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We are interested in learning transition matrices of multiple unknown
Markov chains, under some error metric:

@ with a finite budget n,
@ using a single trajectory on each chain,
@ and we wish to be competitive with an oracle, which is of some
properties of the chains.
Motivation:

@ Active exploration in MDPs, where one seeks to learn transition
kernel of an unknown MDP from a single trajectory

@ Active learning in rested Markov bandits
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K ergodic Markov chains are given, all defined on a finite state space S
with cardinality S. For each chain k,

@ Py transition matrix of k,

@ 7 stationary distribution of k, with ming 7 (x) > 0.
® Yps i (pseudo-)spectral gap of k.

o Introduce: Gi(z) = s Pi(w,y)(1 — Py(x,y)).

Initially all chains are assumed to be non-stationary with arbitrary initial
distributions.
@ At each step t > 1, the learner samples a chain k;, based on the past
decisions and the observed states, and observes the state Xy, ;.
o Rested Setting: The state of k; evolves according to P,. And
Xk,t = Xk’t,1 for all k& 75 kt.
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Some Definitions

@ Tj. 4 # of times chain £k is selected up to time ¢
@ Tj. .41 7 of times chain k is selected up to ¢, and it was in state

Introduce empirical stationary distributions 7y, ;:

and ﬁk,t, a-smoothed estimators for Py:

o+ Z,tglzg H{Xk,t’—l =, Xk:,t’ = y}
OéS + Tk@’t

ﬁk,t(xuy) = ) vxayes

Note: Laplace-smoothed estimator when ov = 1/5.

4/15



Performance Measure

The loss of an algorithm A, given budget n:

L.A_ n P ﬁn’.Q
s 3 R (P ) = B M

The learner wishes to design a sequential allocation strategy to adaptively
sample various MCs so that all transition matrices are learnt uniformly well
w.r.t. loss L.

Let 6 € (0,1). For a given algorithm A, under a loss function L, we wish
to find € := €(n, §) such that

P(Ln(A)>¢) <9,
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Comparison with Other Losses

Alternative loss: L/, (A) = maxy > || Py(z,-) — ﬁkn(w, 913

e L' incurs a high loss for a part of the state space that is rarely visited,
even though we have absolutely no control on the chain.

@ When some state x is reachable with a very small probability, T}, ;. »
may be very small thus yielding a large L, for all algorithms, while it
makes little sense to penalize an algorithm for such a "virtual” state.

Alternative loss: L (A) = maxy 3, ()] Pe(x, ) — Pen(z, )2
@ When n is “small”, 7, could differ significantly from 7. The use of
7 (x) does not seem reasonable as in a given sample path, the
algorithm might not have visited 2 enough even though 7 (z) is not
small. Yet using 7y ,,(x) makes more sense as it accounts for the
number of rounds the algorithm has actually visited x.
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Static Allocation

We have for any chain k: Tj nLin =T, —00 Dp Gr(T) -

Now, consider an oracle policy Agracle; Wwho is aware of s Gr(x) for
various chains. Using the above lemma and ;¢ (x| Tk,n = ., it would be
asymptotically optimal to allocate T}, ,, = nin samples to chain £, where

1 .
Nk = XZGk(Q:), with A := Z ZGk(x)
zeS ke[K] z€S

The corresponding loss would satisfy: 1L, (Aoracle) —n—oo A -

Definition (Uniformly Good Algorithm)

An algorithm A is said to be uniformly good if, for any problem instance,
it achieves the asymptotically optimal loss when n grows large; that is,
lim;, 00 nLy,(A) = A for all problem instances.
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Algorithm

We present BA-MC (Bandit Allocation for Markov Chains):
@ Designed based on the optimistic principle

o Easy to implement

BA-MC maintains a index function b ; for each chain £ at time ¢.
@ Index by ; is constructed as the UCB on the loss function Ly ;.

@ After an initialization phase, it simply selects the chain with the
largest index by, ; in each round t.
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The Algorithm

We present BA-MC (Bandit Allocation for Markov Chains), designed
based on the optimism in face of uncertainty principle as in stochastic
bandits.

BA-MC maintains an index function by, . for each chain k:

Index function for chain &k

T3/2
28 . 6.65%/2 By
bitp1 = —— ° Poi(I- D
=g ) Gu@t T Z(Tkzt+a52z\/’” be)(2:9)
Ty >0 z€S
N 28325 1
Tyt T Th,zot + S

log(c)
c=1.1), and where Gy ,(z) := > Pei(I — Py (z,y).

where 8 := clog ( [M—‘ 61252), with ¢ > 1 being an arbitrary choice (we choose
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Algorithm

The design of index by . comes from the application of empirical Bernstein
concentration for a-smoothed estimators (Lemma 4) to Ly ;.

= bryp1 > Ly with high probability.

Algorithm 1 BA-MC- Bandit Allocation for Markov Chains

Input: Confidence parameter §, budget n, state space S;
Initialize: Sample each chain twice;
fort=2K+1,...,ndo

Sample chain k; € argmaxy, by ¢41;

Observe X}, ;, and update T}, .+ and T}, 4;
end for

10/15



Performance

Theorem ( , Generic Performance)

Let 6 € (0,1). Then, for any budget n > 4K, with probability at least
1-9,

n

E 304K 5232 +6(K2S2>.

n n2

The above bound holds even if the Markov chains Py, k € [K] are
reducible or periodic.
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Performance

Introduce for any chain k:

Hy, = Ze;gﬂk(a:)l and m, = glelgﬂk(x) > 0,

and recall A=), > Gp(x) and np, = 2o i’“(‘”)_
Theorem ( )

Let § € (0,1), and assume that n > ncytofr, where

2
Neutorf *= K maxy, (’y,,i% log (%1/ﬂlzl>) . Then, with probability at
least 1 — 24,

26A  Cof*?  ~
—+ 372 +0(n™7),

L, <

where Cy := 150K +/SA maxy, Hy, + 3v/ SA maxy, %
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Performance

Theorem ( , Asymptotic Performance)

We have limsup,, .., nL, = A.

Three regimes depending on the budget n:

e Small-budget (n > 4K): L, = 6(%32)

o Larger-than-cutoff-budget (n > neytoff): Ln = (5(% + %)

e Asymptotic (n — c0): nL, — A
L,(A) - % may be thought of as the pseudo-excess loss of A: when
n > Neutoff, the pseudo-excess loss under BA-MC vanishes at a rate
O(Con~3/?), where Cj is a problem-dependent quantity.
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Connection to Active Learning

Closest to our problem is “active learning in bandits” [Antos et al. (2010),
Carpentier et al. (2011), Carpentier et al. (2015)]:

e Loss L, = maxy E[(ur — /lk,n)Q]
© Regret R, =L, — L},

Algorithms with R,, = O(n~3/2) are proposed in [Antos et al. (2010),
Carpentier et al. (2011)].
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Conclusion and Future Directions

Learning transition matrices of ergodic Markov chains was addressed:
@ The notions of loss (for various distance functions)
@ Characterization of a uniformly good algorithm
o Introduced BA-MC, whose (problem-dependent) excess-loss grows as
O(n—S/Q)
Future directions:.
@ Lower bounds

@ Extension to non-ergodic chains
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