

Learning Multiple Markov Chains via Adaptive Allocation

Mohammad Sadegh Talebi and Odalric-Ambrym Maillard

Inria Lille - Nord Europe

NeurIPS 2019

Problem

We are interested in learning transition matrices of multiple unknown Markov chains, under some error metric:

- with a finite budget n,
- using a single trajectory on each chain,
- and we wish to be competitive with an oracle, which is of some properties of the chains.

Motivation:

- Active exploration in MDPs, where one seeks to learn transition kernel of an unknown MDP from a single trajectory
- Active learning in rested Markov bandits

Model

K ergodic Markov chains are given, all defined on a finite state space $\mathcal S$ with cardinality S. For each chain k,

- P_k : transition matrix of k,
- π_k : stationary distribution of k, with $\min_x \pi_k(x) > 0$.
- $\gamma_{\mathsf{ps},k}$: (pseudo-)spectral gap of k.
- Introduce: $G_k(x) = \sum_{y \in \mathcal{S}} P_k(x, y) (1 P_k(x, y)).$

Initially all chains are assumed to be non-stationary with arbitrary initial distributions.

- At each step $t \ge 1$, the learner samples a chain k_t , based on the past decisions and the observed states, and observes the state $X_{k_t,t}$.
- Rested Setting: The state of k_t evolves according to P_{k_t} . And $X_{k,t} = X_{k,t-1}$ for all $k \neq k_t$.

Some Definitions

- $T_{k,t}$: # of times chain k is selected up to time t
- $T_{k,x,t}$: # of times chain k is selected up to t, and it was in state x Introduce empirical stationary distributions $\hat{\pi}_{k,t}$:

$$\hat{\pi}_{k,t}(x) := \frac{T_{k,x,n}}{T_{k,n}}, \quad \forall x \in \mathcal{S}$$

and $\widehat{P}_{k,t}$, α -smoothed estimators for P_k :

$$\widehat{P}_{k,t}(x,y) := \frac{\alpha + \sum_{t'=2}^{t} \mathbb{I}\{X_{k,t'-1} = x, X_{k,t'} = y\}}{\alpha S + T_{k,x,t}}, \quad \forall x, y \in \mathcal{S}$$

Note: Laplace-smoothed estimator when $\alpha = 1/S$.

Performance Measure

The loss of an algorithm A, given budget n:

$$L_n(\mathcal{A}) := \max_{k \in [K]} \sum_{x \in S} \hat{\pi}_{k,n}(x) \|P_k(x,\cdot) - \widehat{P}_{k,n}(x,\cdot)\|_2^2$$

The learner wishes to design a sequential allocation strategy to adaptively sample various MCs so that all transition matrices are learnt uniformly well w.r.t. loss L_n .

Let $\delta\in(0,1).$ For a given algorithm $\mathcal A$, under a loss function L, we wish to find $\varepsilon:=\varepsilon(n,\delta)$ such that

$$\mathbb{P}\left(L_n(\mathcal{A}) \geq \varepsilon\right) \leq \delta.$$

Comparison with Other Losses

Alternative loss:
$$L'_n(\mathcal{A}) = \max_k \sum_x \|P_k(x,\cdot) - \widehat{P}_{k,n}(x,\cdot)\|_2^2$$

- ullet L' incurs a high loss for a part of the state space that is rarely visited, even though we have absolutely no control on the chain.
- When some state x is reachable with a very small probability, $T_{k,x,n}$ may be very small thus yielding a large L_n' for all algorithms, while it makes little sense to penalize an algorithm for such a "virtual" state.

Alternative loss:
$$L_n''(\mathcal{A}) = \max_k \sum_x \pi_k(x) \|P_k(x,\cdot) - \widehat{P}_{k,n}(x,\cdot)\|_2^2$$

• When n is "small", $\hat{\pi}_{k,n}$ could differ significantly from π_k . The use of $\pi_k(x)$ does not seem reasonable as in a given sample path, the algorithm might not have visited x enough even though $\pi_k(x)$ is not small. Yet using $\widehat{\pi}_{k,n}(x)$ makes more sense as it accounts for the number of rounds the algorithm has actually visited x.

Static Allocation

Lemma

We have for any chain $k: T_{k,n}L_{k,n} \to_{T_{k,n}\to\infty} \sum_x G_k(x)$.

Now, consider an oracle policy $\mathcal{A}_{\mathrm{oracle}}$, who is aware of $\sum_{x \in \mathcal{S}} G_k(x)$ for various chains. Using the above lemma and $\sum_{k \in [K]} T_{k,n} = n$, it would be asymptotically optimal to allocate $T_{k,n} = \eta_k n$ samples to chain k, where

$$\eta_k := rac{1}{\Lambda} \sum_{x \in \mathcal{S}} G_k(x) \,, \quad ext{with} \quad \Lambda := \sum_{k \in [K]} \sum_{x \in \mathcal{S}} G_k(x) \,.$$

The corresponding loss would satisfy: $nL_n(\mathcal{A}_{oracle}) \to_{n \to \infty} \Lambda$.

Definition (Uniformly Good Algorithm)

An algorithm $\mathcal A$ is said to be uniformly good if, for any problem instance, it achieves the asymptotically optimal loss when n grows large; that is, $\lim_{n\to\infty} nL_n(\mathcal A) = \Lambda$ for all problem instances.

The **BA-MC** Algorithm

We present BA-MC (Bandit Allocation for Markov Chains):

- Designed based on the optimistic principle
- Easy to implement

BA-MC maintains a index function $b_{k,t}$ for each chain k at time t.

- ullet Index $b_{k,t}$ is constructed as the UCB on the loss function $L_{k,t}$.
- ullet After an initialization phase, it simply selects the chain with the largest index $b_{k,t}$ in each round t.

The **BA-MC** Algorithm

We present **BA-MC** (Bandit Allocation for Markov Chains), designed based on the optimism in face of uncertainty principle as in stochastic bandits.

BA-MC maintains an index function b_k , for each chain k:

Index function for chain k

$$b_{k,t+1} = \frac{2\beta}{T_{k,t}} \sum_{x:T_{k,x,t}>0} \widehat{G}_{k,t}(x) + \frac{6.6\beta^{3/2}}{T_{k,t}} \sum_{x\in\mathcal{S}} \frac{T_{k,x,t}^{3/2}}{(T_{k,x,t} + \alpha S)^2} \sum_{y\in\mathcal{S}} \sqrt{\widehat{P}_{k,t}(I - \widehat{P}_{k,t})(x,y)} + \frac{28\beta^2 S}{T_{k,t}} \sum_{x:T_{k,x,t}>0} \frac{1}{T_{k,x,t} + \alpha S}$$

where $\beta:=c\log\left(\left\lceil\frac{\log(n)}{\log(c)}\right\rceil\frac{6KS^2}{\delta}\right)$, with c>1 being an arbitrary choice (we choose c=1.1), and where $\widehat{G}_{k,t}(x):=\sum_x\widehat{P}_{k,t}(I-\widehat{P}_{k,t})(x,y)$.

The **BA-MC** Algorithm

The design of index $b_{k,\cdot}$ comes from the application of empirical Bernstein concentration for α -smoothed estimators (Lemma 4) to $L_{k,t}$.

 $\Rightarrow b_{k,t+1} \geq L_{k,t}$ with high probability.

Algorithm 1 BA-MC- Bandit Allocation for Markov Chains

```
Input: Confidence parameter \delta, budget n, state space \mathcal{S}; Initialize: Sample each chain twice; for t=2K+1,\ldots,n do Sample chain k_t\in \operatorname{argmax}_k b_{k,t+1}; Observe X_{k,t}, and update T_{k,x,t} and T_{k,t}; end for
```

Performance

Theorem (BA-MC, Generic Performance)

Let $\delta \in (0,1)$. Then, for any budget $n \geq 4K$, with probability at least $1-\delta$,

$$L_n \le \frac{304KS^2\beta^2}{n} + \widetilde{\mathcal{O}}\Big(\frac{K^2S^2}{n^2}\Big) .$$

The above bound holds even if the Markov chains $P_k, k \in [K]$ are reducible or periodic.

Performance

Introduce for any chain k:

$$H_k = \sum_{x \in \mathcal{S}} \pi_k(x)^{-1} \text{ and } \underline{\pi}_k := \min_{x \in \mathcal{S}} \pi_k(x) > 0,$$

and recall $\Lambda = \sum_k \sum_x G_k(x)$ and $\eta_k = \frac{\sum_x G_k(x)}{\Lambda}.$

Theorem (BA-MC)

Let $\delta \in (0,1)$, and assume that $n \geq n_{\text{cutoff}}$, where

$$n_{\mathit{cutoff}} := K \max_k \left(\frac{300}{\gamma_{\mathit{ps},k} \underline{\pi}_k} \log \left(\frac{2K}{\delta} \sqrt{\underline{\pi}_k^{-1}} \right) \right)^2$$
. Then, with probability at least $1 - 2\delta$,

$$L_n \le \frac{2\beta\Lambda}{n} + \frac{C_0\beta^{3/2}}{n^{3/2}} + \widetilde{\mathcal{O}}(n^{-2}),$$

where
$$C_0 := 150K\sqrt{S\Lambda \max_k H_k} + 3\sqrt{S\Lambda} \max_k \frac{H_k}{\eta_k}$$
.

Performance

Theorem (BA-MC, Asymptotic Performance)

We have $\limsup_{n\to\infty} nL_n = \Lambda$.

Three regimes depending on the budget n:

- ullet Small-budget $(n \geq 4K)$: $L_n = \widetilde{\mathcal{O}}(rac{KS^2}{n})$
- Larger-than-cutoff-budget $(n \geq n_{\mathsf{cutoff}})$: $L_n = \widetilde{\mathcal{O}}(\frac{\Lambda}{n} + \frac{C_0}{n^{3/2}})$
- Asymptotic $(n \to \infty)$: $nL_n \to \Lambda$

 $L_n(\mathcal{A})-\frac{2\beta\Lambda}{n}$ may be thought of as the *pseudo-excess loss* of \mathcal{A} : when $n\geq n_{\mathrm{cutoff}}$, the pseudo-excess loss under **BA-MC** vanishes at a rate $\widetilde{\mathcal{O}}(C_0n^{-3/2})$, where C_0 is a problem-dependent quantity.

Connection to Active Learning

Closest to our problem is "active learning in bandits" [Antos et al. (2010), Carpentier et al. (2011), Carpentier et al. (2015)]:

- Loss $L_n = \max_k \mathbb{E}[(\mu_k \hat{\mu}_{k,n})^2]$
- Regret $R_n = L_n L_n^{\star}$

Algorithms with $R_n=\widetilde{\mathcal{O}}(n^{-3/2})$ are proposed in [Antos et al. (2010), Carpentier et al. (2011)].

Conclusion and Future Directions

Learning transition matrices of ergodic Markov chains was addressed:

- The notions of loss (for various distance functions)
- Characterization of a uniformly good algorithm
- \bullet Introduced BA-MC, whose (problem-dependent) excess-loss grows as $\widetilde{\mathcal{O}}(n^{-3/2})$

Future directions:.

- Lower bounds
- Extension to non-ergodic chains