace (unknown)  $\mu$  by  $b^+$ , its Upper Confidence Bound (UCB) index.

"Optimism in the face of uncertainty" principle: Choose arm M with the highest UCB index

### Algorithm based on optimistic principle:

• For arm M and time n, find confidence interval for  $\mu_M$ :

$$\mathbb{P}\left[\mu_M \in \left[b_M^-(n), \ b_M^+(n)\right]\right] \ge 1 - \mathcal{O}\left(\frac{1}{n\log(n)}\right)$$

• Choose 
$$M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} b_M^+(n)$$

# **Optimistic Principle**



# **Optimistic Principle**



# **Optimistic Principle**



- Naive approach: construct index for basic actions
   ⇒ index of arm M = sum of indexes of basic action in arm M
- Empirical mean  $\hat{\theta}_i(n)$ , number of observations:  $t_i(n)$ . • Hoeffding's inequality:

$$\mathbb{P}\left[\theta_i \in \left(\hat{\theta}_i(n) - \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}, \ \hat{\theta}_i(n) + \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}\right)\right] \ge 1 - 2\delta$$

Index: 
$$b_M(n) = \sum_{\substack{i=1\\\hat{\mu}_M(n)}}^d M_i \hat{\theta}_i(n) + \sum_{\substack{i=1\\\hat{\mu}_M(n)}}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}$$

$$\mu_M \in \left[\hat{\mu}_M(n) - \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}, \quad \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}\right] \quad \text{w.p.} \geq 1 - \frac{1}{n^3}$$

• Naive approach: construct index for basic actions

 $\Longrightarrow$  index of arm  $M={\rm sum}$  of indexes of basic action in arm M

- Empirical mean  $\hat{\theta}_i(n)$ , number of observations:  $t_i(n)$ .
- Hoeffding's inequality:

$$\mathbb{P}\left[\theta_i \in \left(\hat{\theta}_i(n) - \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}, \ \hat{\theta}_i(n) + \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}\right)\right] \ge 1 - 2\delta$$

Index: 
$$b_M(n) = \sum_{\substack{i=1\\\hat{\mu}_M(n)}}^d M_i \hat{\theta}_i(n) + \sum_{\substack{i=1\\\hat{\mu}_M(n)}}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}$$

$$\mu_M \in \left[\hat{\mu}_M(n) - \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}, \quad \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}\right] \quad \text{w.p.} \geq 1 - \frac{1}{n^3}$$

• Naive approach: construct index for basic actions

 $\Longrightarrow$  index of arm  $M={\rm sum}$  of indexes of basic action in arm M

- Empirical mean  $\hat{\theta}_i(n)$ , number of observations:  $t_i(n)$ .
- Hoeffding's inequality:

$$\mathbb{P}\left[\theta_i \in \left(\hat{\theta}_i(n) - \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}, \ \hat{\theta}_i(n) + \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}\right)\right] \ge 1 - 2\delta$$

Index: 
$$b_M(n) = \sum_{i=1}^{d} M_i \hat{\theta}_i(n) + \sum_{i=1}^{d} M_i \sqrt{\frac{3 \log(n)}{2t_i(n)}}$$

$$\mu_M \in \left[\hat{\mu}_M(n) - \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}, \ \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}\right] \quad \text{w.p.} \geq 1 - \frac{1}{n^3}$$

• Naive approach: construct index for basic actions

 $\Longrightarrow$  index of arm  $M={\rm sum}$  of indexes of basic action in arm M

- Empirical mean  $\hat{\theta}_i(n)$ , number of observations:  $t_i(n)$ .
- Hoeffding's inequality:

$$\mathbb{P}\left[\theta_i \in \left(\hat{\theta}_i(n) - \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}, \ \hat{\theta}_i(n) + \sqrt{\frac{\log(1/\delta)}{2t_i(n)}}\right)\right] \ge 1 - 2\delta$$

Index: 
$$b_M(n) = \sum_{i=1}^{d} M_i \hat{\theta}_i(n) + \sum_{i=1}^{d} M_i \sqrt{\frac{3 \log(n)}{2t_i(n)}}$$
.

$$\mu_M \in \left[\hat{\mu}_M(n) - \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}, \quad \hat{\mu}_M(n) + \sum_{i=1}^d M_i \sqrt{\frac{3\log(n)}{2t_i(n)}}\right] \quad \text{w.p.} \geq 1 - \frac{1}{n^3}$$

- Our approach: constructing confidence interval directly for each arm  ${\cal M}$
- Motivated by concentration for sum of empirical KL-divergences.

• For a given  $\delta$ , consider a set

$$B = \left\{ \lambda \in [0,1]^d : \sum_{i=1}^d t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \le \log(1/\delta) \right\}$$

with

$$kl(u, v) := u \log \frac{u}{v} + (1 - u) \log \frac{1 - u}{1 - v}$$

Find an upper confidence bound for  $\mu_M$  such that

$$\mu_M \in \left[\times, \ M^\top \lambda\right]$$
 w.p. at least  $1 - \delta, \ \forall \lambda \in B$ .

$$\mu_M \leq \max_{\lambda \in B} M^\top \lambda$$
 w.p. at least  $1 - \delta$ .

- Our approach: constructing confidence interval directly for each arm  ${\cal M}$
- Motivated by concentration for sum of empirical KL-divergences.
- For a given  $\delta$ , consider a set

$$B = \left\{ \lambda \in [0,1]^d : \sum_{i=1}^d t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \le \log(1/\delta) \right\}$$

### with

$$kl(u, v) := u \log \frac{u}{v} + (1 - u) \log \frac{1 - u}{1 - v}.$$

Find an upper confidence bound for  $\mu_M$  such that

$$\mu_M \in \left[\times, \ M^\top \lambda\right]$$
 w.p. at least  $1 - \delta, \ \forall \lambda \in B$ .

$$\mu_M \leq \max_{\lambda \in B} M^\top \lambda$$
 w.p. at least  $1 - \delta$ .

- Our approach: constructing confidence interval directly for each arm  ${\cal M}$
- Motivated by concentration for sum of empirical KL-divergences.
- For a given  $\delta$ , consider a set

$$B = \left\{ \lambda \in [0,1]^d : \sum_{i=1}^d t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \le \log(1/\delta) \right\}$$

with

$$kl(u, v) := u \log \frac{u}{v} + (1 - u) \log \frac{1 - u}{1 - v}$$

Find an upper confidence bound for  $\mu_M$  such that

$$\mu_M \in \begin{bmatrix} \times, & M^\top \lambda \end{bmatrix}$$
 w.p. at least  $1 - \delta, & \forall \lambda \in B$ .

$$\mu_M \leq \max_{\lambda \in B} M^\top \lambda$$
 w.p. at least  $1 - \delta$ .

- Our approach: constructing confidence interval directly for each arm  ${\cal M}$
- Motivated by concentration for sum of empirical KL-divergences.
- For a given  $\delta$ , consider a set

$$B = \left\{ \lambda \in [0,1]^d : \sum_{i=1}^d t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \le \log(1/\delta) \right\}$$

with

$$kl(u, v) := u \log \frac{u}{v} + (1 - u) \log \frac{1 - u}{1 - v}$$

Find an upper confidence bound for  $\mu_M$  such that

$$\mu_M \in \begin{bmatrix} \times, & M^\top \lambda \end{bmatrix}$$
 w.p. at least  $1 - \delta, & \forall \lambda \in B$ .

$$\mu_M \leq \max_{\lambda \in B} M^\top \lambda \text{ w.p. at least } 1 - \delta.$$

### Two new indexes:

• (1) Index  $b_M$  as the optimal value of the following problem:

$$b_M(n) = \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i$$
  
subject to : 
$$\sum_{i=1}^d M_i t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \leq \underbrace{f(n)}_{\log(1/\delta)},$$

with  $f(n) = \log(n) + 4m \log(\log(n))$ .

- $b_M$  is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case of combinatorial MABs
- (2) Index  $c_M$ :

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}$$

### Two new indexes:

• (1) Index  $b_M$  as the optimal value of the following problem:

$$b_M(n) = \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i$$
  
subject to : 
$$\sum_{i=1}^d M_i t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \leq \underbrace{f(n)}_{\log(1/\delta)},$$

with  $f(n) = \log(n) + 4m \log(\log(n))$ .

•  $b_M$  is computed by a line search (derived based on KKT conditions)

- Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case of combinatorial MABs
- (2) Index  $c_M$ :

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}$$

### Two new indexes:

• (1) Index  $b_M$  as the optimal value of the following problem:

$$b_M(n) = \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i$$
  
subject to : 
$$\sum_{i=1}^d M_i t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \leq \underbrace{f(n)}_{\log(1/\delta)},$$

with  $f(n) = \log(n) + 4m \log(\log(n))$ .

- $b_M$  is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case of combinatorial MABs
- (2) Index  $c_M$ :

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}$$

### Two new indexes:

1

• (1) Index  $b_M$  as the optimal value of the following problem:

$$b_M(n) = \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i$$
  
subject to : 
$$\sum_{i=1}^d M_i t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \leq \underbrace{f(n)}_{\log(1/\delta)},$$

with  $f(n) = \log(n) + 4m \log(\log(n))$ .

- $b_M$  is computed by a line search (derived based on KKT conditions)
- Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case of combinatorial MABs
- (2) Index  $c_M$ :

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}.$$

$$b_M(n) = \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i$$
  
subject to : 
$$\sum_{i=1}^d M_i t_i(n) \operatorname{kl}(\hat{\theta}_i(n), \lambda_i) \le f(n),$$

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}.$$

#### Theorem

For all  $M \in \mathcal{M}$  and  $n \ge 1$ :  $c_M(n) \ge b_M(n)$ .

• Proof idea: Pinsker's inequality + Cauchy-Schwarz inequality

$$\begin{split} b_M(n) &= \max_{\lambda \in [0,1]^d} \sum_{i=1}^d M_i \lambda_i \\ \text{subject to}: & \sum_{i=1}^d M_i t_i(n) \, \mathrm{kl}(\hat{\theta}_i(n), \lambda_i) \leq f(n), \end{split}$$

$$c_M(n) = \hat{\mu}_M(n) + \sqrt{\frac{f(n)}{2} \sum_{i=1}^d \frac{M_i}{t_i(n)}}.$$

### Theorem

For all  $M \in \mathcal{M}$  and  $n \geq 1$ :  $c_M(n) \geq b_M(n)$ .

• Proof idea: Pinsker's inequality + Cauchy-Schwarz inequality

### $\textbf{ESCB} \equiv \textbf{Efficient Sampling for Combinatorial Bandits}$

### Algorithm 1 ESCB

for  $n \geq 1$  do

Select arm  $M(n) \in \operatorname{argmax}_{M \in \mathcal{M}} \zeta_M(n)$ .

Observe the rewards, and update  $t_i(n)$  and  $\hat{\theta}_i(n), \forall i \in M(n)$ .

#### end for

ESCB-1 if  $\zeta_M = b_M$ , ESCB-2 if  $\zeta_M = c_M$ .

The regret under ESCB satisfies

$$R(T) \le \frac{16d\sqrt{m}}{\Delta_{\min}}\log(T) + \mathcal{O}(\log(\log(T))).$$

- Proof idea
  - $c_M(n) \ge b_M(n) \ge \mu_M$  with high probability
  - Crucial concentration inequality (Magureanu et al., COLT 2014):

$$\mathbb{P}\left[\max_{n \leq T} \sum_{i=1}^{d} M_{i} t_{i}(n) \mathrm{kl}(\hat{\theta}_{i}(n), \theta_{i}) \geq \delta\right] \leq C_{m} (\log(T)\delta)^{m} e^{-\delta}.$$

The regret under ESCB satisfies

$$R(T) \le \frac{16d\sqrt{m}}{\Delta_{\min}}\log(T) + \mathcal{O}(\log(\log(T))).$$

- Proof idea
  - $c_M(n) \ge b_M(n) \ge \mu_M$  with high probability
  - Crucial concentration inequality (Magureanu et al., COLT 2014):

$$\mathbb{P}\left[\max_{n \leq T} \sum_{i=1}^{d} M_i t_i(n) \mathrm{kl}(\hat{\theta}_i(n), \theta_i) \geq \delta\right] \leq C_m (\log(T)\delta)^m e^{-\delta}.$$

How far are we from the optimal algorithm?

- Uniformly good algorithm  $\pi$ :  $R^{\pi}(T) = \mathcal{O}(\log(T))$  for all  $\theta$ .
- Notion of bad parameter:  $\lambda$  is bad if:
  - (i) it is statistically indistinguishable from true parameter  $\theta$  (in the sense of KL-divergence)  $\equiv$  reward distribution of optimal arm  $M^*$  is the same under  $\theta$  or  $\lambda$ ,
  - (ii)  $M^*$  is not optimal under  $\lambda$ .
- Set of all bad parameters  $B(\theta)$ :

$$B(\theta) = \Big\{ \lambda \in [0,1]^d : \underbrace{(\lambda_i = \theta_i, \, \forall i \in M^*)}_{\text{condition (i)}} \text{ and } \underbrace{\max_{M \in \mathcal{M}} M^\top \lambda > \mu^*}_{\text{condition (ii)}} \Big\}.$$

How far are we from the optimal algorithm?

• Uniformly good algorithm  $\pi$ :  $R^{\pi}(T) = \mathcal{O}(\log(T))$  for all  $\theta$ .

• Notion of bad parameter:  $\lambda$  is bad if:

- (i) it is statistically indistinguishable from true parameter  $\theta$  (in the sense of KL-divergence)  $\equiv$  reward distribution of optimal arm  $M^*$  is the same under  $\theta$  or  $\lambda$ ,
- (ii)  $M^*$  is not optimal under  $\lambda$ .
- Set of all bad parameters  $B(\theta)$ :

$$B(\theta) = \Big\{ \lambda \in [0,1]^d : \underbrace{(\lambda_i = \theta_i, \, \forall i \in M^*)}_{\text{condition (i)}} \text{ and } \underbrace{\max_{M \in \mathcal{M}} M^\top \lambda > \mu^*}_{\text{condition (ii)}} \Big\}.$$

How far are we from the optimal algorithm?

- Uniformly good algorithm  $\pi$ :  $R^{\pi}(T) = \mathcal{O}(\log(T))$  for all  $\theta$ .
- Notion of bad parameter:  $\lambda$  is bad if:
  - (i) it is statistically indistinguishable from true parameter  $\theta$  (in the sense of KL-divergence)  $\equiv$  reward distribution of optimal arm  $M^*$  is the same under  $\theta$  or  $\lambda$ ,
  - (ii)  $M^*$  is not optimal under  $\lambda$ .
- Set of all bad parameters  $B(\theta)$ :

$$B(\theta) = \Big\{ \lambda \in [0,1]^d : \underbrace{(\lambda_i = \theta_i, \forall i \in M^\star)}_{\text{condition (i)}} \text{ and } \underbrace{\max_{M \in \mathcal{M}} M^\top \lambda > \mu^\star}_{\text{condition (ii)}} \Big\}.$$

For any uniformly good algorithm  $\pi$ ,  $\liminf_{T\to\infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$ , with

$$c(\theta) = \inf_{x \in \mathbb{R}^{|\mathcal{M}|}_{+}} \sum_{M \in \mathcal{M}} \Delta_M x_M$$
  
subject to : 
$$\sum_{i=1}^d \operatorname{kl}(\theta_i, \lambda_i) \sum_{M \in \mathcal{M}} M_i x_M \ge 1, \ \forall \lambda \in B(\theta).$$

- The first problem dependent tight LB
- Interpretation: each arm M must be sampled at least  $x^{\star}_{M}\log(T)$  times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves & Lai, 1997)

For any uniformly good algorithm  $\pi$ ,  $\liminf_{T\to\infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$ , with

$$c(\theta) = \inf_{x \in \mathbb{R}^{|\mathcal{M}|}_{+}} \sum_{M \in \mathcal{M}} \Delta_{M} x_{M}$$
  
subject to : 
$$\sum_{i=1}^{d} \mathrm{kl}(\theta_{i}, \lambda_{i}) \sum_{M \in \mathcal{M}} M_{i} x_{M} \ge 1, \ \forall \lambda \in B(\theta).$$

- The first problem dependent tight LB
- $\bullet$  Interpretation: each arm M must be sampled at least  $x^{\star}_M \log(T)$  times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves & Lai, 1997)

For any uniformly good algorithm  $\pi$ ,  $\liminf_{T\to\infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta)$ , with

$$c(\theta) = \inf_{x \in \mathbb{R}^{|\mathcal{M}|}_{+}} \sum_{M \in \mathcal{M}} \Delta_{M} x_{M}$$
  
subject to : 
$$\sum_{i=1}^{d} \mathrm{kl}(\theta_{i}, \lambda_{i}) \sum_{M \in \mathcal{M}} M_{i} x_{M} \ge 1, \ \forall \lambda \in B(\theta).$$

- The first problem dependent tight LB
- $\bullet$  Interpretation: each arm M must be sampled at least  $x^{\star}_{M}\log(T)$  times.
- Proof idea: adaptive control of Markov chains with unknown transition probabilities (Graves & Lai, 1997)

How does  $c(\theta)$  scale with d, m?

### Proposition

For most problems  $c( heta)=\Omega(d-m).$ 

- Intuitive since d m basic actions are not sampled when playing  $M^*$ .
- Proof idea
  - Construct a covering set  $\mathcal H$  for suboptimal basic actions
  - Keeping constraints for  $M \in \mathcal{H}$

#### Definition

 $\mathcal H$  is a covering set for basic actions if it is a (inclusion-wise) maximal subset of  $\mathcal M \setminus M^*$  such that for all distinct  $M, M' \in \mathcal H$ , we have

How does  $c(\theta)$  scale with d, m?

### Proposition

For most problems  $c(\theta) = \Omega(d-m)$ .

- Intuitive since d m basic actions are not sampled when playing  $M^*$ .
- Proof idea
  - Construct a covering set  $\mathcal H$  for suboptimal basic actions
  - Keeping constraints for  $M \in \mathcal{H}$

### Definition

 $\mathcal H$  is a covering set for basic actions if it is a (inclusion-wise) maximal subset of  $\mathcal M \setminus M^*$  such that for all distinct  $M, M' \in \mathcal H$ , we have

How does  $c(\theta)$  scale with d, m?

### Proposition

For most problems  $c(\theta) = \Omega(d-m)$ .

- Intuitive since d m basic actions are not sampled when playing  $M^{\star}$ .
- Proof idea
  - Construct a covering set  $\mathcal H$  for suboptimal basic actions
  - Keeping constraints for  $M \in \mathcal{H}$

### Definition

 $\mathcal H$  is a covering set for basic actions if it is a (inclusion-wise) maximal subset of  $\mathcal M \setminus M^*$  such that for all distinct  $M, M' \in \mathcal H$ , we have

How does  $c(\theta)$  scale with d, m?

### Proposition

For most problems  $c(\theta) = \Omega(d-m)$ .

- Intuitive since d m basic actions are not sampled when playing  $M^*$ .
- Proof idea
  - Construct a covering set  ${\mathcal H}$  for suboptimal basic actions
  - Keeping constraints for  $M \in \mathcal{H}$

### Definition

 $\mathcal{H}$  is a covering set for basic actions if it is a (inclusion-wise) maximal subset of  $\mathcal{M} \setminus M^*$  such that for all distinct  $M, M' \in \mathcal{H}$ , we have

## Numerical Experiments

Matchings in  $\mathcal{K}_{m,m}$ Parameter  $\theta$ :  $\theta_i = \begin{cases} a & i \in M^* \\ b & \text{otherwise.} \end{cases}$  $c(\theta) = \frac{m(m-1)(a-b)}{2\mathrm{kl}(b,a)}$ 





Combinatorial MABs: Bernoulli Rewards

## 2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs



Combinatorial optimization over a matroid

- Of particular interest in combinatorial optimization
- Power of greedy solution
- Matroid constraints arise in many applications
  - Cardinality constraints, partitioning constraints, coverage constraints

## Definition

Given a finite set E and  $\mathcal{I} \subset 2^E$ , the pair  $(E, \mathcal{I})$  is called a matroid if:

- (i) If  $X \in \mathcal{I}$  and  $Y \subseteq X$ , then  $Y \in \mathcal{I}$  (closed under subset).
- (ii) If  $X, Y \in \mathcal{I}$  with |X| > |Y|, then there is some element  $\ell \in X \setminus Y$  such that  $Y \cup \{\ell\} \in \mathcal{I}$  (augmentation property).

Combinatorial optimization over a matroid

- Of particular interest in combinatorial optimization
- Power of greedy solution
- Matroid constraints arise in many applications
  - Cardinality constraints, partitioning constraints, coverage constraints

### Definition

Given a finite set E and  $\mathcal{I} \subset 2^E$ , the pair  $(E, \mathcal{I})$  is called a matroid if:

- (i) If  $X \in \mathcal{I}$  and  $Y \subseteq X$ , then  $Y \in \mathcal{I}$  (closed under subset).
- (ii) If  $X, Y \in \mathcal{I}$  with |X| > |Y|, then there is some element  $\ell \in X \setminus Y$  such that  $Y \cup \{\ell\} \in \mathcal{I}$  (augmentation property).

- E is ground set,  $\mathcal{I}$  is set of independent sets.
- $\bullet$  Basis: any inclusion-wise maximal element of  ${\cal I}$
- Rank: common cardinality of bases

Example: Graphic Matroid (for graph G = (V, H)):

 $(H,\mathcal{I}) \quad \text{with} \quad \mathcal{I} = \{F \subseteq H : (V,F) \text{ is a forest}\}.$ 

A basis is an spanning forest of the G

- E is ground set,  $\mathcal{I}$  is set of independent sets.
- $\bullet$  Basis: any inclusion-wise maximal element of  ${\cal I}$
- Rank: common cardinality of bases

Example: Graphic Matroid (for graph G = (V, H)):

$$(H,\mathcal{I})$$
 with  $\mathcal{I} = \{F \subseteq H : (V,F) \text{ is a forest}\}.$ 

A basis is an spanning forest of the  ${\cal G}$ 

- Weighted matroid: is triple (E, I, w) where w is a positive weight vector (w<sub>ℓ</sub> is the weight of ℓ ∈ E).
- Maximum-weight basis:

$$\max_{X \in \mathcal{I}} \sum_{\ell \in X} w_{\ell}$$

• Can be solved *greedily*: At each step of the algorithm, add a new element of E with the largest weight so that the resulting set remains in  $\mathcal{I}$ .

- Weighted matroid  $G = (E, \mathcal{I}, \theta)$
- Set of basic actions  $\equiv$  ground set of matroid E
- For each i,  $(X_i(n))_{n\geq 1}$  is i.i.d. with Bernoulli of mean  $\theta_i$
- Each arm is a basis of G;  $\mathcal{M} \equiv$  set of bases of G

**Prior work:** 

- Uniform matroids (Anantharam et al. 1985): Regret LB
- Generic matroids (Kveton et al., 2014): OMM with regret  $\mathcal{O}\left(\frac{d}{\Delta_{\min}}\log(T)\right)$

- Weighted matroid  $G = (E, \mathcal{I}, \theta)$
- Set of basic actions  $\equiv$  ground set of matroid E
- For each i,  $(X_i(n))_{n\geq 1}$  is i.i.d. with Bernoulli of mean  $\theta_i$
- Each arm is a basis of G;  $\mathcal{M} \equiv$  set of bases of G

#### Prior work:

- Uniform matroids (Anantharam et al. 1985): Regret LB
- Generic matroids (Kveton et al., 2014): OMM with regret  $\mathcal{O}\Big(\frac{d}{\Delta_{\min}}\log(T)\Big)$

## Regret LB

#### Theorem

For all  $\theta$  and every weighted matroid  $G = (E, I, \theta)$ , the regret of uniformly good algorithm  $\pi$  satisfies

$$\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta) = \sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)} - \theta_i}{\mathrm{kl}(\theta_i, \theta_{\sigma(i)})},$$

where for any i

$$\sigma(i) = \arg\min_{\ell:(M^*\setminus \ell)\cup\{i\}\in\mathcal{I}}\theta_{\ell}.$$

- Tight LB, first explicit regret LB for matroid bandits
- Generalizes LB of (Anantharam et al., 1985) to matroids.
- Proof idea
  - Specialization of Graves-Lai result
  - $\bullet\,$  Choosing d-m box constraints in view of  $\sigma$
  - Lower bounding  $\Delta_M, M \in \mathcal{M}$  in terms of  $\sigma$

## Regret LB

#### Theorem

For all  $\theta$  and every weighted matroid  $G = (E, I, \theta)$ , the regret of uniformly good algorithm  $\pi$  satisfies

$$\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta) = \sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)} - \theta_i}{\mathrm{kl}(\theta_i, \theta_{\sigma(i)})},$$

where for any *i* 

$$\sigma(i) = \arg\min_{\ell:(M^*\setminus \ell)\cup\{i\}\in\mathcal{I}}\theta_{\ell}.$$

• Tight LB, first explicit regret LB for matroid bandits

• Generalizes LB of (Anantharam et al., 1985) to matroids.

- Proof idea
  - Specialization of Graves-Lai result
  - Choosing d-m box constraints in view of  $\sigma$
  - Lower bounding  $\Delta_M, M \in \mathcal{M}$  in terms of  $\sigma$

## Regret LB

#### Theorem

For all  $\theta$  and every weighted matroid  $G = (E, I, \theta)$ , the regret of uniformly good algorithm  $\pi$  satisfies

$$\liminf_{T \to \infty} \frac{R^{\pi}(T)}{\log(T)} \ge c(\theta) = \sum_{i \notin M^{\star}} \frac{\theta_{\sigma(i)} - \theta_i}{\mathrm{kl}(\theta_i, \theta_{\sigma(i)})},$$

where for any *i* 

$$\sigma(i) = \arg\min_{\ell:(M^*\setminus \ell)\cup\{i\}\in\mathcal{I}}\theta_{\ell}.$$

- Tight LB, first explicit regret LB for matroid bandits
- Generalizes LB of (Anantharam et al., 1985) to matroids.
- Proof idea
  - Specialization of Graves-Lai result
  - Choosing d-m box constraints in view of  $\sigma$
  - Lower bounding  $\Delta_M, M \in \mathcal{M}$  in terms of  $\sigma$

# **KL-OSM** Algorithm

### KL-OSM (KL-based Optimal Sampling for Matroids)

• Uses KL-UCB index attached to each basic action  $i \in E$ :

$$\omega_i(n) = \max\left\{q > \hat{\theta}_i(n) : t_i(n) \mathrm{kl}(\hat{\theta}_i(n), q) \le f(n)\right\}$$

with 
$$f(n) = \log(n) + 3\log(\log(n))$$
.

• Relies on GREEDY

```
Algorithm 2 KL-OSM
```

for  $n \ge 1$  do Select

$$M(n) \in \arg\max_{M \in \mathcal{M}} \sum_{i \in M} \omega_i(n)$$

using the GREEDY algorithm.

Play M(n), observe the rewards, and update  $t_i(n)$  and  $\hat{\theta}_i(n), \forall i \in M(n)$ . end for

## **KL-OSM** Algorithm

### KL-OSM (KL-based Optimal Sampling for Matroids)

• Uses KL-UCB index attached to each basic action  $i \in E$ :

$$\omega_i(n) = \max\left\{q > \hat{\theta}_i(n) : t_i(n) \mathrm{kl}(\hat{\theta}_i(n), q) \le f(n)\right\}$$

with 
$$f(n) = \log(n) + 3\log(\log(n))$$
.

• Relies on GREEDY

#### Algorithm 3 KL-OSM

 $\begin{array}{l} \text{for } n \geq 1 \ \text{do} \\ \text{Select} \end{array}$ 

$$M(n) \in \arg\max_{M \in \mathcal{M}} \sum_{i \in M} \omega_i(n)$$

using the GREEDY algorithm.

Play M(n), observe the rewards, and update  $t_i(n)$  and  $\hat{\theta}_i(n), \forall i \in M(n)$ . end for

#### Theorem

#### For any $\varepsilon > 0$ , the regret under KL-OSM satisfies

 $R(T) \le (1 + \varepsilon)c(\theta)\log(T) + \mathcal{O}(\log(\log(T)))$ 

• KL-OSM is asymptotically optimal:

$$\limsup_{T \to \infty} \frac{R(T)}{\log(T)} \le c(\theta)$$

- The first optimal algorithm for matroid bandits
- Runs in  $\mathcal{O}(d\log(d)T)$  (in the *independence oracle model*)

#### Theorem

For any  $\varepsilon > 0$ , the regret under KL-OSM satisfies

 $R(T) \le (1 + \varepsilon)c(\theta)\log(T) + \mathcal{O}(\log(\log(T)))$ 

• KL-OSM is asymptotically optimal:

$$\limsup_{T \to \infty} \frac{R(T)}{\log(T)} \le c(\theta)$$

- The first optimal algorithm for matroid bandits
- Runs in  $\mathcal{O}(d\log(d)T)$  (in the *independence oracle model*)

### Numerical Experiments: Spanning Trees



Combinatorial MABs: Bernoulli Rewards

### 2 Stochastic Matroid Bandits





- Arms have the same cardinality m (but otherwise arbitrary)
- Rewards  $X(n) \in [0,1]^d$  are arbitrary (oblivious adversary)
- Bandit feedback: only  $M(n)^{\top}X(n)$  is observed at round n.

Regret

$$R(T) = \max_{M \in \mathcal{M}} \mathbb{E}\left[\sum_{n=1}^{T} M^{\top} X(n)\right] - \mathbb{E}\left[\sum_{n=1}^{T} M(n)^{\top} X(n)\right].$$

 $\mathbb{E}[\cdot]$  is w.r.t. random seed of the algorithm.

# $\operatorname{COMB} EXP \text{ Algorithm}$

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

# $\operatorname{COMB} EXP \text{ Algorithm}$

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

$$\max_{M \in \mathcal{M}} M^{\top} X = \max_{\alpha \in \operatorname{conv}(\mathcal{M})} \alpha^{\top} X.$$

- Maintain a distribution  $q = \alpha/m$  over basic actions  $\{1, \ldots, d\}$ .
- q induces a distribution p over arms  $\mathcal{M}$ .
- Sample M from p, play it, and receive bandit feedback.
- Update q (create  $\tilde{q}$ ) based on feedback.
- Project  $\tilde{\alpha} = m\tilde{q}$  onto  $\operatorname{conv}(\mathcal{M})$ .
- Introduce exploration

#### Algorithm 4 COMBEXP

Initialization: Set  $q_0 = \mu^0$  (uniform distribution over [d]),  $\gamma, \eta \propto \frac{1}{\sqrt{T}}$  for  $n \ge 1$  do

Mixing: Let  $q'_{n-1} = (1-\gamma)q_{n-1} + \gamma\mu^0$ .

Decomposition: Select a distribution  $p_{n-1}$  over arms  $\mathcal M$  such that

$$\sum_{M} p_{n-1}(M)M = mq'_{n-1}.$$

Sampling: Select  $M(n) \sim p_{n-1}$  and receive reward  $Y_n = M(n)^\top X(n)$ . Estimation: Let  $\Sigma_{n-1} = \mathbb{E}_{M \sim p_{n-1}} \left[ M M^\top \right]$ . Set  $\tilde{X}(n) = Y_n \Sigma_{n-1}^+ M(n)$ . Update: Set  $\tilde{q}_n(i) \propto q_{n-1}(i) e^{\eta \tilde{X}_i(n)}, \ \forall i \in [d]$ . Projection: Set

$$q_n = \arg\min_{p \in \operatorname{conv}(\mathcal{M})} \operatorname{KL}\left(\frac{1}{m}p, \tilde{q}_n\right).$$

end for

## COMBEXP: Regret

#### Theorem

$$R^{\text{COMBEXP}}(T) \le 2\sqrt{m^3 T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1),$$

where  $\lambda_{\min}$  is the smallest nonzero eigenvalue of  $\mathbb{E}[MM^{\top}]$  when M is uniformly distributed and

$$\mu_{\min} = \min_{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_i.$$

For most problems  $\lambda_{\min} = \Omega(\frac{m}{d})$  and  $\mu_{\min}^{-1} = \mathcal{O}(\text{poly}(d/m))$ :

$$R(T) \sim \sqrt{m^3 dT \log \frac{d}{m}}.$$

## COMBEXP: Regret

#### Theorem

$$R^{\text{COMBEXP}}(T) \le 2\sqrt{m^3 T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1),$$

where  $\lambda_{\min}$  is the smallest nonzero eigenvalue of  $\mathbb{E}[MM^{\top}]$  when M is uniformly distributed and

$$\mu_{\min} = \min_{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_i.$$

For most problems  $\lambda_{\min} = \Omega(\frac{m}{d})$  and  $\mu_{\min}^{-1} = \mathcal{O}(\text{poly}(d/m))$ :

$$R(T) \sim \sqrt{m^3 dT \log \frac{d}{m}}.$$

## COMBEXP: Regret

#### Theorem

$$R^{\text{COMBEXP}}(T) \le 2\sqrt{m^3 T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1),$$

where  $\lambda_{\min}$  is the smallest nonzero eigenvalue of  $\mathbb{E}[MM^{\top}]$  when M is uniformly distributed and

$$\mu_{\min} = \min_{i} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} M_i.$$

For most problems  $\lambda_{\min} = \Omega(\frac{m}{d})$  and  $\mu_{\min}^{-1} = \mathcal{O}(\text{poly}(d/m))$ :

$$R(T) \sim \sqrt{m^3 dT \log \frac{d}{m}}.$$

## $\operatorname{COMBEXP}$ with Approximate Projection

Exact projection with finitely many operations may be impossible  $\implies$  COMBEXP with approximate projection.

#### Proposition

Assume that the projection step of COMBEXP is solved up to accuracy

$$\mathcal{O}\left(\frac{1}{n^2 \log^3(n)}\right), \quad \forall n \ge 1.$$

Then

$$R(T) \le 2\sqrt{2m^3T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1)$$

- The same regret scaling as for exact projection.
- Proof idea: Strong convexity of  $\mathrm{KL}$  w.r.t.  $\|\cdot\|_1$  + Properties of projection with  $\mathrm{KL}$

## $\operatorname{COMBEXP}$ with Approximate Projection

Exact projection with finitely many operations may be impossible  $\Longrightarrow {\rm COMBEXP}$  with approximate projection.

### Proposition

Assume that the projection step of  $\operatorname{COMBEXP}$  is solved up to accuracy

$$\mathcal{O}\left(\frac{1}{n^2\log^3(n)}\right), \quad \forall n \geq 1.$$

Then

$$R(T) \le 2\sqrt{2m^3T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1)$$

- The same regret scaling as for exact projection.
- Proof idea: Strong convexity of  $\mathrm{KL}$  w.r.t.  $\|\cdot\|_1$  + Properties of projection with  $\mathrm{KL}$

## $\operatorname{COMBEXP}$ with Approximate Projection

Exact projection with finitely many operations may be impossible  $\Longrightarrow {\rm COMBEXP}$  with approximate projection.

### Proposition

Assume that the projection step of  $\operatorname{COMBEXP}$  is solved up to accuracy

$$\mathcal{O}\left(\frac{1}{n^2\log^3(n)}\right), \quad \forall n \ge 1.$$

Then

$$R(T) \le 2\sqrt{2m^3T\left(d + \frac{m^{1/2}}{\lambda_{\min}}\right)\log\mu_{\min}^{-1}} + \mathcal{O}(1)$$

- The same regret scaling as for exact projection.
- Proof idea: Strong convexity of  $\mathrm{KL}$  w.r.t.  $\|\cdot\|_1$  + Properties of projection with  $\mathrm{KL}$

# COMBEXP: Complexity

#### Theorem

#### Let

$$c = \# eq. \operatorname{conv}(\mathcal{M}), \qquad s = \# ineq. \operatorname{conv}(\mathcal{M}).$$

Then, if the projection step of COMBEXP is solved up to accuracy  $\mathcal{O}(n^{-2}\log^{-3}(n)), \forall n \geq 1$ , COMBEXP after T rounds has time complexity

$$\mathcal{O}(T[\sqrt{s}(c+d)^3\log(T)+d^4]).$$

- Box inequality constraints:  $\mathcal{O}(T[c^2\sqrt{s}(c+d)\log(T)+d^4]).$
- Proof idea
  - Constructive proof of Carathéodory Theorem for decomposition
  - Barrier method for projection

# COMBEXP: Complexity

#### Theorem

#### Let

$$c = \# eq. \operatorname{conv}(\mathcal{M}), \qquad s = \# ineq. \operatorname{conv}(\mathcal{M}).$$

Then, if the projection step of COMBEXP is solved up to accuracy  $\mathcal{O}(n^{-2}\log^{-3}(n)), \forall n \geq 1$ , COMBEXP after T rounds has time complexity

$$\mathcal{O}(T[\sqrt{s}(c+d)^3\log(T)+d^4]).$$

- Box inequality constraints:  $\mathcal{O}(T[c^2\sqrt{s}(c+d)\log(T)+d^4]).$
- Proof idea
  - Constructive proof of Carathéodory Theorem for decomposition
  - Barrier method for projection

# COMBEXP: Complexity

#### Theorem

#### Let

$$c = \# eq. \operatorname{conv}(\mathcal{M}), \qquad s = \# ineq. \operatorname{conv}(\mathcal{M}).$$

Then, if the projection step of COMBEXP is solved up to accuracy  $\mathcal{O}(n^{-2}\log^{-3}(n)), \forall n \geq 1$ , COMBEXP after T rounds has time complexity

$$\mathcal{O}(T[\sqrt{s}(c+d)^3\log(T)+d^4]).$$

- Box inequality constraints:  $\mathcal{O}(T[c^2\sqrt{s}(c+d)\log(T)+d^4]).$
- Proof idea
  - Constructive proof of Carathéodory Theorem for decomposition
  - Barrier method for projection

| Algorithm                             | Regret (Symmetric Problems)                           |
|---------------------------------------|-------------------------------------------------------|
| Lower Bound (Audibert et al., 2013)   | $\Omega\left(m\sqrt{dT} ight)$ , if $d\geq 2m$        |
| COMBAND (Cesa-Bianchi & Lugosi, 2012) | $\mathcal{O}\left(\sqrt{m^3 dT\log rac{d}{m}} ight)$ |
| СомвЕХР                               | $\mathcal{O}\left(\sqrt{m^3 dT\log rac{d}{m}} ight)$ |

- Both COMBAND and COMBEXP are off the LB by a factor  $\sqrt{m\log(d/m)}$ .
- COMBAND relies on (approximate) sampling from  $\mathcal{M}$  whereas COMBEXP does convex optimization over  $conv(\mathcal{M})$ .

| Algorithm                             | Regret (Symmetric Problems)                           |
|---------------------------------------|-------------------------------------------------------|
| Lower Bound (Audibert et al., 2013)   | $\Omega\left(m\sqrt{dT} ight)$ , if $d\geq 2m$        |
| COMBAND (Cesa-Bianchi & Lugosi, 2012) | $\mathcal{O}\left(\sqrt{m^3 dT\log rac{d}{m}} ight)$ |
| СомвЕХР                               | $\mathcal{O}\left(\sqrt{m^3 dT\log rac{d}{m}} ight)$ |

- Both COMBAND and COMBEXP are off the LB by a factor  $\sqrt{m\log(d/m)}.$
- COMBAND relies on (approximate) sampling from  $\mathcal{M}$  whereas COMBEXP does convex optimization over  $\operatorname{conv}(\mathcal{M})$ .

## Complexity Example: Matchings

### Matchings in $\mathcal{K}_{m,m}$ :

•  $conv(\mathcal{M})$  is the set of all doubly stochastic  $m \times m$  matrices (*Birkhoff polytope*):

$$\operatorname{conv}(\mathcal{M}) = \left\{ Z \in \mathbb{R}^{m \times m}_+ : \sum_{k=1}^m z_{ik} = 1, \ \forall i, \ \sum_{k=1}^m z_{kj} = 1, \ \forall j \right\}.$$

• c = 2m and  $s = m^2$  (box constraints).

Complexity of COMEXP:  $\mathcal{O}(m^5T\log(T))$ 

• Complexity of COMBBAND:  $\mathcal{O}(m^{10}F(T))$  for some super-linear function F(T) (need for approximating a permanent at each round).

## Complexity Example: Matchings

### Matchings in $\mathcal{K}_{m,m}$ :

•  $conv(\mathcal{M})$  is the set of all doubly stochastic  $m \times m$  matrices (*Birkhoff polytope*):

$$\operatorname{conv}(\mathcal{M}) = \left\{ Z \in \mathbb{R}^{m \times m}_+ : \sum_{k=1}^m z_{ik} = 1, \ \forall i, \ \sum_{k=1}^m z_{kj} = 1, \ \forall j \right\}.$$

• c = 2m and  $s = m^2$  (box constraints).

Complexity of COMEXP:  $\mathcal{O}(m^5T\log(T))$ 

• Complexity of COMBBAND:  $\mathcal{O}(m^{10}F(T))$  for some super-linear function F(T) (need for approximating a permanent at each round).

Combinatorial MABs: Bernoulli Rewards

### 2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs



# Conclusion

### • Stochastic combinatorial MABs

- The first regret LB
- ESCB: best performance in terms of regret

### • Stochastic matroid bandits

- The first explicit regret LB
- KL-OSM: the first optimal algorithm

### • Adversarial combinatorial MABs

• COMBEXP: the same regret as state-of-the-art but with lower computational complexity

• More in the thesis!

# Conclusion

### • Stochastic combinatorial MABs

- The first regret LB
- ESCB: best performance in terms of regret

### • Stochastic matroid bandits

- The first explicit regret LB
- KL-OSM: the first optimal algorithm

### • Adversarial combinatorial MABs

• COMBEXP: the same regret as state-of-the-art but with lower computational complexity

• More in the thesis!

# Conclusion

### • Stochastic combinatorial MABs

- The first regret LB
- ESCB: best performance in terms of regret
- Stochastic matroid bandits
  - The first explicit regret LB
  - KL-OSM: the first optimal algorithm
- Adversarial combinatorial MABs
  - COMBEXP: the same regret as state-of-the-art but with lower computational complexity
- More in the thesis!

### Improvement to the proposed algorithms

- Tighter regret analysis of ESCB-1 (order-optimality conjecture)
- Can we amortize index computation?
- Analysis of THOMPSON SAMPLING for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

### Improvement to the proposed algorithms

- Tighter regret analysis of ESCB-1 (order-optimality conjecture)
- Can we amortize index computation?
- Analysis of THOMPSON SAMPLING for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

- Improvement to the proposed algorithms
  - Tighter regret analysis of ESCB-1 (order-optimality conjecture)
  - Can we amortize index computation?
- Analysis of THOMPSON SAMPLING for stochastic combinatorial MABs
- Stochastic combinatorial MABs under bandit feedback
- Projection-free optimal algorithm for bandit and semi-bandit feedbacks

### Publications

• Combinatorial bandits revisited

with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

- An optimal algorithm for stochastic matroid bandit optimization with A. Proutiere (AAMAS 2016)
- Spectrum bandit optimization with M. Lelarge and A. Proutiere (ITW 2013)
- Stochastic online shortest path routing: The value of feedback with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE TAC)

Thanks for your attention!

### Publications

• Combinatorial bandits revisited

with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

- An optimal algorithm for stochastic matroid bandit optimization with A. Proutiere (AAMAS 2016)
- Spectrum bandit optimization with M. Lelarge and A. Proutiere (ITW 2013)
- Stochastic online shortest path routing: The value of feedback with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE TAC)

Thanks for your attention!