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• Teaching duty

• Networking classes

• Computer networks and embedded systems Master

• Research activities

• Image Sciences, Computer Sciences and Remote Sensing Lab

• University of Strasbourg and CNRS Research Unit

• Network research group, led by Prof. Thomas Noël

• Ad hoc and WSN, activity scheduling, routing/MAC

• IP over WSN, SensLAB/FIT platform, wildlife monitoring

Associate professor
at University of Strasbourg
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Motivations and research focus

• Many existing projects (e.g zebranet, habitat monitoring, badgers, turtles)

• No multi-hop communications

• No (or limited) mobility

• No geolocation (without GPS)

• Our research interests in wildlife monitoring

• Expertise on networking new kinds of wireless mobile sensors

• Routing and MAC layers

• Collecting data for further modelling

• Mobility

• Radio topologies
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• ARGOS: high costs, hard to adapt to specific requirements

• GPS-based sensors

• “Simple” dataloggers, no radio communications

• High energy-consumption still

• Long-term deployments? Limited geographic areas (fewer GPS readings)

• e.g. Electronic Shepherd, UC Davis’s Puma Project

• GPS-free sensors

• Radio communications, large areas

• Need for adapted devices (size and weight especially)

• Direct communications to fixed infrastructure

• e.g. Falcons tracking, salmons tracking

Wildlife monitoring projects
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Wildlife monitoring projects

• Zebra Net (Kenya, 2003): Study zebras at night

• Battery for 1 year: if solar array then 200g, else 1kg 

• Communications every 2 hours (for 5 mn, radio range : 1 to 5 km)

• Routing: None

• MAC: GPS receiver -> time-slotted transmissions

• Issues: 

• 2 hours is too long a period

• time-synchronization is possible thanks to GPS

• Large size and weight for many animals (e.g. penguins, storks)
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Nilgai tracking

• WildCENSE project: Monitoring Indian Nilgai and its habitat

• Sensing and storing every 3 hours...

• Routing/MAC: XBee-PRO (time-slotted on-the-shelf protocol)

• Impossible to use on smaller animals
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Wildlife monitoring projects

• The Badger Project (Wytham Woods, Oxfordshire, UK, 2010)

• “Regular” data -> RFID storage (tag) and upload (reader)

• Low-volume data -> multihop communications to 3G gateway

• Communications every 30mn

• Routing: Simple tree-based (gradient-like) protocol

• MAC: Preamble-sampling X-MAC protocol
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• Currently

• Animals equipped at time T and captured again at time T + X months

• Make such biologgers communicate

• Eased download of data, data redundancy

• Monitoring of the ongoing experiment

Ongoing work: Penguin tracking
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Long-term deployments for wildlife monitoring 
Requirements

• Hardware

• Antenna: Depends on the monitored animal (i.e. body full of water)

• Size and attachment: e.g. penguins can not wear collars

• Packaging: e.g. waterproof, temperature/pressure variations

• Data collect

• Time-stamped: strict/relaxed time synchronization

• Various sampling periods: primary or complex data

• Fault-tolerant: e.g. logger-to-logger communications for data redundancy

• Software

• Efficiency: Memory write/read actions

• Long-term: Communication protocol stack, sensing and radio activity mainly
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• Air is a shared resource: e.g. People willing to discuss in a common area

• Diffusion: all sensors within the communication area of a sending node receive

• Solution: Only one single transmitting node in a given communication area

Designing protocols for wireless communications 
Medium access control (MAC)
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Designing protocols for wireless communications 
Medium access control (MAC)

• AT86RF231 chip231 (consumption with a transmission power of 3dBm)
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• Active/Passive: At which layer ? Application ? Routing ? MAC ?

➡ Controlling medium access (MAC) for a better radio usage

➡ Main assumption: each node works its own MAC, using local information only
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Duty-cycling: MAC layer
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• Active/Passive: At which layer ? Application ? Routing ? MAC ?

➡ Controlling medium access (MAC) for a better radio usage

➡ Main assumption: each node works its own MAC, using local information only

• Connectivity between loggers must be ensured + fairness regarding latency and scalability

➡ 2 main types of MAC protocols: synchronized, preamble-sampling

Sender

Receiver

Radio OffZ

➡ Main idea: having the radio off most of the time

Z

Z Z

Z

Duty-cycling: MAC layer
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• Low Power Listening (LPL): no time-synchronization (B-MAC)

• Sampling periods

• Use of a preamble before any data transmission
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J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless sensor networks. 
In SenSys ’04, pages 95–107. ACM, November 2004.
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• X-MAC divides preambles in several micro-frames:

• Includes destination related information
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• X-MAC divides preambles in several micro-frames:

• Includes destination related information

➡ Scalable and robust to topological modifications (e.g. faults, mobility)
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• Goal: Having routing paths composed of energy-efficient links only

• Short LPL (100 ms): frequent wake-ups and short preambles

• Cost for receivers (sampling): OK if most of nodes are transmitting

•  Long LPL (500 ms): less frequent wake-ups but longer preambles

• Cost for senders: OK if most nodes are not transmitting

• Problems

• How to set LPL mechanisms based on energy/delay compromises ?

• How to deal with opposite traffic patterns ?

➡ Goal: Automatically tune LPL for nodes involved in communications

Preamble-sampling MAC protocols: Challenges

15
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• Last requirement: Detailed information for accurate design of protocols

Communications among mobile biologgers

16

Scenario #loggers
#sink 

stations
Contact duration 

with sinks
Contacts with 
other loggers

Primary data 
to be stored

Complex data 
to be stored

Deployment 
duration

Storks 50 1 per nest 7h / day
10 / days
(15s each) 275kb / day 125Mb / day 1 year

Penguins 100 1 to several 
per area

> 1h / day 50 / day
(10s-10h each)

1.2Mb / day 125Mb / day 3 months

Protocols to be designed: MAC and routing layers



A. Gallais Long-term deployments of communicating mobile sensors for wildlife monitoring

• Proactive approaches

• Using

• Routing information

• Application criteria 

• Reactive approaches

• Induced traffic
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Proactive approach

• Using routing information

• Root of the tree-based routing structure -> sink station

• Leafs: sending their own data only

• Remaining nodes:

• Sending their own data

• Relaying data of associated nodes (e.g. sons, grand-sons)

• Using application criteria

• e.g. Coverage, connectivity, density control

18
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Using routing information

• Leaf nodes become sensing-only

• Only sensing and sending their own data

• Not relaying data packets

➡ Configured with long LPL 

• Usable with several routing protocols

• RPL (IETF)

• Gradient-based approaches
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• Possible criteria

• e.g. Target tracking, Border coverage, Point 
of interest / Area coverage, Density control

• Network connectivity

• Active nodes: Short/reactive LPL

• Passive nodes: Long/energy-efficient LPL

•

Using application criteria
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• Sleep depth: Partitioning the network into disjoint subsets

• One subset = One sleep depth = One LPL configuration

• The lower the layer, the deeper the sleep

• Nodes of layer n can communicate with nodes of any layer i while i < n

• Density control: If x neighbors on layer i, then layer i-- (timeout)

Using application criteria

Config LPL 3 (Tmax)

Config LPL 2

Config LPL 1 (Tmin)

21

Multiple Coverage with Controlled Connectivity in Wireless Sensor Networks. J. Beaudaux, A. Gallais and T. Razafindralambo. 
In Proc. ACM PE-WASUN'10 - Bodrum, Turquie, October 2010.
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Energy consumption

• Construction layers/gradient structure

• Consumption under “idle” and relaying states (traffic induced)

22
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Reactive approach

• Default: Nodes fully asleep (long sampling periods and long preambles)

• Problem: Cost of the preamble before each TX along the routing path

• Idea: split LPL in 2 distinct values

• Using longer sleep periods on passive sensors (Tmax)

• Using short preamble along routing path (Tmin): EE links along the way

• Constraint : Preserving network connectivity by preventing node isolation

24
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Reactive approach
Performance Evaluation

• Grid topology consisting of 100 sensors

• Simulations performed with WSNet

Sink

Parameter Value

MAC

X-MAC 
LPL 100, 250 and 500 ms

BOX-MAC
Tmin = 100 ms, Tmax = 500 ms

Timeout = 10 s.

Data
Event / time-driven 

(1 s. during 10 s.)

Routing Random geographic

Radio model Friis, throughput 15 ko/s

Energy model CC1100 
(TX, RX, idle, init)
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Reactive approach
Performance Evaluation

• Grid topology consisting of 100 sensors
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Reactive approach: Conclusion

• Configuring LPL prior to deployments poorly efficient against dynamic situations

➡  Auto-adaptation is required

• BOX-MAC skips LPL in 2 values: Preamble length and sampling period

• EE links: Connectivity ensured between sensors

• Bonus: No control message overhead

➡  Energy-efficient

➡  Shortened delays and less losses due to improved resource utilization

R. Kuntz, A. Gallais and T. Noel. 
From Versatility to Auto-Adaptation of the Medium Access Control in Wireless Sensor Networks. 
In Elsevier Journal of Parallel and Distributed Computing (JPDC). 2010.

http://www.elsevier.com/wps/find/journaldescription.cws_home/622895/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/622895/description
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Conclusion 

• Communicating biologgers require finer energy-efficient mechanisms

• Energy-efficiency: Radio usage -> MAC layer, LPL configuration

• Reactive and proactive approaches

• Induced traffic, routing information, application criteria

• Strong needs for prior detailed information (e.g. expected traffic)

• Mobility

• Several solutions already investigated 

• e.g. medium stealing, dynamic time slot allocation

• Very much remains to be done

32
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Future works

• Experimentations before real deployment

• Multi-chip boards -> select the best on-the-shelf hardware components

• Mobile robots and FIT equipex project -> emulating expected situations

• Communication protocols 

• Other L2 solutions

• Receiver-Initiated MACs ?

• Standards (IEEE 802.15.4)

• MAC/Routing interactions

• Increased energy-efficiency

• Fault tolerance (using passive nodes)

33
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Turtle tracking

• For some climate change models

• More and more jellyfishes while less and less fish and fishers

• Problem: Hard to study jellyfishes

• MIRETTE project (2008-*): Study impact of global change on jellyfish ?

• Through the monitoring of its main predator: the luth turtle

35
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Future Work

• Several optimizations

• e.g. suggesting next hops to routing layer

• Large-scale experiment with SensLAB testbed

C. Burin des Rosiers, G. Chelius, T. Ducrocq, E. Fleury, A. Fraboulet, A. Gallais, N. Mitton, T. Noel and J. Vandaele. 
Using SensLAB as a First Class Scientific Tool for Large Scale Wireless Sensor Network Experiments. 
IFIP Networking'11 - Valencia, Spain, May 2011.

C. Burin des Rosiers, G. Chelius, E. Fleury, A. Fraboulet, A. Gallais, N. Mitton and T. Noel. 
SensLAB: Very Large Scale Open Wireless Sensor Network Testbed. 
ICST TRIDENTCOM'11 - Shanghai, China, April 2011.

More information
www.senslab.info

http://www.senslab.info
http://www.senslab.info

