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Problem

We are interested in learning transition matrices of multiple unknown
Markov chains, under some error metric:

with a finite budget n,

using a single trajectory on each chain,

and we wish to be competitive with an oracle, which is of some
properties of the chains.

Motivation:

Active exploration in MDPs, where one seeks to learn transition
kernel of an unknown MDP from a single trajectory

Active learning in rested Markov bandits
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Model

K ergodic Markov chains are given, all defined on a finite state space S
with cardinality S. For each chain k,

Pk: transition matrix of k,

πk: stationary distribution of k, with minx πk(x) > 0.

γps,k: (pseudo-)spectral gap of k.

Introduce: Gk(x) =
∑

y∈S Pk(x, y)(1− Pk(x, y)).

Initially all chains are assumed to be non-stationary with arbitrary initial
distributions.

At each step t ≥ 1, the learner samples a chain kt, based on the past
decisions and the observed states, and observes the state Xkt,t.

Rested Setting: The state of kt evolves according to Pkt . And
Xk,t = Xk,t−1 for all k 6= kt.
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Some Definitions

Tk,t: # of times chain k is selected up to time t

Tk,x,t: # of times chain k is selected up to t, and it was in state x

Introduce empirical stationary distributions π̂k,t:

π̂k,t(x) :=
Tk,x,n
Tk,n

, ∀x ∈ S

and P̂k,t, α-smoothed estimators for Pk:

P̂k,t(x, y) :=
α+

∑t
t′=2 I{Xk,t′−1 = x,Xk,t′ = y}

αS + Tk,x,t
, ∀x, y ∈ S

Note: Laplace-smoothed estimator when α = 1/S.
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Performance Measure

The loss of an algorithm A, given budget n:

Ln(A) := max
k∈[K]

∑
x∈S

π̂k,n(x)‖Pk(x, ·)− P̂k,n(x, ·)‖22

The learner wishes to design a sequential allocation strategy to adaptively
sample various MCs so that all transition matrices are learnt uniformly well
w.r.t. loss Ln.

Let δ ∈ (0, 1). For a given algorithm A, under a loss function L, we wish
to find ε := ε(n, δ) such that

P (Ln(A) ≥ ε) ≤ δ .
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Comparison with Other Losses

Alternative loss: L′n(A) = maxk
∑

x ‖Pk(x, ·)− P̂k,n(x, ·)‖22
L′ incurs a high loss for a part of the state space that is rarely visited,
even though we have absolutely no control on the chain.

When some state x is reachable with a very small probability, Tk,x,n
may be very small thus yielding a large L′n for all algorithms, while it
makes little sense to penalize an algorithm for such a “virtual” state.

Alternative loss: L′′n(A) = maxk
∑

x πk(x)‖Pk(x, ·)− P̂k,n(x, ·)‖22
When n is “small”, π̂k,n could differ significantly from πk. The use of
πk(x) does not seem reasonable as in a given sample path, the
algorithm might not have visited x enough even though πk(x) is not
small. Yet using π̂k,n(x) makes more sense as it accounts for the
number of rounds the algorithm has actually visited x.
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Static Allocation

Lemma

We have for any chain k: Tk,nLk,n →Tk,n→∞
∑

xGk(x) .

Now, consider an oracle policy Aoracle, who is aware of
∑

x∈S Gk(x) for
various chains. Using the above lemma and

∑
k∈[K] Tk,n = n, it would be

asymptotically optimal to allocate Tk,n = ηkn samples to chain k, where

ηk :=
1

Λ

∑
x∈S

Gk(x) , with Λ :=
∑
k∈[K]

∑
x∈S

Gk(x) .

The corresponding loss would satisfy: nLn(Aoracle)→n→∞ Λ .

Definition (Uniformly Good Algorithm)

An algorithm A is said to be uniformly good if, for any problem instance,
it achieves the asymptotically optimal loss when n grows large; that is,
limn→∞ nLn(A) = Λ for all problem instances.
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The BA-MC Algorithm

We present BA-MC (Bandit Allocation for Markov Chains):

Designed based on the optimistic principle

Easy to implement

BA-MC maintains a index function bk,t for each chain k at time t.

Index bk,t is constructed as the UCB on the loss function Lk,t.

After an initialization phase, it simply selects the chain with the
largest index bk,t in each round t.
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The BA-MC Algorithm

We present BA-MC (Bandit Allocation for Markov Chains), designed
based on the optimism in face of uncertainty principle as in stochastic
bandits.

BA-MC maintains an index function bk,· for each chain k:

Index function for chain k

bk,t+1 =
2β

Tk,t

∑
x:Tk,x,t>0

Ĝk,t(x) +
6.6β3/2

Tk,t

∑
x∈S

T
3/2
k,x,t

(Tk,x,t + αS)2

∑
y∈S

√
P̂k,t(I − P̂k,t)(x, y)

+
28β2S

Tk,t

∑
x:Tk,x,t>0

1

Tk,x,t + αS

where β := c log
(⌈

log(n)
log(c)

⌉
6KS2

δ

)
, with c > 1 being an arbitrary choice (we choose

c = 1.1), and where Ĝk,t(x) :=
∑
x P̂k,t(I − P̂k,t)(x, y).
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The BA-MC Algorithm

The design of index bk,· comes from the application of empirical Bernstein
concentration for α-smoothed estimators (Lemma 4) to Lk,t.

⇒ bk,t+1 ≥ Lk,t with high probability.

Algorithm 1 BA-MC– Bandit Allocation for Markov Chains

Input: Confidence parameter δ, budget n, state space S;
Initialize: Sample each chain twice;
for t = 2K + 1, . . . , n do

Sample chain kt ∈ argmaxk bk,t+1;
Observe Xk,t, and update Tk,x,t and Tk,t;

end for
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Performance

Theorem (BA-MC, Generic Performance)

Let δ ∈ (0, 1). Then, for any budget n ≥ 4K, with probability at least
1− δ,

Ln ≤
304KS2β2

n
+ Õ

(K2S2

n2

)
.

The above bound holds even if the Markov chains Pk, k ∈ [K] are
reducible or periodic.
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Performance

Introduce for any chain k:

Hk =
∑
x∈S

πk(x)−1 and πk := min
x∈S

πk(x) > 0,

and recall Λ =
∑

k

∑
xGk(x) and ηk =

∑
xGk(x)

Λ .

Theorem (BA-MC)

Let δ ∈ (0, 1), and assume that n ≥ ncutoff, where

ncutoff := K maxk

(
300

γps,kπk
log
(

2K
δ

√
π−1
k

))2
. Then, with probability at

least 1− 2δ,

Ln ≤
2βΛ

n
+
C0β

3/2

n3/2
+ Õ(n−2) ,

where C0 := 150K
√
SΛ maxkHk + 3

√
SΛ maxk

Hk
ηk
.
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Performance

Theorem (BA-MC, Asymptotic Performance)

We have lim supn→∞ nLn = Λ .

Three regimes depending on the budget n:

Small-budget (n ≥ 4K): Ln = Õ(KS
2

n )

Larger-than-cutoff-budget (n ≥ ncutoff): Ln = Õ(Λ
n + C0

n3/2 )

Asymptotic (n→∞): nLn → Λ

Ln(A)− 2βΛ
n may be thought of as the pseudo-excess loss of A: when

n ≥ ncutoff, the pseudo-excess loss under BA-MC vanishes at a rate
Õ(C0n

−3/2), where C0 is a problem-dependent quantity.

13 / 15



Connection to Active Learning

Closest to our problem is “active learning in bandits” [Antos et al. (2010),
Carpentier et al. (2011), Carpentier et al. (2015)]:

Loss Ln = maxk E[(µk − µ̂k,n)2]

Regret Rn = Ln − L?n
Algorithms with Rn = Õ(n−3/2) are proposed in [Antos et al. (2010),
Carpentier et al. (2011)].
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Conclusion and Future Directions

Learning transition matrices of ergodic Markov chains was addressed:

The notions of loss (for various distance functions)

Characterization of a uniformly good algorithm

Introduced BA-MC, whose (problem-dependent) excess-loss grows as
Õ(n−3/2)

Future directions:.

Lower bounds

Extension to non-ergodic chains
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