RECHERCHE

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYG

Wireless Sensor Networks in a Nutshell

Saisons Croisées France – South Africa Stellenbosch University, August 2012

Pr. Fabrice Valois, Université de Lyon, INSA-Lyon, INRIA fabrice.valois@insa-lyon.fr

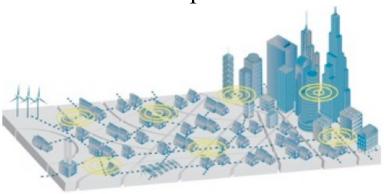
- A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

- A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

A short introduction to the CITI lab.



Details on: http://citi.insa-lyon.fr/



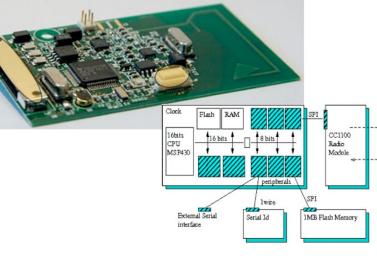
Urbanet, INRIA research team

- ✓ Urbanet (leader: Dr. H. Rivano) focuses on
 - Context: Smart cities, digital societies
 - Focus on *capillary networks* (generally speaking: wireless sensor and actuator networks + wireless multi-hop mesh networks)
 - Goal: to provide networking optimization mechanisms and networking protocols to support ambient services

- ✓ A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

Wireless Sensor Networks: Applications & Constraints

- Key entities for the Internet of Things
- Application-based networks (*aka* data-centric)
 - Physical measures using a physical sensor (water-metering, temperature control, etc.)
 - Coverage problem on a monitored area (intrusion detection, environment monitoring, wild animals tracking, etc.)
- Convergecast trafic to reach the sink node(s):
 - Alarms; periodical monitoring; request/response
 - Multi-hop paradigm from source to destination
 - Nodes to nodes trafic is limited



Sink

Wireless Sensor Networks: Applications & Constraints (cont'd)

- WSN networks topology properties
 - Random or regular (grid, line)
 - Network degree vary from 4/5 nodes (agricultural sensors)
 to thousand (urban networks for water-metering)
 - Network diameter varies from 3/4 hops to 10
 - Static nodes but the topology may be dynamic (to due sleeping mode, the volatility of the radio channel, etc.)
- Hardware properties
 - Limited computation capability
 - Low memory
 - Embedded system
 - Lifetime
 - Low cost (low quality??)

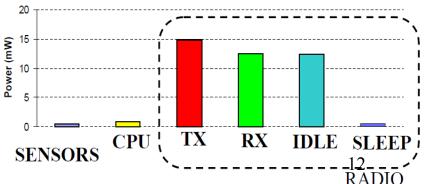
- ✓ A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

- Key issue: to maximize the network liftetime, defined as
 - Dead of the 1st wireless sensor node
 - or... Loss of connectivity between node(s) and the sink(s)
 - or... Coverage problem failed

 \checkmark

 \rightarrow Network lifetime = 10 years

Energy issue (cont'd)


- Key issue: to maximize the network liftetime, defined as
 - Dead of the 1st wireless sensor node
 - or... Loss of connectivity between node(s) and the sink(s)
 - or... Coverage problem failed

 \checkmark

 \rightarrow Network lifetime = 10 years

- Focus on the radio transmission
 - In terms of energy consumption, to transmit 1 bit requires more than 1'000 CPU-cycles
 - Energy consumption distribution Power consumption of node subsystems

- Network lifetime optimization:
 - Less for more!
 (less transmission for more duration)
- All the opportunities we have:
 - Low energy consumption hardware system
 - Energy harvesting system
 - Energy-efficient radio interfaces
 - Sleeping mode for sensor nodes and efficient ressource sharing
 - Energy-aware routing protocol (or, at least, energy-efficient routing protocol)
 - Data-aggregation

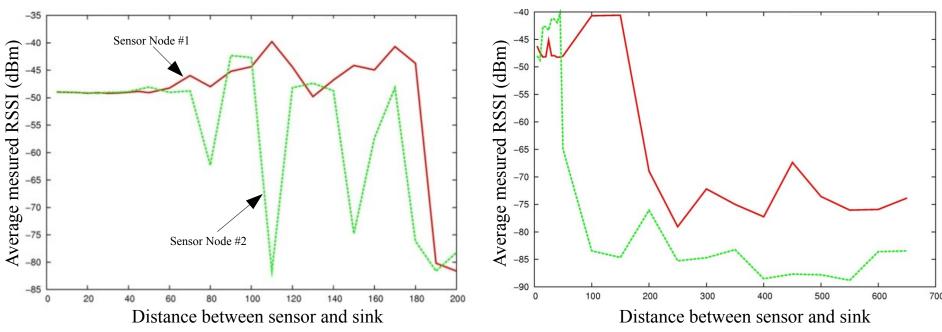
- Network lifetime optimization:
 - Less for more!
 (less transmission for more duration)
- All the opportunities we have:
 - Low energy consumption hardware system
 - Energy harvesting system
 - Energy-efficient radio interfaces
 - Sleeping mode for sensor nodes and efficient ressource sharing
 - Energy-aware routing protocol (or, at least, energy-efficient routing protocol)
 - Data-aggregation

- ✓ A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

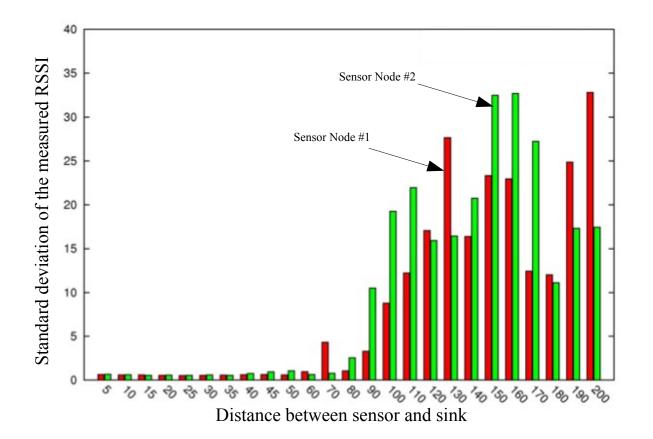
Radio channel properties

- ✓ French project ANR ARESA (2006-2009):
 - More than 40 nodes (indoor/outdoor)
 - Trace with more than 400'000 packets
- Ph.D. of K. Heurtefeux (2009):
 - Appartment, CITI, soccer playground
- We investigate the RSSI behavior (Radio Strenght Indicator)

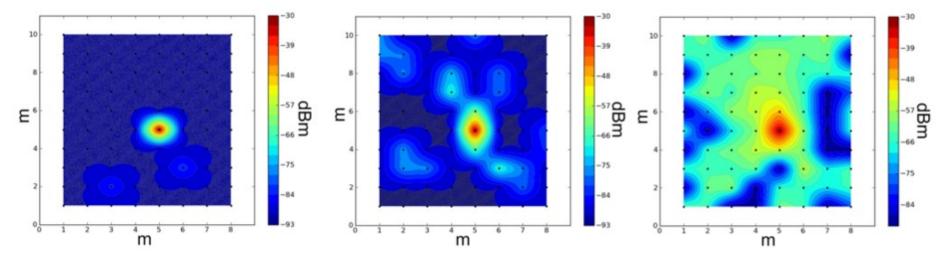
- Results are material-dependent
- Opportunistic radio links, asymmetric property
- Radio channel is not stable in space and time
- Other well-known phenomenon : fading, shadowing, interferences



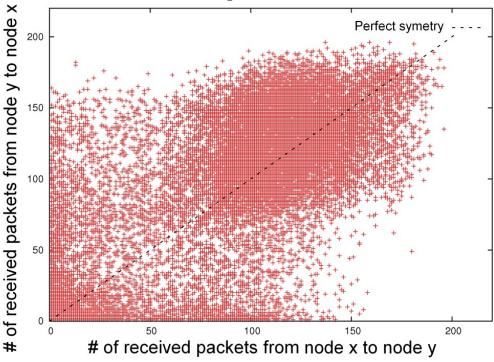
Some RSSI exemples (appartment, CITI lab)


- Hardware-dependent
- Environment-dependent

RSSI face to the distance

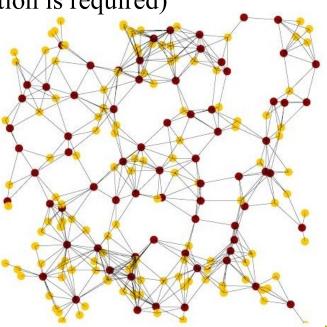

RSSI variability (standard deviation)

Radio propagation is non-isotropric



Radio propagation on the SensLab testbed – Strasbourg site – (-30 dBm, -15 dBm, 0 dBm)

- Radio links are not always symetric
 - Hardware-dependent, time-dependent, space-dependent
 - On the SensLab testbed (Grenoble site), more than 40% of radio links are non symetric


- ✓ A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

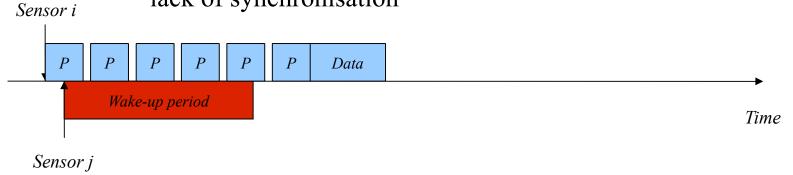
- MAC protocols (*Medium Access Control*)
- Goal: distributed and *fair* sharing of the radio channel using local information (1-hop neighborhood information), and with low collision probability
 - Deterministic Access (synchronisation is required)
 - Random Access (not necessarly using synchronisation)

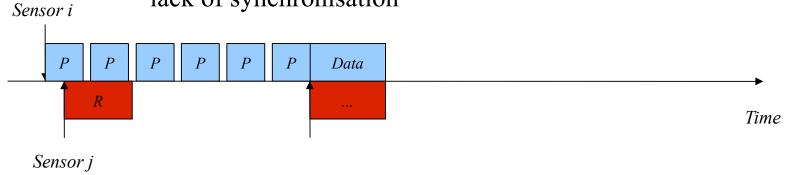
Deterministic access:

√

- Local scheduling is defined
- Close to a TDMA approach (*Time Division Multiple Access*)
- Each slot-time is allocated to a dedicated node

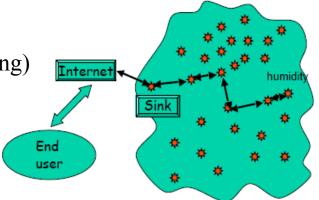
- Requires a fine synchronisation
 - Non suitable for network dynamicity
 - Not easy to cope with variable trafic intensity


- Contention-based random access based
 - Based on a CSMA-like protocol but including sleeping mode for sensor nodes (duty-cycle mechanism)
 - 2 families : w/o Synchronisation & w/ Synchronisation
- ✓ Without synchronisation (BMAC, XMAC, ...)
 - Using preamble sampling strategy
 - Nodes wake up periodically but at different time due to the lack of synchronisation


- Contention-based random access based
 - Based on a CSMA-like protocol but including sleeping mode for sensor nodes (duty-cycle mechanism)
 - 2 families : w/o Synchronisation & w/ Synchronisation
- ✓ Without synchronisation (BMAC, XMAC, ...)
 - Using preamble sampling strategy
 - Nodes wake up periodically but at different time due to the lack of synchronisation

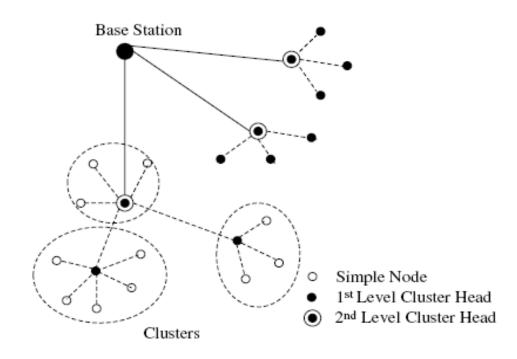
- Contention-based random access based
 - Based on a CSMA-like protocol but including sleeping mode for sensor nodes (duty-cycle mechanism)
 - 2 families : w/o Synchronisation & w/ Synchronisation
- ✓ Without synchronisation (BMAC, XMAC, ...)
 - Using preamble sampling strategy
 - Nodes wake up periodically but at different time due to the lack of synchronisation

- Contention-based random access based
 - Based on a CSMA-like protocol but including sleeping mode for sensor nodes (duty-cycle mechanisme)
 - 2 families : w/o Synchronisation & w/ Synchronisation
- Synchronised (SMAC, Sift, ...)
 - Common clock
 - Periodical rendez-vous point



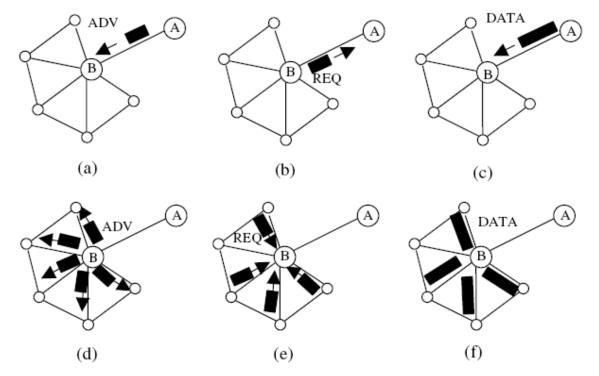
- Contention-based random access based
 - Based on a CSMA-like protocol but including sleeping mode for sensor nodes (duty-cycle mechanisme)
 - 2 families : w/o Synchronisation & w/ Synchronisation
- Synchronised (SMAC, Sift, ...)
 - Common clock
 - Periodical rendez-vous point

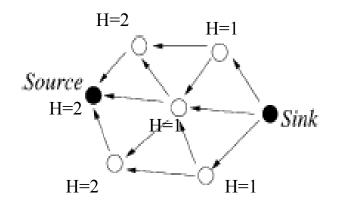
Routing protocol and data dissemination


- Key idea: shortest path (in terms of either number of hops or euclidian distance or energy consumed)
- Some protocols come from mobile ad hoc networks (MANET)
 - But not really suitable because of too important overhead, huge signalling (periodical beacon and route management), energy wasting
- Dedicated protocols:
 - Hierarchical approaches
 - Location of Interests (content based routing)
 - Gradient-based routing protocols
 - Geographic (using GPS coordinates)
 - But also: multi-paths, QoS based, etc.

- Hierarchical approaches
 - Using clusters, virtual backbone, cluster-tree, etc.

- Location of interests
 - Content-based routing protocols
 - Publish / subscribe policies

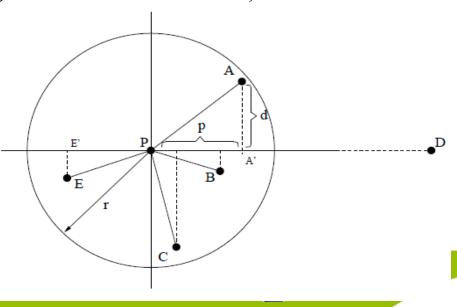



Fig. 3. SPIN protocol. Node A starts by advertising its data to node B (a). Node B responds by sending a request to node A (b). After receiving the requested data (c), node B then sends out advertisements to its neighbors (d), who in turn send requests back to B (e-f).

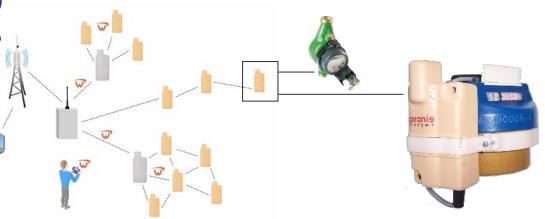
VINRIA

31

- Gradient routing protocol:
 - Flooding of an *init* packet, from the sink to the whole network
 - At each step, to increment the counter value



- Geographic approaches
 - Each node owns a unique Id. and a coordinate (x,y,z)"
 - Absolute coordinates (GPS) or virtual coordinates
 - Assume the sink location / sink coordinates
 - Assume that a *well-known* function f(x) exists such as: $f(Id.) \rightarrow (x, y)$
 - The next forwarder is a neighbr which closer to the destination
 - Beacon-based (neighborhood is known a priori)
 - Beaconless (neighborhood is never known)



- ✓ A short overview of the CITI lab
- Wireless Sensor Networks : Key applications & constraints
- Energy consumption and network *lifetime*
- Radio channel properties
- Key results
 - Resources sharing
 - Routing protocol and data gathering
- Conclusions & Open problems

- WSN are data-centric network
- Energy is the main challenge
 - Network lifetime optimization is a major concern
 - Cross-layer approaches (joint MAC/routage schemes)
- New issues: temporal constraints and QoS requirements
- ✓ To save energy: transmit less \rightarrow data-aggregation
- Security (open system)
- ✓ IP-compliant network?
- From sensor nodes to dust...

Thank you for your attention, Questions?

Contact: fabrice.valois@insa-lyon.fr http://fvalois.insa-lyon.fr/

