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Sommario

L’argomento centrale di questa tesi di dottorato è il problema del trasfe-
rimento di conoscenza e di capacità di apprendimento (Transfer Learning
(TL)) nel paradigma di apprendimento automatico (Machine Learning
(ML)) più generale: l’apprendimento per rinforzo (Reinforcement Lear-
ning (RL)). Le tecniche di ML stanno avendo una crescente diffusione in
problemi di classificazione (classificazione di esami medici, stati emotivi,
profilazione utente), di previsione (pattern matching, previsione di anda-
mento di serie temporali) e di decisione (problemi di controllo di robot,
problemi di gestione di portafogli finanziari). Tuttavia, uno dei maggiori
limiti delle tecniche di ML è rappresentato dal fatto che per ogni proble-
ma esse richiedono una specifica taratura dei parametri e che, una volta
ottenuta la soluzione al problema, esse devono essere riapplicate da zero
ogni volta che il problema subisce delle variazioni anche limitate. Al fine
di oltrepassare questo limite, alcuni lavori di ML si sono focalizzati sul
problema di progettare algoritmi in grado di migliorare le prestazioni di
apprendimento trasferendo l’esperienza accumulata risolvendo problemi
simili a quello corrente. Nonostante i risultati di queste ricerche siano
incoraggianti, esse si sono per lo più concentrate su problemi di appren-
dimento supervisionato (classificazione e previsione), mentre sono pochi
i risultati in problemi di decisione. Per questo motivo, questa tesi si è
focalizzata sul paradigma di RL che fornisce modelli e tecniche per af-
frontare una vasta gamma di problemi di decisione: dal controllo di robot
autonomi (navigazione) al controllo di sistemi meccanici (ottimizzazione
di controllo attivo delle sospensioni), dall’informatica di intrattenimento
(computer games) al supporto per decisioni (gestione di portafogli finan-
ziari). Tuttavia, la gran parte degli algoritmi di RL hanno complessità
elevata e anche una volta ottenuta la soluzione del problema, essa deve
essere ricalcolata da zero qualora sia necessario risolvere problemi simili.

In questa tesi ci si è dunque concentrati sulla definzione del problema
del TL nel paradigma di RL e sono stati proposti algoritmi che consenta-
no un riuso efficace delle soluzioni apprese, al fine di rendere più efficienti
le tecniche attuali.

I principali risultati di questa tesi possono essere riassunti come segue.

I. Sistematizzazione della letteratura di TL. Il TL è un settore relati-
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vamente recente nell’ambito del ML ed in particolare del RL. Per
questo motivo, il primo obiettivo della tesi è stata una sistema-
tizzazione ed una classificazione della letteratura ad oggi presente.
Grazie a questa classificazione è stato possibile individuare quali
obiettivi sono stati perseguiti fino ad ora e attraverso quali tec-
niche. In questo modo sono state individuate le dimensioni del
problema che sono ancora inesplorate e che hanno rappresentato il
punto di partenza per il resto della tesi.

II. Formalizzazione del problema di TL e dei suoi obiettivi. Una delle
difficoltà maggiori nella definizione del problema di TL e dei suoi
obiettivi nel RL risiede nel fatto che molteplici aspetti di algoritmo
di RL contribuiscono in modo combinato alla prestazione finale.
Per questo motivo ci si è concentrati sui recenti approcci di Batch
RL che, separando la fase di acquisizione dei dati di esperienza
da quella di apprendimento, hanno consentito di formalizzare in
modo più rigoroso gli obiettivi del TL e come essi possono essere
perseguiti.

III. Definizione di un algoritmo di trasferimento dell’esperienza. Nella
tesi si è proposto un nuovo algoritmo di TL in grado di riutilizzare i
dati raccolti da alcuni problemi “sorgente” per la soluzione di nuovi
problemi. L’aspetto più critico è stato lo sviluppo di una tecnica
in grado di individuare quali dei dati a disposizione fosse utile tra-
sferire per la soluzione di un nuovo problema. L’algoritmo ha por-
tato significativi vantaggi in termini di velocità di apprendimento
rispetto ad algoritmi tradizionali di RL.

IV. Definizione di un algoritmo per l’apprendimento multi-task. Uno
degli scenari più frequenti del TL, provede la soluzione contem-
poranea di un insieme di problemi (task) che condividono alcune
caratteristiche strutturali. Nella tesi si è proposta l’integrazione di
una tecnica utilizzata in apprendimento supervisionato per l’iden-
tificazione di questa struttura condivisa con un algoritmo di Batch
RL. L’algoritmo così ottenuto è in grado, a partire da dati raccolti
da tutti i problemi da risolvere, di individuare soluzioni di qualità
superiore a quelle apprese utilizzando algoritmi tradizionali di RL.

La prospettiva seguita in questa tesi nell’affrontare il problema del
transfer in RL apre numerose direzioni di ricerca che potranno condur-
re nel futuro allo sviluppo di tecniche in grado di risolvere problemi
complessi in molti domini di interesse.
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Summary

The main topic of this thesis is the problem of Transfer Learning (TL)
in the most general paradigm of Machine Learning (ML), Reinforce-
ment Learning (RL). ML techniques are gaining more and more inter-
est as effective solutions to classification problems (e.g., clinical clas-
sification, user profiling), regression problems (e.g., pattern matching,
time series forecasting), and sequential decision problems (autonomous
robotics, portfolio management). Nonetheless, one of the main limit of
ML techniques is that they often require long parameter-tuning of the
parameters and every time the task at hand changes they need to restart
learning from scratch. In order to overcome this limitation, many works
focused on designing algorithms able to improve the learning perfor-
mance by transferring the experience retained from the solution of tasks
similar to the one at hand. Although these works obtained encouraging
results, they mostly focused on supervised learning problems (classifica-
tion and regression) but still very few results are available in sequential
decision problems. Therefore, in this thesis we focused on the paradigm
of RL that provides models and techniques to deal with a wide range of
decision problems: from autonomous robotics (e.g., navigation) to au-
tomatic controls, from entertainment (e.g, computer games) to decision
support systems (e.g., portfolio management). Although very general,
RL algorithms suffer from the curse of dimensionality, that is, prohibitive
temporal and spatial complexity in large problems. Furthermore, even
when the solution is finally learned, there is not possibility to reuse it to
ease the learning in similar tasks.

Therefore, in this thesis, we focused on the definition of the TL prob-
lem in RL and we proposed algorithms able to effectively reuse the knowl-
edge retained from a set of tasks in order to improve the learning per-
formance on similar tasks.

The main achievements of the thesis can be summarized as follows:

I. Classification of the state of the art. TL is a relatively novel topic in
RL. Therefore, much effort has been devoted to formalize the prob-
lem of transfer and to define a classification of the works proposed
so far. We focused on three different dimensions: the objectives,
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the scenarios, the knowledge retained and transferred across tasks.
The analysis of the state of the art under this perspective showed
that most of works of transfer in RL focused on a relatively small
subset of objectives and techniques. (e.g., transfer of solutions or
subpolicies for the improvement of the learning speed). This anal-
ysis represented the basis for the development of the rest of the
thesis.

II. Transfer in batch RL. The performance of RL algorithms depends
on many aspects, such as, the exploration policy, the function ap-
proximator, the update rule, and so on. As a result, it is often
difficult to analyze how transfer solutions affect the final learning
performance and which aspects should be considered to achieve the
different objectives of transfer. We proposed the batch RL frame-
work as the most suitable perspective to analyze the problem of
transfer in RL thanks to the distinction among different aspects of
the learning process (i.e., sampling and learning).

III. Transfer of samples. We introduced a novel sample-based transfer
algorithm pursuing the objective of improving the learning speed.
Under the assumption that tasks are somehow related, the idea is
to selectively transfer part of the samples collected in the source
tasks to augment the set of samples collected in the target task
used to feed the batch RL algorithm. The algorithm succeeds in
identifying which samples are more convenient to transfer, thus
avoiding the negative effects of transferring “wrong” samples. The
results show that the transfer of samples can significantly improve
the learning performance by avoiding negative transfer.

IV. Multi-task fitted Q-iteration. One of the most common scenarios
in TL is the multi-task problem, in which a set of related tasks
must be solved at the same time. This objective received little
attention in works of transfer in RL so far and this is the first
attempt of integration of a RL algorithm with a multi-task learning
algorithm. Preliminary results show that the proposed algorithm
leads to a significant improvement both in terms of reduction of
the approximation error and improvement of policy performance.

The perspective followed in this thesis and the analysis of the problem
of transfer in RL opens a number of research perspectives that could lead
to the development of techniques able to solve complex tasks in a wide
range of domains.
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ferred to the set of samples T̃ used to feed the batch learn-
ing algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 The 〈s, a, r〉 part of samples from T and S1. . . . . . . . . 81
4.8 The 〈s, a, s′〉 part of samples from T and S4. . . . . . . . . 82
4.9 Total reward in the Golf problem with or without transfer

from one source task. . . . . . . . . . . . . . . . . . . . . . 83
4.10 Area ratios in the Golf problem for transfer from one

source task. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 Compliance in the Golf problem of the source task S1 with

the target task T . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12 Total reward in the Golf problem with or without transfer

from n source tasks. . . . . . . . . . . . . . . . . . . . . . 86
4.13 Area ratios in the Golf problem with or without transfer

from n source tasks. . . . . . . . . . . . . . . . . . . . . . 86
4.14 Compliance of different source tasks as the number of sam-

ples in T̂ increases. . . . . . . . . . . . . . . . . . . . . . . 87
4.15 The profile of the hill. . . . . . . . . . . . . . . . . . . . . 88
4.16 Total reward with or without transfer from S1. . . . . . . 89
4.17 Total reward with or without transfer from S1 and S2. . . 89

6



List of Figures

4.18 Transferred sample set T̃ for t = 100, 2000. In blue the
samples drawn from the target task T , in red the samples
transferred from S1 and in green the samples transferred
from S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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1 Introduction

1.1 Overview of the Problem

The idea of transfer of knowledge in order to improve the performance of
machine learning algorithms stems from psychology and cognitive science
research. A vast number of psychological studies shows how the effec-
tiveness of learning a task is strictly related to the knowledge retained
from solving similar tasks. For instance, a person who can drive a bicycle
learns to drive a motorcycle faster than a person who has never driven
anything similar. The reason is that, while learning how to drive a bi-
cycle, the human mind retains abstract knowledge about the problem of
driving that can be profitably reused when facing a problem that shares
some characteristics with driving a bicycle. Human beings can learn
amazingly fast because they effectively bias the learning process towards
a very limited set of solutions obtained by transferring the knowledge
retained from solving similar tasks. Similarly, the idea of transfer learn-
ing is that it is possible to improve the performance of machine learning
algorithms by biasing their hypothesis space towards a set of “good” hy-
potheses according to the knowledge retained from solving other tasks.

The general problem of transfer in machine learning, that is the reten-
tion and reuse of knowledge across tasks in order to improve a learning
algorithm performance, is a challenging problem and many questions are
still open. Research on transfer obtained significant successes in super-
vised learning problems, such as recommender systems, medical decision
making, text classification, and general game playing. On the other
hand, the problem of knowledge transfer in reinforcement learning re-
ceived relatively little attention so far. Although the idea of transfer
has been often exploited as methodology for solving complex problems
(e.g., transfer of solutions in problems with increasing complexity) and
recent works have proposed general solutions that obtained encouraging
results, a detailed analysis of transfer in reinforcement learning is still
lacking. At the same time, it is widely recognized that the possibility to
perform effective transfer in decision-making problems may significantly
improve the performance of reinforcement learning algorithms, thus en-
abling them to solve real-world complex applications.

11
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1.2 Motivation

The motivation for knowledge transfer in reinforcement learning is to re-
duce the complexity of the learning process by exploiting the knowledge
retained from previously solved tasks. Indeed, learning algorithms that
can benefit from the transfer of knowledge across related tasks would rep-
resent a step towards real autonomous systems. In principle, traditional
reinforcement learning already provides mechanisms to learn solutions
for any task without the need of human supervision. Nonetheless, the
time needed for learning a nearly optimal solution is often prohibitive in
real-world problems, even if similar tasks have been already solved (e.g.,
learning to achieve a location in a room can benefit from the solution of
navigation problems in similar rooms). In fact, there is no possibility to
transfer knowledge across related tasks and each task must be solved from
scratch. Therefore, algorithms able to transfer solutions and to bias a
learning algorithm towards a reduced set of solutions could dramatically
reduce the learning complexity on a wide range of applications. Further-
more, when multiple related tasks must be solved, learning algorithms
simply learn each task independently, thus wasting the information about
the relationships among the tasks (e.g., learning an optimal controller for
an hybrid car on a given set of cycles). On the other hand, the defini-
tion of a joint learning problem on all the tasks at the same time, could
significantly improve the generalization performance by exploiting the
underlying structures shared across the tasks.

1.3 Research Approach

Instead of focusing only on the formalization of novel algorithms for
transfer, in this thesis we follow a synthetic approach with the aim at
framing transfer reinforcement learning approaches into a general clas-
sification. Furthermore, unlike most of the research in transfer in re-
inforcement learning, we discuss possible relationships between transfer
in supervised learning and in reinforcement learning. In fact, although
reinforcement learning has some specific characteristics, we believe that
it is possible to derive useful inspiration from supervised learning solu-
tions and, in some cases, to integrate algorithms and techniques with the
reinforcement learning paradigm. In particular, we follow two main per-
spectives, usually adopted in supervised literature: inductive transfer,
multi-task learning. In inductive transfer the idea is to retain knowledge
from a set of source tasks and to reuse it so as to reduce the learning
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complexity on new target tasks. On the other hand, the multi-task per-
spective does not distinguish between source and target tasks: given a
finite set of related tasks the objective is to exploit the information about
all the tasks at the same time in order to improve the generalization per-
formance on each of them.

Following the analysis of current research on transfer in RL, we derive
directions of investigation that can represent the basis for the develop-
ment of novel algorithms for transfer. The objective is to contribute to
the identification of promising perspectives for the study of transfer in
RL and to propose algorithms that investigate solutions and approaches
that received little attention so far.

1.4 Open Questions in Transfer Reinforcement

Learning

This thesis investigates the problem of transfer in reinforcement learning.
Following the approach summarized in the previous section, we focus on
some open questions:

• How can the problem of transfer in reinforcement learning

be formalized? Although the transfer problem is gaining more
and more interest in reinforcement learning community, a formal
definition of the objectives and of the applications is still lacking.
As a result, it is often difficult to compare the proposed approaches
not only in terms of their results but also in terms of the objec-
tives pursued by the algorithms and the scenarios considered in
the experiments. In this thesis, we propose a first classification of
the transfer approaches to reinforcement learning on the basis of
their objectives, the knowledge they transfer and the scenarios they
consider. Furthermore, in reinforcement learning it is often diffi-
cult to identify how the transferred elements impact on the final
performance of the algorithm. In this thesis, we propose batch rein-
forcement learning as a framework in which the distinction between
sampling and learning phases allows to distinguish more precisely
among the effects of transfer.

• What kind of knowledge is convenient to transfer? A key
factor for transfer learning algorithms is to identify what kind of
knowledge is more convenient to retain and transfer. Most of the
transfer reinforcement learning works focused on transfer of solu-
tions (e.g., value functions, policies) across tasks, while little atten-
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tion has been devoted to the analysis of the effect of transferring
the most simple form of experience collected during the learning
process, that is, the trajectory samples. Another relevant objective
that has not been deeply investigated so far, is the improvement of
the generalization through the adaptation of the feature space. In
this thesis, we propose two different techniques to deal with these
two issues.

• When is it convenient to transfer knowledge? It is widely
recognized that the transfer of knowledge is effective only when
tasks are related, but only few works faced the problem of recog-
nizing the tasks in which transfer is likely to improve the learning
performance and those in which it is preferable to avoid any kind
of transfer. In this thesis, in Chapter 4 we propose a method for
measuring the similarity between samples of different tasks so as to
choose when to transfer and which part of the retained knowledge
is worth transferring. Furthermore, in Chapter 5, we show how the
feature space of a function approximator can be adapted so as to
discover the similarities among tasks and thus making it possible
to learn their solutions through a multi-task learning algorithm.

• How can reinforcement learning algorithms benefit from

transfer results in supervised learning literature? The study
of transfer in supervised learning led to interesting theoretical re-
sults and effective algorithms in many applications, but only few
works served as inspiration for the study of transfer in reinforce-
ment learning. In this thesis, we focus on the algorithmic integra-
tion of batch reinforcement learning with the multi-task learning
perspective in order to improve the generalization performance on
a finite set of tasks.

1.5 Overview of the Dissertation

The rest of the thesis is organized as follows:

• Chapter 2. This chapter provides a brief introduction to rein-
forcement learning. At first, we review the concept of Markov De-
cision Process, the definition of (optimal) value function and pol-
icy. After the introduction of dynamic programming algorithms,
we briefly review temporal difference algorithms, such as TD(0)
and Q-learning. Then, we discuss the issues arising from the intro-
duction of function approximation and hierarchical task decompo-
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sition in the reinforcement learning paradigm. Finally, we review
two main batch reinforcement learning algorithms, Least Squares
Policy Iteration and Fitted Q-iteration, that will be at the basis
of the transfer algorithms proposed in the rest of the thesis. The
reader who is already familiar with these topics can well skip this
chapter.

• Chapter 3. In this chapter, we review the main approaches of
transfer in supervised learning literature and we introduce the
distinction between the inductive transfer and multi-task learn-
ing perspectives. Furthermore, we propose three dimensions for
the analysis of the main approaches to the problem of transfer in
reinforcement learning. Finally, the batch reinforcement learning
framework is proposed as a suitable model for the implementation
of transfer in reinforcement learning.

• Chapter 4. This chapter introduces an algorithm for the improve-
ment of learning speed through the transfer of samples from differ-
ent tasks. In particular, we propose a method for the identification
of which source tasks are more convenient to transfer from and we
introduce a mechanism for choosing which samples are more likely
to be similar with those of the target task.

• Chapter 5. In this chapter, we investigate the possibility to in-
tegrate multi-task learning algorithms with batch reinforcement
learning algorithms. We extend fitted Q-iteration in order to im-
prove the generalization performance of the approximation of the
action-value function in a finite set of tasks. In particular, we rely
on a recent algorithm of multi-task feature learning for learning
the parameters of a linear function approximator together with
the feature space.

• Chapter 6. In this chapter, we draw the conclusions of the the-
sis, we summarize the main contributions and we discuss future
directions of investigation.
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In this chapter, we introduce the basic formulation of reinforcement
learning and we review function approximation, hierarchical approaches
and batch reinforcement learning. The goal of this chapter is to provide
an introduction to the elements that are relevant to enable transfer in
Reinforcement Learning. For a more complete overview of RL we refer
the reader to [134, 17].

2.1 Introduction

Reinforcement Learning (RL) is a Machine Learning (ML) paradigm re-
sulting from the combination of many different research directions in
statistics, computer science, neuroscience, psychology, and optimal con-
trol theory. From early 90s, RL has become the standard framework
in the artificial intelligence community for studying how agents learn
and plan in uncertain environments. In its simplest form, the basic
idea of RL is that if an action is followed by an "improvement" in the
state of affairs, then the tendency to produce that action is strength-
ened (i.e., reinforced); otherwise, the tendency to produce that action is
weakened [16].

RL can be briefly defined as [134]:

Reinforcement learning is learning what to do –how to map
situations to actions– so as to maximize a numerical reward
signal. The learner is not told which actions to take, as in
most forms of machine learning, but instead must discover
which actions yield the most reward by trying them. In the
most interesting and challenging cases, actions may affect
not only the immediate reward, but also the next situation
and, through that, all subsequent rewards. These two charac-
teristics –trial-and-error search and delayed reward– are the
two most important distinguishing features of reinforcement
learning.

The standard RL interaction model between the agent and the envi-
ronment is depicted in Figure 2.1. At each step of interaction, the agent
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Figure 2.1: The standard reinforcement learning model.

receives an input that describes the current state s of the environment
and then chooses an action a. The action changes the state according
to the dynamics of the environment, and the goodness of this state tran-
sition is communicated to the agent by means of a scalar reinforcement
signal r. The component of the environment that provides this signal is
usually called the critic.

The goal of the agent is to find a policy π, that is, a mapping from
states to actions, so as to maximize its expected return, defined as some
specific function of the reward sequence. In non-episodic tasks, it is
common to measure the return of a sequence of actions, as the sum of
the expected discounted reward :

∞∑

k=0

γkrt+k+1,

where γ ∈ [0, 1] is a discount factor. As γ tends to 0, the agent gets
more and more myopic and future rewards are considered not significant.
When, instead, γ tends to 1, the agent gets more and more farsighted
and takes into account future rewards.

2.2 Markov Decision Processes

In RL, the interaction between the agent and the environment is com-
monly modeled as a discrete time Markov Decision Process (MDP) [20].

Definition 2.1 A MDP is a tuple < S,A,P,R, γ >, where:

• S is the state space
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2.2 Markov Decision Processes

• A is a the action space

• P : S × A → Π(S) is the transition model that assigns to each
state-action pair a probability distribution over S,

• R : S × A → Π(R) is the reward function that assigns to each
state-action pair a probability distribution over R.

A process is Markov if it satisfies the Markov Property :

P (st+1, rt+1 | st, at)=P (st+1, rt+1 | st, at, rt, ..., r1, s0, a0) .

If the Markov Property holds, what happens at time t+1 depends only on
what happened at the previous time step (st, at), and not on the history
of the system (st, at, rt, ..., r1, s0, a0). The dynamics of the system is thus
one-step, and this makes it possible to predict the next state st+1 and
the next reward rt+1 given only the current state-action pair (st, at).

At each time step, the agent chooses an action so as to maximize the
reward obtained from the environment. The choice of the action depends
on the current policy of the agent. The policy is defined as a function
π that maps each state s ∈ S to a probability distribution over actions
a ∈ A:

π : S → Π(A). (2.1)

Given a generic policy π and a state s, in order to maximize its ex-
pected reward the learner must be able to estimate how good it is to
follow π in s. This information is given by the state-value function V π(s):

V π(s) = Eπ

[
∞∑

k=0

γkrt+k+1 | st = s

]
,

where Eπ denotes the expectation given that the agent follows policy π.
It is also possible to define the utility of taking an action a in state

s and following policy π thereafter. This is given by the action-value
function Qπ(s, a):

Qπ(s, a) = Eπ

[
∞∑

k=0

γkrt+k+1 | st = s, at = a

]
.

A key property of value functions is that they satisfy particular re-
cursive relationships, known as Bellman equations [20]. The Bellman
equation for V π(s) is the following:

V π(s) =
∑

a

π(a|s)
∑

s′

P(s′|s, a)
[
R(s, a) + γV π(s′)

]
, (2.2)
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where R(s, a) is the expected reward in (s, a), (R(s, a) = E[R(·|s, a)]).
This equation expresses a relationship between the value of a state s and
those of its possible successor states, weighted by their probability of
occurring.

Similarly, the Bellman equation for Qπ(s, a) is:

Qπ(s, a) =
∑

s′

P(s′|s, a)
[
R(s, a) + γV π(s′)

]
. (2.3)

V π(s) and Qπ(s, a) are the unique solutions of their respective Bellman
equations. Alternatively, it can be shown that Qπ (similarly V π) is the
fixed point of the Bellman operator Tπ:

(TπQ)(s, a) =
∑

s′

P(s′|s, a)
[
R(s, a) + γV π(s′)

]
. (2.4)

The goal of a RL agent is to maximize the expected sum of discounted
rewards, that is, to learn an optimal policy π∗ that leads to the maxi-
mization of the value functions in each state. It can be proved that in
any MDP there exists at least one deterministic optimal policy π∗ such
that:

V ∗ ≥ V π, ∀π 6= π∗.

The optimal value functions can be computed through specific Bellman
equations:

V ∗(s) = max
a

∑

s′

P(s′|s, a)
[
R(s, a) + γV ∗(s′)

]
, (2.5)

Q∗(s, a) =
∑

s′

P(s′|s, a)
[
R(s, a) + γV ∗(s′)

]
. (2.6)

Given the optimal action-value function, the optimal (deterministic)
policy π∗ can be simply obtained as the action that maximizes the action-
value function in each state:

π(a|s) =

{
1 if a = argmaxQ(s, a)
0 otherwise

As we see in the following, most of traditional RL algorithms are built
on Bellman equations and learn the optimal policy by estimating the
optimal value functions.
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Algorithm 1 Iterative policy evaluation algorithm

Input: P(·|s, a), R(·|s, a), γ, π
Parameters: ǫ
Output: V π

for all s ∈ S do

Initialize V0(s)
end for

repeat

∆← 0
for all s ∈ S do

Vk+1(s) =
∑

a π(a|s)∑s′ P(s′|s, a)[R(s, a) + γVk(s′)], R(s, a) =
E[R(·, s, a)]
∆← max(∆, |Vk+1(s)− Vk(s)|)

end for

until ∆ < ǫ

2.3 Dynamic Programming

Dynamic Programming (DP) [20] is a set of techniques for computing
the optimal policy in MDPs. DP algorithms use value functions to im-
plicitly perform a search for good policies. All DP algorithms require
the transition model and the reward function as input.

2.3.1 Policy Iteration

The policy iteration algorithm, starting from a generic policy π0, finds
an optimal policy π∗ by iterating steps of evaluation and improvement
of the current policy:

π0 → V π0 → π1 → V π1 → ...→ π∗ → V ∗, (2.7)

where (πi → V πi) and (V πi → πi+1) are the i -th policy evaluation and
policy improvement step, respectively.

During the i -th evaluation step, the algorithm computes the state-
value function V πi for the current policy πi by turning the Bellman
equation (2.2) into an iterative update rule

Vk+1(s) =
∑

a

πi(a|s)
∑

s′

P(s′|s, a)[R(s, a) + γVk(s
′)], s ∈ S.

At each step of the iteration, the algorithm replaces the old value of
every state s with a new value obtained from the old values of the suc-
cessor states of s and the expected immediate rewards, weighted by the
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Algorithm 2 Policy iteration algorithm

Input: P(·|s, a), R(·|s, a), γ
Output: V ∗, π∗

Choose an arbitrary policy πi

repeat

Perform policy evaluation on πi

Improve πi at each state:
πi+1 = arg maxa

∑
s′ P(s′|s, a)[R(s, a) + γV πi(s′)], R(s, a) = E[R(·|s, a)]

until πi+1 = πi

transition probabilities P(s′|s, a). The sequence {Vk} is guaranteed to
converge to the true V π as k → ∞ [134]. The complete algorithm for
the evaluation step is detailed by Algorithm 1.

During the i -th improvement step, the algorithm improves πi gener-
ating a new policy πi+1 such that V πi+1 ≥ V πi . Let us consider a state
s ∈ S, and let us suppose that πi is such that in s action a is chosen. In
order to determine if another action a′ is better than a in s we compute
the action-value function Qπ(s, a′)

Qπi(s, a′) =
∑

s′

P(s′|s, a)
[
R(s, a) + γV πi(s′)

]
,

which estimates the utility of taking action a′ in s and following policy πi

thereafter. If Qπi(s, a′) > V πi(s), the new policy πi+1 is an improvement
over the original policy πi. Extending this idea to all states, we obtain
the algorithm for the policy improvement step, which finds a new greedy
policy πi+1 such that:

πi+1(s) = arg max
a
Qπi(s, a)

= arg max
a
Eπi

[rt+1 + γV πi(st+1)|st = s, at = a] (2.8)

= arg max
a

∑

s′

P(s′|s, a)[R(s, a) + γV πi(s′)].

This step is guaranteed to produce a new policy πi+1 that is at least
as good as the original policy πi [134]. Since in a finite MDP there are a
finite number of policies, and the sequence of policies improves at each
step, the policy iteration algorithm converges to the optimal policy in
a finite number of iterations. Algorithm 2 shows the pseudo-code for
policy iteration.
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Algorithm 3 The on-line TD(0) learning algorithm

Input: S, A, γ
Parameters: α, π
Output: V ∗, π∗

Initialize V (s) arbitrarily, π to the policy to be evaluated
for all episode do

Initialize st

while st is terminal do

at ← π(·|st)
Take action at; observe rt+1 and st+1

V (st)← V (st) + αt+1 (rt+1 + γV (st+1)− V (st))
t← t+ 1

end while

end for

2.3.2 Value Iteration

The value iteration [101] algorithm is obtained by truncating the policy
evaluation step of policy iteration just after one sweep in the state set.
The reason for this kind of approach is that the policy evaluation step
may require multiple sweeps in the state set before converging, thus slow-
ing down the policy iteration algorithm. Moreover, it can be proved [24]
that by truncating policy evaluation, the convergence properties of pol-
icy iteration are preserved. The update rule for value iteration becomes
the following:

Vk+1(s) = max
a

E[rt+1 + γVk(st+1)|st = s, at = a] (2.9)

= max
a

∑

s′

P(s′|s, a)[R(s, a) + γVk(s
′)],

It can be proved that this iterative process converges to the optimal value
function: Vk → V ∗ as k → ∞. Like policy iteration, value iteration
terminates when the value function improvement is small in a sweep.

2.4 Reinforcement Learning

The main drawback of DP techniques is the assumption that both the
transition model and the reward function are available. Since in most
RL problems the learner does not have any built-in knowledge of the
task to be solved, the use of these algorithms is often impractical. This
is the reason because most of the RL algorithms learn the optimal policy
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Algorithm 4 The Q-learning algorithm

Input: S, A, γ
Parameters: α, π
Output: V ∗, π∗

Initialize Q(s, a) arbitrarily
for all episode do

Initialize st

while st is not terminal do

at ← π(·|st)
Take action at; observe rt+1 and st+1

Q(st, at)← Q(st, at) + αt[rt+1 + γmaxa′ Q(st+1, a
′)−Q(st, at)]

t← t+ 1
end while

end for

solely through the information collected by direct interaction with the
environment.

2.4.1 Temporal Difference Learning

Temporal Difference (TD) learning techniques learn directly from expe-
rience, without recurring to any model of the environment.

In the simplest TD method, known as TD(0) [131] (Algorithm 3), at
each time step t, the agent is in state st and takes an action at according
to its current policy π and the value function estimate in st is updated
as follows:

V (st)← V (st) + αt[rt+1 + γV (st+1)− V (st)]. (2.10)

where αt is a learning rate, st+1 is the state achieved by taking action
at in st and rt+1 is the reward returned by the critic. Since TD(0) bases
its update in part on the existing estimate, it is said a bootstrapping
method. The algorithm can be shown to converge upon V π as t → ∞,
provided that the rewards are bounded, the process is Markov and the
learning rate is declined under the Robbins-Monro conditions:

∞∑

t=1

αt =∞;

∞∑

t=1

α2
t <∞. (2.11)

Since TD(0) provides an estimation of the value function V π for a
given policy π, it cannot be used in control tasks in which the goal is to
learn the optimal policy π∗. In this case, it is necessary to compute an

24



2.4 Reinforcement Learning

estimation of the optimal action-value function Q∗(s, a). In Q-learning
[159] (Algorithm 4), at each time step t, the agent takes an action at in
state st and the corresponding action-value is update as:

Q(st, at) = Q(st, at) + αt[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)], (2.12)

where rt+1 + γmaxaQ(st+1, a)−Q(st, at) is the target return estimate.
Since the update rule of Q-learning does not take into account the

policy used to collect rewards, the algorithm is off-policy. It can be
proved [160] that the Q-learning algorithm converges to the optimal
action-value function Q∗(s, a), under the assumption that the rewards
are bounded, the agent selects actions so as to visit every (s, a) pair
infinitely often and the learning rate α satisfies the Robbins-Monro con-
ditions.

2.4.2 Exploration-Exploitation Dilemma

Unlike supervised learning, in RL, there is no clear distinction between
training and testing phases. In fact, the agent directly collects the sam-
ples (i.e., rewards obtained by taking actions in different states) used to
adjust its estimation of the value function. Therefore, a key factor for
achieving learning is the strategy adopted by the agent to explore the
environment. Since the goal is to maximize the rewards, the exploration
strategy of the agent should balance the performance obtained by tak-
ing greedy actions (i.e., the best action in each state according to the
current value function estimation) and the policy improvement that can
be obtained through the information gathered by taking exploratory ac-
tions. This problem is usually referred to as the exploration-exploitation
dilemma.

Exploration-exploitation strategies can be roughly divided into two
classes [147]: undirect and direct methods. The former are model-free
methods that determine the policy followed by the agent on the basis
of the current estimation of the action-value function. ǫ-greedy and
Boltzmann strategies [134] are among the most used exploration strategy.
The ǫ-greedy strategy is defined as:

π(a|s) =

{
1− ǫ if a = argmaxQ(s, a)

ǫ
n−1 otherwise

(2.13)

that is, it performs the greedy action with probability 1 − ǫ and with
probability ǫ any of the other n− 1 actions at random.

On the other hand, direct methods usually compute an estimation of
the reliability of the value function estimates and/or of the transition
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model and reward function approximations. This information is usually
used to direct the exploration in regions of the state-action space in which
the approximation of the optimal action-value function is poor and the
expected advantage of exploration is high [103, 147, 163].

Unfortunately, most of the previous exploration-exploitation strategies
are heuristic and they do not provide any guarantee about the learning
performance obtained following those policies. Actually, the solution of
the problem of optimal exploration [92] is infeasible. Therefore, in recent
years many works focused on providing complexity bounds that define
the number of samples needed to learn a nearly-optimal policy. The the-
oretical background of these research directions is the probably approxi-
mately correct (PAC) framework, that defines the number of samples n
such that:

P
(
|V k − V ∗| < ε

)
> 1− δ (2.14)

that is, the complexity of learning an ε-optimal solution with a probabil-
ity at least of 1−δ. The E3 [66] algorithm and the RMAX algorithm [30]
are the first RL algorithms guaranteed to learn a nearly-optimal policy
with polynomial complexity, that is, with a number of samples polyno-
mial in the characteristic parameters of the task (e.g., number of states,
number of actions, discount factor). In [126, 127] an empirical and theo-
retical analysis of the model-based interval estimation exploration strat-
egy is reported. Complexity bounds when the learning algorithm has
direct access to a restart distribution are derived in [63, 62]. Finally,
recent works [12] framed the problem of exploration-exploitation as a
regret minimization problem.

2.5 Function Approximation in Reinforcement

Learning

In the previous algorithms, the action-value function is represented as
a look-up table that stores a distinct value for each state-action pair.
While this approach have strong theoretical foundations and is viable in
many applications, it has severe limitations when applied to problems
characterized by large (or continuous) state and action spaces. In this
case, the amount of memory needed to store a look-up table increases
exponentially with the dimensions of the problem and the number of
episodes needed to learn the optimal policy makes this model unsuitable
for many real-life applications (e.g., robotics). This issue is commonly
referred to as the curse of dimensionality [134]. Several approaches have
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been proposed to overcome this limitation by combining function approx-
imation techniques (e.g., neural networks, radial basis functions, fuzzy
sets) to RL algorithms so as to learn an accurate approximation of the
action-value function with a limited number of parameters independently
from the dimensions of the problem.

The general form of an approximation for the action-value function is:

Q̂(s, a) = f(φ(s, a), ϑ), (2.15)

where f is the output function, φ(·) = [φ1(·) . . . φi(·) . . . φN (·)] is a vec-
tor of features (or basis functions), where feature φi(·) : S × A → R

maps each state-action pair to the corresponding feature value, and
ϑ = [ϑ1 . . . ϑi . . . ϑM ] is the vector of parameters that are adjusted dur-
ing the learning process. While features φ determine the space Q of
functions that can be represented, the learning parameters ϑ define the
specific function Q̂ ∈ Q actually learned by the agent.

The problem of learning a function approximator from a set of input-
output samples has been extensively studied in supervised learning. How-
ever, in RL function approximation is harder to implement than in su-
pervised learning, because the training data are not given in advance by
a trainer, but they are in part determined by the output of the learned
function. In the following, we describe how the value function estimation
is updated when learning with function approximation.

2.5.1 Update Rules

During the learning process, the agent receives samples of the target
action-value function and the parameters of the function approxima-
tor are updated so as to reduce the approximation error. Most of the
function approximators update the parameters according to the online
gradient descent update rule:

ϑi ← ϑi − α
∂E
∂ϑi

,

where E is the approximation error and α is a learning rate.

Least Mean Square

The most common approximation error used in RL algorithms is the
Least Mean Square (LMS) error, that is the squared 2-norm of the differ-
ence between the optimal action-value function Q∗ and its approximation
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Q̂, averaged over the state-action space:

ELMS =
1

2
‖Q∗ − Q̂‖22 =

1

2

∑

(s,a)∈S×A

(
Q∗(s, a)− Q̂(s, a)

)2
.

In this case, parameters are updated with the following rule:

ϑi ← ϑi + α(Q∗(s, a)− Q̂(s, a))
∂Q̂(s, a)

∂ϑi

.

In RL, the optimal action-value function is not available during the learn-
ing process. Therefore, Q∗(s, a) is substituted by its estimation:

ϑi ← ϑi + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)
∂Q̂(s, a)

∂ϑi
. (2.16)

Although this update rule (which minimizes the LMS error) has been
successfully used in conjunction with many function approximators and
obtained valuable results in relevant applications (e.g., [146, 133]), several
studies [28, 13, 54, 154] showed that, even in very simple problems, it
may lead the approximator to unpredictable results and, in some cases,
to divergence.

Bellman Residual

The more straightforward way to guarantee convergence in RL with func-
tion approximation is to derive the update rule incorporating the formu-
lation of the estimation of the action-value function directly in the error
function, thus obtaining the mean square Bellman residual, that is the
squared 2-norm of the difference between the approximation and approx-
imation obtained by applying the Bellman operator T :

EResidual =
1

2

∑

(s,a)∈S×A

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)2

.

Starting from this error, Baird [13] derived the residual gradient up-
date rule:

ϑi ← ϑi + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)(
∂Q̂(s, a)

∂ϑi
− ∂γQ̂(s′′, a)

∂ϑi

)
.

(2.17)
where s′ and s′′ are two independent samples drawn from the distribution
P(·|s, a).
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2.5.2 Linear Function Approximation

The most common class of function approximator adopted in RL is the
linear function approximation:

Q̂(s, a) = φ(s, a)ϑ =

M∑

i=1

φi(s, a)ϑi,

where M is the number of features, equal to the number of learning
parameters. With linear function approximators, the least mean square
update rule becomes

ϑi ← ϑi + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)
φi(s), (2.18)

while the residual gradient update rule becomes:

ϑi ← ϑi + α

(
r + γmax

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)(
φi(s)− γφi(s

′′)
)
. (2.19)

The most simple example of linear function approximation is state
aggregation. The idea of grouping states of a MDP has been adopted—
more or less explicitly—in many RL algorithms. In particular, state
aggregation is commonly used in domains with continuous state space, in
which each state variable is discretized in a finite number of intervals [80,
76]. More sophisticated solutions use multiple partitions of the state
space, so that each state is covered by a set of macrostates, and the
value function is approximated by a linear combination of the values
stored in each macrostate. In this category, there are several learning
algorithms [35, 2, 94, 170] based on the multigrid approach [31] in which
multiple partitions, with different resolutions over the state space, are
used to accelerate the learning process by exploiting the generalization
induced by coarser aggregations. Soft state aggregation [119] adopts a
discretization of the state variables into overlapping clusters that are
combined together according to their activation degree to compute the
action-value estimation.

One of the most commonly used linear function approximation is
CMAC (or tile coding) [1, 133], a sparse coarse-coded function approxi-
mator in which each aggregation of states corresponds to a binary feature
that is combined with the others by a linear mapping function. An adap-
tive version of CMAC is proposed in [112], where, given a fixed global
resolution, the effect of using a different number of tilings is studied.
Furthermore, they proposed a heuristic online criterion that changes the
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generalization breadth according to a reliability index based on backup
errors. A more sophisticated version of CMAC uses Radial Basis Func-
tions (RBFs), a generalization of coarse coding to continuous-valued fea-
tures [32, 99]. Each feature is no longer associated to a binary value,
but it can take any value in the interval [0, 1]; for instance a Gaussian
function:

φi(s) = e
−

‖s−ci‖
2

2σ2
i , (2.20)

where ‖s−ci‖ is the distance between the state, s, and the feature’s center
state, ci, while σi is the feature’s width. The primary advantage of RBFs
over binary features is that they produce approximate functions that
are smooth and differentiable. The main drawbacks of RBF networks
reside in their great computational complexity and in the fact that they
often require a lot of manual tuning before learning becomes robust and
efficient.

The main difficulty with linear function approximation is the definition
of the feature space φ. In fact, the feature space φ constrains the space
Q of the action-value functions that can be represented. For instance,
CMAC constrains the action-value function to be piece-wise constant and
the choice of the number of tiles and tilings defines the resolution of the
approximation. Unfortunately, it is often difficult to choose a suitable
feature space for each task in advance. As a result, long manual tuning is
often necessary to achieve good learning performance. Therefore, recent
works [78, 67, 95] tried to develop feature extraction techniques able to
adapt the feature space according to the characteristics of the problem
at hand.

2.5.3 Theoretical Issues

Unlike function approximation in supervised learning, in RL the optimal
action-value function is not available and its estimation is incrementally
build on the basis of rewards and of previous estimations of the function
(i.e., bootstrapping). This characteristic is particularly critical for the
stability of the function approximation process and for the final perfor-
mance of the learning process. In fact, in [28, 13, 53] simple examples
are reported in which function approximation used in conjunction with
LMS error obtains very poor performance and even diverges. The Bell-
man residual update introduced in [13] avoids the problem of loss of
stability of function approximation but it has the main drawback that is
needs a generative model from which trajectory samples are extracted.
In [54] the use of averagers (i.e., approximators that are guaranteed to
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be a non-expansion when applied to the Bellman operator) is proved to
avoid divergence. Other works with averagers [137, 162] also showed that
they can achieve better results than LMS-based approximators.

Another critical aspect for the stability of function approximator is the
sampling policy (i.e., exploration strategy) used to collect samples. As
shown in [53], current estimation of the action value function affects the
sampling policy and the way samples are collected influence the updates
to the action value function. This loop between sampling and learning
can result in a non-convergent learning process. Therefore, it is often
difficult to analyze the performance of an approximator independently
from the exploration strategy and viceversa. In [154] convergence is
proved for TD learning algorithms when a fixed single trajectory is used,
while in [96] convergence is guaranteed for Q-learning and SARSA only
when the policy update is continuous.

2.6 Hierarchical Reinforcement Learning

Together with the use of function approximation, task decomposition is
usually adopted in RL as a mean to face the problem of the curse of
dimensionality. The idea is that each task can be decomposed in a hi-
erarchy of more simple subtasks. The solution of the overall task is the
result of the composition of the solutions of each subtask. If the decom-
position is effective, the learning time is significantly shortened. In the
following we briefly review only MAX-Q value function decomposition,
the option framework and subgoal discovery techniques. Indeed, these
are the most common frameworks of HRL used in transfer learning. A
more complete review of Hierarchical Reinforcement Learning (HRL) is
available in [17].

2.6.1 MAXQ Value Function Decomposition

The MAXQ decomposition [38] is one of the most complete models of
HRL. The basic assumption is that the designer has enough prior knowl-
edge about the task to identify useful subgoals and define subtasks for
each subgoal. The idea is that the optimal value function can be de-
composed into an additive combination of a hierarchy of value functions.
The MAXQ algorithm starts with a given decomposition of a task T (i.e.,
an MDP) into a hierarchy of subtasks {T0, T1, . . . , Tn} where T0 is the
root subtask. Each subtask Ti is defined by a policy µi, which can either
execute primitive actions or other subtasks, a termination condition, and
a pseudo-reward function that returns reward according to the subgoal
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of Ti. The overall policy π is obtained by hierarchically executing the
sub-policies µi. A value function can be defined for each subtask Ti by
introducing a Semi-MDP (SMDP) model [100], thus taking into account
that the execution of a subtask can take more than one time step to fin-
ish. As a result, it is possible to define Bellman equations for the value
functions at each level of the hierarchy and thus, the hierarchical value
function corresponding to policy π.

2.6.2 Options Framework

A common solution of HRL is the temporal abstraction of the MDP
through the augmentation of the action space with temporally extended
actions, that is macro-actions that perform a sequence of primitive ac-
tions and that terminate only when a specific condition is met. Usually,
the termination condition is limited to the achievement of a particular
state that coincides with one of the subgoals determined by the task
decomposition. The option framework [136] is the most complete and
theoretically sound model for temporally extended actions. An option o
is defined by the tuple 〈µ, I, ρ〉, where µ is a policy defined on actions
in A (i.e., set of primitive actions), I ⊆ S is the set of states where
the option can be selected, and ρ is a probability distribution over S
that represents the probability of the option to terminate in a state s.
The set of primitive actions of the MDP is augmented by the introduc-
tion of a set of options, thus obtaining the option space O. Formally,
the introduction of the options leads to the definition of a SMDP. The
value function definition can be changed in order to take into account
the options as follows

V π(s) =
∑

o∈O

π(o|s)
∑

s′

P(s′|s, o)
[
R(s, o) + γV π(s′)

]
, (2.21)

where R(s, o) is the expected reward accumulated by following the policy
of option o until it terminates and P(·|s, o) is the transition model defined
as a probability distribution over S

P(s′|s, o) =

∞∑

k=1

P
(
s′, k

)
γk,

where P (s′, k) is the probability of option o to terminate in s′ after k
steps. Starting from the Bellman equations for the value functions, it is
possible also to extend Q-learning to SMDP Q-learning as:

Q(st, ot) = Q(st, ot) + α[rt+1 + γmax
o
Q(st+1, o)−Q(st, ot)], (2.22)
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where rt+1 is the reward accumulated until the option ot terminates.
There is a wide empirical evidence that if the set of options available
solves the subgoals of the overall task, then the convergence time is
significantly reduced.

2.6.3 Subgoal Discovery

One of the main drawbacks of HRL is that the task decomposition should
be done by hand on the basis of prior knowledge about the task. Fur-
thermore, if the task decomposition is not suitable for the task, then the
learning performance can even get worse with respect to learning without
task decomposition. Therefore, many works focused on the development
of techniques able to automatically discover subgoals, so as to design an
effective hierarchy of subtasks specific for the task at hand.

In [81] a statistical approach to the identification of bottlenecks is pro-
posed. States often traversed by successful trajectories (i.e., trajectories
that achieve the goal) are set as termination states for options that are
incrementally defined during the learning process. In [83, 91] a topo-
logical analysis of partial models of the environment is used to identify
states that are more likely to be relevant for the achievement of the goal
of the task at hand. Once identified, these states are used to learn new
options. The HEXQ algorithm [57] builds a MAX-Q hierarchical decom-
position of the task by identifying exit states, that is, passage states that
connect different regions of the state space. Finally, intrinsically moti-
vated approaches [92, 118, 26] frame the problem of subgoal discovery
into a psychologically founded framework in which the identification of
subgoals and the development of new skills is directly driven from an
intrinsic motivation of the agent.

2.7 Batch Reinforcement Learning

One of the main limit of RL when applied to real-world problems is
the large amount of experience needed before a nearly-optimal solution
is achieved. The main reason for this drawback is an inefficient use of
the experience. For instance, in model-free algorithms, such Q-learning,
when the agent achieves the goal only the previous state-action pair is
updated and this information takes much time before being propagated
back to initial states. On the other hand, model-based algorithms (e.g.,
prioritized sweeping [87]) are computationally expensive and need a large
amount of data before the model approximation becomes reliable.
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In order to overcome these drawbacks, batch approaches have been
proposed. The main idea is to distinguish between the exploration strat-
egy that collects samples from the task at hand, and the learning al-
gorithm that, on the basis of the samples, computes the approximation
of the action value function. In the following, after a brief introduction
to early works on batch RL algorithms, we focus on two main recent
algorithms: LSPI and fitted Q-iteration.

2.7.1 Early Works in Batch Reinforcement Learning

The idea of effectively using the experience collected through direct in-
teraction with the environment has been exploited in many works in
RL.

Monte Carlo methods [121] represent the first example of the batch use
of experience. Given a policy π, the idea is to estimate the action value
function in a state-action pair by recording all the rewards collected along
one trajectory obtained following π and by averaging the corresponding
actual return over different attempts. The update of the action value
function is performed in a batch mode when the episode finishes.

The experience replay introduced in [73] is used in order to speed up
the learning process by saving trajectory samples and repeatedly replay-
ing their corresponding updates. The main advantage is that in this
way better use of a small amount of expensive real experience can be
made when training the RL agent. Although very simple, this method
has been successfully applied in complex problems such as Job Shop
scheduling [168] and mobile robot navigation [123].

Finally, Dyna architectures [132, 130] effectively integrate online re-
inforcement learning and model-based algorithms into a process that
alternately learns a model of the environment, updates the action-value
function with DP algorithms, performs the corresponding greedy policy
and so on. The idea is that it is more effective to use the experience col-
lected through direct interaction to learn a model of the environment and
to use DP algorithms to estimate the action-value function than learn-
ing online. Furthermore, the action-value function computed by the DP
algorithm can be used to direct the agent to more rewarding regions of
the environment and to improve the approximation of the model.

2.7.2 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) [70] is an approximate dynamic
programming algorithm that does not need an explicit approximation of
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Algorithm 5 The LSTDQ algorithm

Input: set of samples D, feature space φ, policy π
Parameters: γ
Output: wπ

Initialize A, b
for all 〈s, a, s′, r〉 ∈ D do

A← A+ φ(s, a)(φ(s, a)− γφ(s′, π(s′)))
T

b← b + φ(s, a)r
end for

ϑπ = A−1b

the transition model and the reward function. Starting from a generic
linear function approximator Q̂(s, a) = φ(s, a)ϑ, the idea is to compute
the least-squares solution of the system of Bellman equations. Given
a matrix Π ∈ R|S|×|S||A| defined according to policy π, the stochastic
matrix P ∈ R|S||A|×|S| defined according to the transition model P(·|s, a),
and the vector R ∈ R|S||A| defined as the expected value of R(·|s, a), the
approximated Bellman equations becomes the overconstrained system

Q̂π ≈ R+ γPΠQ̂π. (2.23)

Recalling the approximator definition and solving the corresponding least-
squares problem, the learning parameter vector is

ϑπ =
(
(φ− γPΠφ)T(φ− γPΠφ)

)−1
(φ− γPΠφ)TR. (2.24)

Once the learning parameters are computed for policy π, a policy im-
provement step is performed by taking the action that maximizes the
action-value function in each state. Thereafter, policy evaluation and
policy improvement steps are alternated until a termination condition is
met, as in the DP policy iteration algorithm (Section 2.3.1). The main
drawback in the computation of this solution is that a generative model
of the environment is still required in order to draw independent sam-
ples from P(·|s, a). An alternative formulation is to force the Bellman
operator to have a fixed point when applied to the feature space, thus
obtaining the well-formed system:

Q̂π = φ(φTφ)−1φT(R+ γPΠQ̂π). (2.25)

The corresponding learning parameter vector becomes:

ϑπ =
(
φT(φ− γPΠφ)

)−1
φTR. (2.26)
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Algorithm 6 The LSPI algorithm

Input: set of samples D, feature space φ, policy π
Parameters: γ, ǫ
Output: π̂∗

Initialize π0, ϑ0

while ‖ϑi − ϑi−1‖ < ǫ do

ϑi ← LSTDQ(D,φ, πi)
πi+1 ← improve(πi, ϑi)

end while

Although in this formulation the transition model and the reward func-
tion are still present, using LSTDQ, an extension of LSTD [29] to action-
value functions, the complexity of the computation of the solution does
not depend on the dimensionality of the MDP model but only on the
dimensionality of the feature space. Equation (2.26) is the solution of
(M ×M) linear system of the form:

Awπ = b, (2.27)

where A = φT(φ − γPΠφ) and b = φTR. The value of A and b
can be incrementally estimated starting from a set of samples D =
{〈s, a, s′, r〉i}i∈Nm

1 as shown in Algorithm 5. It is interesting to no-
tice that no estimation of the transition model is needed and only the
feature φ is evaluated in the state-action pairs of D. Finally, the overall
policy iteration algorithm is summarized in Algorithm 6. Extensions of
LSPI with kernel spaces are introduced in [58, 61].

2.7.3 Fitted Q-iteration

The idea of fitted solutions is to reformulate the learning of the value
functions as a sequence of regression problems. Given a set of samples
D = {〈s, a, s′, r〉i}i∈Nm , either collected from the environment or drawn
from a generative model, the goal is to learn an estimation of the optimal
action-value function by iteratively extending the optimization horizon.
Let us consider a MDP with horizon limited to one step. The optimal
action-value function becomes:

Q∗
1(s, a) = E[R(·|s, a)] = R(s, a) (2.28)

The problem of the approximation of Q∗
1 is now a typical regression prob-

lem of supervised learning. In fact, from D we can define the training set
1Nm denote the set of integer numbers {1, . . . , m}.
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Algorithm 7 The Fitted Q-iteration algorithm

Input: set of samples D
Parameters: γ, N , regressor
Output: QN

Initialize Q0

for k = 1 to N do

Generate input set xi = (si, ai), with i = 1 . . .m
Generate output set yi = ri + maxa′ Qk(s′i, a

′), with i = 1 . . .m
Qk+1 ← regressor(x, y)

end for

{xi, yi}i∈Nm , where xi = (si, ai) and yi = ri. This regression problem can
be solved using any kind of regressor, e.g., neural-networks, regression
trees, and so on. The result is an approximated action-value function
Q̂∗

1. If the horizon is extended by one, the optimal action-value function
becomes:

Q∗
2(s, a) = E[R(·|s, a)] + max

a′

∑

s′

P(s′|s, a)γE[R(·|s′, a′)]

= R(s, a) + γmax
a′

∑

s′

P(s′|s, a)R(s′, a′), (2.29)

that is, the expected reward of (s, a) plus the highest expected reward
in the next step. Exploiting the approximation of the action-value func-
tion of the 1-step MDP, we can formulate the approximation of Q∗

2 as
a regression problem with a training set defined as xi = (si, ai) and
yi = ri + maxa′ Q̂∗

1(s
′
i, a

′). 2 This process can be iteratively repeated
up to the horizon of the task at hand, thus obtaining an approximation
of the optimal action-value function Q∗. The overall algorithm, usually
referred to as fitted Q-iteration (FQI), is summarized in Algorithm 7,
where regressor is any regression algorithm.

In [52, 90] it is proved that FQI in conjunction with kernel-based
regressors (i.e., averagers) avoid the stability problems of polynomial
regression and back-propagation regressors (Section 2.5.3). A detailed
theoretical and empirical analysis of FQI with regression trees is carried
out in [41]. Finally, empirical results of FQI with CMAC and neural
networks are reported in [151] and [105].

2In case of samples drawn from a single trajectory s′i = si+1.
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Reinforcement Learning

In this chapter, we review the main approaches to transfer in supervised
learning. Then, we review the most influential works of transfer in re-
inforcement learning, analyzing their goals, the scenarios of application,
and the elements transferred across the tasks. Finally, we introduce an
analysis of transfer in the context of batch reinforcement learning algo-
rithms.

3.1 Introduction

Machine Learning (ML) algorithms are traditionally designed to learn
one task at a time. In recent years, many research directions focused
on designing techniques to extend ML algorithms to transfer solutions
learned in one task to other tasks drawn from the same domain, in order
to improve the learning performance. More precisely,

Transfer learning refers to the problem of retaining and ap-
plying the knowledge learned in one or more tasks to effi-
ciently develop an effective hypothesis for a new task. (from
NIPS “Inductive Transfer: 10 Years Later” Workshop [117])

This challenging goal has been pursued following many different perspec-
tives (e.g., meta-learning, multi-task learning, learning to learn, contin-
ual learning) and many empirical and theoretical results showed that
learning algorithms can actually benefit from the transfer of knowledge
across related tasks. Nonetheless, most of the research in transfer learn-
ing focused on the Supervised Learning (SL) paradigm and little atten-
tion has been devoted to the application of transfer to the Reinforcement
Learning (RL) paradigm. Recent results show that the re-use of knowl-
edge (e.g., policies, value functions) can greatly improve the performance
of RL algorithms, but a systematic analysis about the way to obtain ef-
fective transfer in RL and about how the transferred knowledge affects
the learning process is still lacking. The reason is that, in RL, many dif-
ferent aspects may contribute to the overall performance and, thus, it is
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often difficult to analyze how the transferred knowledge actually impacts
on the performance. For instance, options, a framework often used as
a means for knowledge transfer across tasks, may affect the exploration
strategy, the update of the action-value function estimate and, in case of
function approximation, the stability and the convergence point of the
approximator.

In this Chapter, we review the literature of transfer both in super-
vised and reinforcement learning paradigms, and we introduce the ele-
ments used in the rest of the thesis. More specifically, this Chapter has
three main objectives: (i) by analyzing the literature of transfer in SL
we introduce the two perspectives adopted in Chapters 4 and 5, that is,
inductive transfer and multi-task learning, (ii) we provide a general for-
mulation of the problem of transfer in RL and we propose a classification
inspired by similar formalizations usually adopted in SL, (iii) we discuss
how transfer learning can be achieved in the batch RL framework.

3.2 Transfer in Supervised Learning

A comprehensive overview of transfer in SL is beyond the scope of this
thesis. For partial reviews of transfer learning and related topics we
refer the reader to [114, 149, 157, 169].1 In this section, we focus on
some of the main works in transfer learning, with the aim of providing a
brief historical perspective of the topic and some basic elements for the
comparison with transfer in RL.

3.2.1 Early Works of Transfer Learning

The idea of retaining and reusing knowledge in order to improve the per-
formance of learning algorithms dates back to early stages of ML [86].
In fact, it is widely recognized that a good representation (or bias) is
the most critical aspect for the performance of any learning algorithm,
and the development of techniques that automatically change the repre-
sentation according to the task at hand is one of the main objectives of
large part of the research in ML. Most of the research in transfer learn-
ing [44] identified the single-problem perspective usually adopted in ML
as a limit for the definition of effective methods for the inductive con-
struction of good representations. On the other hand, taking inspiration
from studies in psychology and neuroscience [50, 49], the multi-problem

1A comprehensive bibliography is also available at:
http://www.cs.berkeley.edu/˜russell/classes/cs294/f05/all-papers.html.
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point of view, in which knowledge is retained from previously solved
problems and reused in new problems, is considered as the most suitable
perspective to design techniques of inductive bias [155].

Starting from this idea, different approaches to the problem of trans-
fer have been proposed. Meta-learning [157] studies how learning sys-
tems can increase in efficiency through experience. The objective is to
learn how the learning itself can be modified according to the task un-
der study. Meta-learning studies how to dynamically choose the right
bias, as opposed to single-problem learning where the bias is fixed a pri-
ori, or user-parameterized. As a result, while different applications of
single-problem algorithms over the same data always produce the same
result, independently of the performance, meta-learning aims at discov-
ering ways to dynamically search for the best learning strategy as the
number of tasks increases. Other solutions refer to the so-called learning
to learn approach [149, 19], a research direction that generalizes the ML
traditional perspective. Following the definition of ML in [86], given a set
of tasks, training sets for each task and a set of performance measures, a
learning algorithm is said to learn to learn if its performance in each task
improves with the experience and the number of tasks. Finally, lifelong
learning approaches [116] focused on the development of techniques of
inductive bias. A lifelong learning system is focused on designing effec-
tive methods for the retention of domain knowledge and for reusing such
knowledge as inductive bias for learning algorithms.

Although the previous research directions are different in perspectives
and scenarios, they all share the idea that the performance of a learning
algorithm can be improved through the transfer of knowledge across a
set of related tasks.

3.2.2 Inductive Transfer and Multi-Task Learning

In recent years, research on transfer learning gained increasing relevance
in the SL community and obtained relevant theoretical results and suc-
cessfully solved a wide range of applications. A complete formalization
and analysis of the transfer problem is introduced in [18]. Along with
an extension of the traditional single-task approach to take into account
training examples coming from different tasks, generalization bounds of
learning theory [156] are re-formulated, showing that learning multiple
tasks from the same domain can give better generalization than learning
independently on each task. In [22] a notion of relatedness among tasks
is implicitly introduced using a data generating framework and the com-
plexity bounds obtained by a multi-task learning algorithm are proved
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Figure 3.1: The structure of a neural network for multi-task learning [34].

to be more tight (i.e., smaller sample sets per task) than those in the
single-task learning case.

From an algorithmic point of view, the implementation of transfer
learning followed different directions. Many works [18, 34, 114] focused
on the use of neural networks to transfer knowledge across tasks. Instead
of using as many neural networks as the tasks to be solved, the idea is
to design one neural network divided in two different layers (Figure 3.1).
Under the assumption that all the tasks share the same input space, the
first layer is meant to learn the features shared across the tasks, while
the second layer is specific for each task and computes the prediction.
Another framework commonly adopted in transfer learning problems is
the Hierarchical Bayes model [14, 166, 42, 149, 167]. According to this
model, the problem of inductive bias is defined as the problem of learning
the hyper-distribution common to all the tasks together with the models
of each task. Finally, recent works [3, 43, 9] focused on the extension
of regularized methods to the transfer problem. While regularization is
adopted in single-task problems to force the learning of smooth functions,
in multi-task problems regularization is defined to force the tasks to share
the same underlying representation.

Although the previous works share the idea that in many applications
learning on multiple tasks is preferable than learning on each single task
separately, they often focus on different objectives. We can roughly

42



3.3 Transfer in Reinforcement Learning

classify the previous methods in two main approaches: 2

• Inductive Transfer. Inductive Transfer is concerned with learning
to predict in one task (target task) based on training samples com-
ing from other tasks (source tasks). Therefore, the objective is to
reduce the number of samples needed to learn solutions in unknown
tasks.

• Multi-task Learning. Multi-Task Learning is concerned with utiliz-
ing training data from different tasks to help predicting in all of
them. Therefore, the focus is on a given set of tasks and the objec-
tive is to improve the generalization performance of the learning
algorithm on the very same tasks.

The difference between these two perspectives reflects also on the differ-
ence in their corresponding applications. Inductive transfer algorithms
are usually applied to highly structured problems in which the main
problem is how to map solutions previously learned in one domain to
a new domain. Examples of application of inductive transfer are image
recognition [56], planning problems [71], general game playing [15]. On
the other hand, multi-task learning obtained relevant results in classifi-
cation and regression problems in which the tasks are actually known in
advance and few examples for each of them are available. Examples of
application of multi-task learning are collaborative filtering [165], text
classification [3], medical decision making [34].

Although strictly related, a unifying framework able to formalize both
inductive transfer and multi-task learning approaches is still lacking. In
the rest of the thesis, we investigate the possibility to follow these two
perspectives in RL.

3.3 Transfer in Reinforcement Learning

The problem of transfer in RL shares many issues with transfer in SL.
For instance, the problem of improving the generalization performance of
a learning algorithm on a limited set of tasks can be directly generalized
to the RL paradigm in case of function approximation algorithms (see
Chapter 5). On the other hand, the are issues that are specific for the
RL paradigm. For instance, the problem of exploration strategies for

2Unfortunately, at the moment, there is not a commonly accepted distinction among
different perspectives in transfer learning. The distinction followed here is inspired
by [18, 21, 6].
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collecting samples is not present in supervised algorithms, as samples
are given in advance.

In this section, we propose a general formulation of the problem of
transfer in RL. Furthermore, we provide a perspective view on the most
relevant results of transfer research in RL. Here, the objective is not
to provide a detailed analysis of each work (more thorough descriptions
are postponed to Chapters 4 and 5) but to analyze which aspects are
usually considered in transfer in RL and discuss which aspects are still
unexplored.

3.3.1 Problem Formulation

Transfer learning is a very general problem and it is difficult to provide
a formal definition that takes into account all the possible perspectives
and approaches to the problem. In general, a SL transfer algorithm is
formalized as a mapping from samples and hypotheses coming from the
solution of a set of tasks, to the learning algorithm used to learn the
solution of new tasks. Thus, the learning algorithm is biases so as to
improve its performance when applied to tasks that are somehow related
with those used as input for the transfer algorithm. Here, we adapt the
formalisms introduced in transfer in [18, 114] to the RL paradigm and
we introduce general definitions and symbols used throughout the rest
of the thesis.

Definition 3.1 A task T is a MDP defined by the tuple 〈ST ,AT ,PT ,RT 〉,
in which the state and action spaces define the context, the transition
model PT defines the dynamics, and the reward function RT defines the
goal. The task space is denoted by T .

Definition 3.2 An environment E is defined by the tuple 〈T ,Ω〉, where
T is the task space and Ω is a task distribution defined on T that provides
the probability of a task T ∈ T to occur.

The characteristics of a problem of transfer defined on an environment
E depends on the definition of the distribution Ω(T ).

Definition 3.3 A problem in which all the tasks share the same context
(i.e., state and action space) and the same transition model, is a goal
transfer problem (Ω(T ) = ΩR(T )). A problem in which tasks share the
same context (i.e., state and action space) and the same reward function,
is a dynamics transfer problem (Ω(T ) = ΩP(T )). Finally, a problem in
which Ω(T ) is a joint distribution on both the reward function and the
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Figure 3.2: Representation of the learning process of a RL algorithm (in-
spired by [114]). The learning algorithm moves from an initial hypothesis
H0 to an optimal hypothesis H∗.

transition model, is a domain transfer problem without any constraint on
the state-action space of the tasks.

A general RL algorithm can be qualitatively defined as a mapping
from the task space to the hypothesis space

ALearning : T → H, (3.1)

where H is a hypothesis space that can be either the space of (action)
value functions or the space of policies. Depending on the learning algo-
rithm, the input task T ∈ T can be interpreted differently. For instance,
when using a model-based algorithm (e.g., value iteration), T is the ex-
act definition of the MDP. On the other hand, in an on-line algorithm
(e.g., Q-learning with ǫ-greedy exploration), T is a process sampled by
the learning algorithm according to its exploration strategy. As shown in
Figure 3.2, a learning algorithm is initialized with a hypothesis H0 ∈ H
that is changed during the learning process until an optimal hypothesis
H∗ is learned. As it can be noticed, the hypothesis space H defines the
hypothesis that can be learned, while ALearning determines the learning
trajectory followed during the learning process. 3

In the general inductive transfer problem 4 (Figure 3.3), given an envi-
ronment E, we sample n− 1 source tasks according to the task distribu-

3More precisely, since machine learning algorithms are stochastic, the learning tra-
jectory in Figure 3.2 is to be considered as averaged over all the possible learning
trajectories.

4The scenario in case of multi-task learning is almost the same except that the
transfer algorithm gets as input all the tasks and computes their solutions as
output.
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Figure 3.3: Qualitative description of a transfer process. The transfer
algorithm biases the learning algorithm on the basis of the knowledge
retained from other tasks.

tion Ω, and the objective is to optimize the learning process on any other
target task drawn from Ω. On the basis of the information retained from
the source tasks and the information available for the target task, the
goal of a transfer algorithm is to modify the definition and the structure
of a RL algorithm so as to improve its learning performance. In general,
a transfer algorithm ATransfer is a mapping from the knowledge retained
so far to the task space and the hypothesis space:

ATransfer : Hn−1 × T n → H,T, (3.2)

where H is the family of all the possible hypothesis spaces and T is the
family of all the possible task spaces. In order to make this notation
clearer, we consider two transfer algorithms (AT1 and AT2) that modify
the hypothesis space and the task space respectively. Both the algo-
rithms get as input the information collected from n − 1 source tasks
and about the target task itself, that is hypotheses {Hi}i∈Nn−1

, where
Hi ∈ H, and task information {Tj}j∈Nn , where Tj ∈ T . On the basis of
this information, AT1 builds a set of options O. As a result, the output
of the transfer algorithm is a new task space T ′ ∈ T in which the action
space of all the tasks is augmented with the set of options (A′ = A∪O).
On the other hand, AT2 changes the hypothesis space in order to im-
prove the performance of the learning algorithm. In particular, let us
consider the case in which H = Q, that is, the hypothesis set is the set
of the action value functions that can be learned by a given function
approximator. The transfer algorithm adapts the structure of the ap-
proximator according to the characteristics of the tasks at hand. As a
result, the initial hypothesis space H is changed into a new hypothesis
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space H′ ∈ H.
In general, which information the transfer algorithm uses and how it

modifies the learning algorithm depends on the objectives, the scenario
and the structure of the algorithm. A classification of these elements is
proposed in the next section.

3.3.2 The Dimensions of Transfer

In this section, we propose three dimensions used in the following to
classify algorithms for transfer in RL. In particular, we focus on the
objectives of a transfer algorithm, the scenarios in which it is applied
and the knowledge it transfers across the tasks.

Objectives

The objectives of transfer in RL can be adapted from the objectives
suggested for the general problem of transfer in [71] (Figure 3.4):

(I) Learning speed improvement. This objective is about the reduction
of the complexity of the learning algorithm in terms of the expe-
rience needed to learn the solution of the task at hand. As new
tasks are sampled from Ω, the knowledge retained from a set of
previously solved tasks can be used to bias the learning algorithm
towards a limited set of solutions, so as to reduce its learning time.
The complexity of a learning algorithm is usually measured by the
number of samples needed to achieve a desired performance. In
SL, this scenario is usually referred to as the inductive transfer
problem. In RL, this objective is pursued following two different
approaches. The first approach is to make the algorithm more ef-
fective in using the experience collected from the exploration of
the environment. For instance, as shown in [64] and [55], the use
of options can improve the efficiency of value iteration backups by
updating value function estimates with the total reward collected
by an option, and thus reducing the number of iterations before
converging to a nearly optimal solution. In this case, the transfer
problem is to identify the set of options that leads to the great-
est speedup [64]. The second aspect is about the strategy used to
collect the samples. While in SL samples are given in advance, in
online RL algorithms the agent follows a given exploration strategy
and samples are obtained from direct interaction with the environ-
ment. The experience collected by solving a set of tasks can lead
to the definition of better exploration strategies for new related
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Figure 3.4: The three objectives of transfer learning [71]: learning speed
improvement, generalization improvement, initial offset improvement.
On the left: qualitative learning curves with and without transfer. On
the right: the corresponding changes to the learning trajectory.

tasks. For instance, if all the tasks have goals in a limited region of
the state space, an exploration strategy that frequently visits that
region will lead to more informative samples that can be used to
reduce the learning time.
Recalling the general definition in (3.2) this objective is usually
achieved by transfer algorithms such as

ATransfer : Hn−1 × T n → T, (3.3)

that is, algorithms that bias the definition of the task (e.g., aug-
mentation of the action space with options) so as to make the

48



3.3 Transfer in Reinforcement Learning

learning algorithm to solve the task faster than without transfer.
In principle, also the hypothesis space H could be changed by re-
ducing the number of hypotheses that the learning algorithm can
learn (e.g., the reduction of the actions in the action space pro-
posed in [113]), but this approach is rarely considered in transfer
literature. It is worth noting that the reduction of H has the sec-
ondary effect to change the generalization performance. In fact, it
may happen that the hypotheses removed from H through transfer
are actually optimal for tasks that will eventually occur.

(II) Generalization improvement. In most of the problems of practical
interest, an exact estimation of the value function is not possible
(e.g., problems with continuous state-action spaces) and the use
of function-approximation techniques is mandatory. The more ac-
curate the approximation, the better the generalization (and the
performance). In many cases, the difference between the objec-
tive of learning speed and of generalization improvement is subtle.
In fact, the improvement in learning speed at a given point of the
learning process can be seen as an improvement in the performance
due to a better approximation of the optimal action-value function.
In order to make this difference clearer, we consider the objective
of generalization improvement as the improvement in the perfor-
mance at convergence. As discussed in Section 2.5, in value-based
algorithms, the accuracy of the approximation is strictly dependent
on the structure of the approximator, which defines the hypothesis
space (i.e., the functions) that can be represented. In this case,
the hypothesis space H ∈ H is the space of action-value functions
Q and the objective of a transfer algorithm ATransfer is to adapt
the structure of the approximator (i.e., Q), so as to obtain the best
approximation of the optimal value functions of the tasks in Ω.
In general, a transfer algorithm pursuing the objective of general-
ization improvement can be defined as

ATransfer : Hn−1 × T n → H. (3.4)

Therefore, ATransfer biases the solution space with the aim of im-
proving the approximation accuracy of the optimal solutions of the
tasks at hand.

(III) Offset improvement. The learning process usually starts from a
random hypothesis drawn from the hypothesis space. The initial
hypothesis may affect two aspects of the learning performance: (i)
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the initial performance, (ii) the learning speed. In fact, if the
initialization is “near” to the optimal hypothesis, the learning algo-
rithm is expected to converge faster than with other initialization
hypothesis. At the same time, we expect to have a high initial per-
formance if the initial hypothesis is similar to the optimal solution
of the task at hand. It is worth noting that these two aspects are
not necessarily related. Let us consider a source task whose opti-
mal policy is significantly different from the optimal policy of the
target task but that, at the same time, it achieves only a slightly
suboptimal performance (e.g., two goal states with different final
positive rewards in different regions of the state space). In this
case, the improvement in the initial performance can be obtained
by initializing the learning algorithm to the optimal policy of the
source task, but this may lead to worsen the learning speed. In
fact, the initial policy does not provide samples of the actual op-
timal policy of the task at hand, thus slowing down the learning
algorithm. On the other hand, it could be possible that the policy
transferred from the source task is an effective exploration strategy
for learning the optimal policy of the target task, but that it also
achieves very poor performance.Therefore, in the case of transfer
of policies, an effective transfer algorithm should learn a suitable
trade-off between the transfer of rewarding policies and the transfer
of policies that improve the information about the optimal policy.

More in general, the objective of a transfer algorithm is to use the
knowledge retained from the solution of a set of tasks to define
an initial hypothesis that is likely to improve the learning perfor-
mance on new tasks drawn from the same distribution Ω [164]. The
transfer algorithm can be defined as

ATransfer : Hn−1 × T n →H. (3.5)

Unlike the previous objectives, here the transfer algorithm directly
affects the initial hypothesis H0 ∈ H used to initialize the learning
algorithm. It is interesting to notice that H0 can be either the
policy or the action-value function used to initialize the algorithm.

Scenarios

The possible scenarios of transfer depend on the differences between the
tasks at hand (see Definition 3.3):
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(I) Goal Transfer. In case of goal transfer, the tasks share all the
same dynamics but have different goals. In RL, this means that
the transition model is shared across all the tasks, while the re-
ward function, that specifies the goal of the task, is different. This
scenario is typical in all the applications in which the interaction
between the agent and the environment is constant, while it is up
to the designer to specify the goal. For instance, in most of the
robotic navigation problems the dynamics of the robot is always
the same, while the goal position varies.

(II) Dynamics Transfer. In case of dynamics transfer, each task has
a different dynamics while the goal is always the same. This sce-
nario is typical in many control applications in which the goal is
intrinsic in the application (e.g., the stabilization of a pendulum,
the achievement of a set point) while the dynamics can be affected
from parameters of the environment or characteristics of the object
to be controlled (e.g., friction, masses). Another wide class of ap-
plications is game playing. Depending on the opponent strategy,
the dynamics of the environment can significantly change, while
the goal of the game (the condition of victory) is always the same.
For instance, in the Texas Hold’em Poker [25], the outcome of the
actions of the agents (e.g., fold, bet) does not depend only on the
rules of the game, but also on the opponent strategy. On the other
hand, the goal, i.e., the reward function, is always the same inde-
pendently from the opponent.

(III) Domain Transfer. In the case of domain transfer, each task may
have different dynamics and goals. Furthermore, the tasks may also
be defined on different state-action spaces. Therefore, the transfer
of knowledge (e.g., a policy) requires the mapping between the
state-action spaces of the source and target tasks. The problem
of domain transfer is the most general and complex problem of
transfer.

Transferred Knowledge

A general classification of the knowledge retained and transferred across
tasks in SL is proposed in [114]. Here, we propose a different classification
specific for transfer in RL. In particular, we do not distinguish between
retained and transferred knowledge, since in most of the transfer RL
algorithms these two elements coincide. According to the qualitative
definition of transfer algorithm in Equation 3.2, the main elements that
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can be retained and transferred are: experience collected during the
learning process and structural knowledge about the environment.

(I) Experience. During the learning process the algorithm collects ex-
perience and learns a suitable solution for the task at hand. This
experience can then be reused to improve the learning performance
in related tasks. The experience an algorithm obtains from learn-
ing on a task can be roughly divided into three groups: (i) samples,
(ii) value functions, (iii) policies. For instance, the transfer of tra-
jectory samples can be used to simplify the estimation of the model
of new tasks [129]. On the other hand, the transfer of solutions (ei-
ther policies or value functions) is commonly adopted to initialize
the learning algorithm and to speed-up the learning [141, 145].

(II) Structural knowledge. After learning on different tasks, transfer
algorithms often perform an abstraction process that leads to the
definition of general knowledge about the environment from which
the tasks are drawn. As a result, they change the definition of
the problem in order to take into account the knowledge about the
structure of the tasks and of their solutions. We further divide
this type of transfer in two categories: (i) task representation, (ii)
solution representation. In the former, we consider algorithms that
modify the definition of the tasks (T ), such as reward shaping [68],
MDP augmentation through options [118], bisimulation [47]. The
latter contains algorithms that modify the structure of the solution
(H). For instance, in [78] the basis function of a linear function
approximator are extracted so as to improve the approximation
accuracy on a wide range of value functions.

3.3.3 State of the Art in Transfer Reinforcement Learning

In this section, we summarize the main works of transfer in RL (see
Table 3.2) following the dimensions introduced in the previous section.
Some of the works are present in more than one category because they
consider multiple objectives or merge different techniques in one algo-
rithm.

The idea of transferring solutions dates back to early research in RL.
Transfer of solutions has been often adopted to simplify the learning pro-
cess in robotic applications. A number of works [10, 77, 111] showed that
transfer from simple to complex tasks can be an effective experimental
methodology in order to reduce the learning complexity and solve real-
world problems. Nonetheless, the process of transfer proposed in these
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[This thesis]

Dynamics [15] [15]

Offset Goal

Domain [141] [143] [138] [145]
[153]

[124] [164] [142]

Table 3.1: Classification of the main works of transfer in RL.
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works is often carried out by hand (mainly transferring hand-coded so-
lutions) and it cannot be easily extended to other scenarios.

As it can be noticed in Table 3.2, most of the recent research in trans-
fer RL focused on the objective of improving the learning speed. This
objective is mainly pursued by transferring task representation or trans-
ferring solutions across tasks. In particular, many works [118, 93, 26]
focused on the augmentation of the action space of tasks with a set of
options suitable for the solution of a wide range of tasks sharing the
same domain but with different goals. A different use of options is pro-
posed in [69], in which the options are defined in a general space (i.e.,
the agent space) composed by a set of features shared across the tasks.
These options are more general and can be used even when the domain
and the context of the tasks are different. The task representation is
changed also in [68], where a automatic mechanism of reward shaping
is used to estimate intermediate rewards on the basis of previous tasks,
thus reducing the learning time. Transfer of the solution representation
is performed in [82], where the task decomposition of MAXQ is used to
transfer subgoals and subpolicies across tasks sharing the same domain
but with different goals. The improvement in learning speed can also be
obtained through direct transfer of a policy from source to target task.
In [46] a library of policies is used and the agent can exploit previously
learned policies in order to reduce the number of episodes to learn the
solution of the current task. In [145] the more general case of transfer of
solutions between tasks with different state and action spaces is consid-
ered.
Although the previous approaches cover many different aspects of the
transfer problem for the learning speed improvement, it is very difficult
to compare their effectiveness and results because the performance met-
rics are often different and a common formal definition of the objective
is still lacking. Furthermore, there are still aspects of the problem that
can be investigated. A relevant topic that is rarely considered is the is-
sue of negative transfer. It is widely recognized that transfer is effective
only if tasks are related, otherwise the learning performance can even
get worse than without transfer. Therefore, it is important to define
a suitable measure of distance between tasks and to design algorithms
able to avoid transfer whenever the distance is too high. From the al-
gorithmic point of view, whereas a common practice in many multi-task
works [34, 114] is to transfer training samples, only few works [129, 140]
address the problem of transfer in RL by reusing the experience directly
collected by the agent from direct interaction with the environment, that
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is, the trajectory samples.

Although the objective of improving the offset is in general distinct
from the improvement in learning speed, many algorithms do not distin-
guish between these two aspects and the transfer is designed to achieve
both these results. The most relevant works for this objective are fo-
cused on the definition of suitable methods for the transfer of solutions
across tasks with different state and action spaces. Indeed, this is the
most challenging problem in transfer. In fact, in many applications of
interest the “nature” of the problem is fixed across the tasks and the op-
timal solution for one task is a nearly-optimal solution for the others. In
this case, the main problem is to map the solution learned in one task to
the state and action space of another task, thus initializing the learning
algorithm to a convenient solution. There are many different aspects of
a reinforcement learning algorithm that can be initialized: value func-
tion [74, 143, 141], policy [145], structure [142, 15]. While the mapping
between source and target tasks is usually designed by hand, in recent
works [124, 138, 74, 145] algorithms that learn the most suitable map-
ping between state and action spaces so as to improve the effectiveness
of the transfer are proposed. A different perspective is followed in [164],
where a hierarchical Bayesian approach is followed in order to learn a
prior on the distribution of the tasks and, thus, to initialize the learning
system to the solution of the most probable task.
The initialization of learning algorithms by mapping solutions from source
to target task obtained interesting results even in complex problems (e.g.,
simulated soccer keepaway). Similarly to the learning speed improve-
ment, the main open problem is the possibility to estimate the expected
improvement the can be obtained from initializing the learning algo-
rithm. Furthermore, almost no work distinguishes between the two as-
pects of this objective, that is, the initial performance and the learning
speed. As discussed in Section 3.3.2, a transferred solution can be very
effective in terms of performance (i.e., it is near to the optimal solution)
but, at the same time, it can increase the complexity of learning the
actual optimal solution. Conversely, it may happen that the learning
algorithm needs only few episodes before converging to the optimal so-
lution when initialized with the solution of a source task, but it has a
very poor initial performance. Therefore, it is important to investigate
when transfer actually achieves to initialize the learning algorithm so
as to obtain a good initial performance and, at the same dime, not to
prevent from learning the optimal solution in few learning episodes.

Finally, the objective of generalization improvement, although of pri-
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mary concern in many transfer algorithms in SL, is still relatively un-
explored in RL and, as it can be noticed from Table 3.2, most of the
solutions focused on the transfer of structure representation. In Sec-
tion 3.3.2 we defined the objective of generalization improvement as the
improvement of the performance at convergence. While the improvement
of the performance during the learning process can be achieved both by
transferring experience and by changing the structure of the problem
(see the algorithms for speed improvement), at convergence the perfor-
mance is strictly related to the hypothesis space and, thus, only transfer
algorithms that directly change H can achieve the objective of gener-
alization improvement. This is the reason for the lack of solutions that
transfer experience, since it is not possible to design an algorithm able to
improve the performance of the learning algorithm by either transferring
samples or solutions. In [142] the problem of transferring some parts of
the structure of an approximator is considered. The generalization of the
proto-value function framework to the problem of transfer between tasks
with different domains is faced in [45]. Finally, in [106] a preliminary
formal model for the multi-task problem in the context of RL algorithms
is proposed.
Since in SL the problem of generalization improvement is usually pursued
by following a multi-task perspective, the most promising investigation
direction in RL is to adapt SL solutions to the context of RL problems.
In particular, value-based RL algorithms could be integrated with hier-
archical Bayesian approaches and regularized algorithms so as to change
the hypothesis space (Q in this case) in order to improve the approxi-
mation accuracy of the approximator at hand in a number of tasks.

As far as the frameworks are concerned, most of the previous works
rely on value-based, TD algorithms and often use hierarchical frame-
works for task decomposition. Little attention has been devoted to other
approaches. For instance, only few works [145] focused on knowledge
transfer in policy search algorithms. Similarly to solution representation
transfer for value functions, a particularly interesting aspect of transfer
with policy search algorithms would be the analysis of how the policy
space could be adapted in order to achieve generalization improvement.
Another approach rarely considered is the use of batch algorithms, as
usually done in SL. For instance, in the proto-value function frame-
work [45, 78] LSPI is used only for the approximation of the action-value
function but it is not related with the process that actually generate the
proto-value functions.
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3.3.4 Alternative Models of Transfer Learning

Besides the perspective introduced in the previous sections, other mod-
els of transfer have been proposed in literature. Some of the scenarios
described in the following have been considered only in the context of
transfer in SL and can represent interesting fields for future investigation
in RL.

Online Multi-Task Learning

Multi-task learning is defined as the problem of learning multiple tasks
in parallel. Most of the works in multi-task learning follow a batch per-
spective in which all the samples from all the task are given in advance.
In [37] an online perspective is considered. On each online round, the
learning algorithm receives one sample and makes a prediction for each of
the tasks. The basic assumption about the relatedness among the tasks
is captured by using a single global loss function to evaluate the quality
of the multiple predictions made on each round. In RL, this perspective
can be followed in case of goal transfer with an online algorithm. In fact,
while the agent explores the environment, several value functions can be
simultaneously updated using a set of reward functions.

Transfer Across Tasks on Hidden Variables

This scenario is a specific case of the general model introduced in Sec-
tion 3.3.1. In many environments, the characteristics of the tasks are
determined by few parameters that cannot be directly observed. In this
case, a transfer algorithm should estimate the functional relationship be-
tween the parameters and the solution of the corresponding task. There-
fore, the transfer algorithm could simply “transform” the solution of one
task to the solution of another task by simpling estimating the value of
the parameters. Similar scenarios are considered in [23, 144].

Sequential Transfer

In the general definition of transfer introduced in Section 3.3.1, Ω is a
distribution over the task space T and it does not provide a specific
sequence of tasks. On the other hand, transfer techniques have been
often applied to sequence of tasks with progressive difficulty [75]. The
use of dummy tasks is a common practice in robotic applications in which
it is possible to progressively exploit more sensors and actuators, so as
to smoothly increase the complexity from one task to the other.
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Figure 3.5: The learning process of a generic batch RL algorithm.

Tracking

A recent work by Sutton et al. [135] proposes tracking as the most suit-
able perspective in which transfer learning should be stated. The prob-
lem of learning on a sequence of learning problems is similar to the
problem of tracking in non-stationary environments. In the paper, they
highlight that transfer learning algorithms usually work only for some
sets of tasks but not for others, and it is not clear where the tasks would
come from in real applications. Therefore, they propose to ground trans-
fer learning algorithms in the scenario of learning on a sequence of tasks
generated by a stationary environment and thus inherently related by
being parts of an overall problem.

3.4 Transfer in Batch Reinforcement Learning

Batch RL algorithms are gaining more and more interest in RL com-
munity because of their interesting theoretical properties [70, 4] and ex-
perimental success [65]. The main feature of batch RL algorithms is an
effective use of experience obtained by dividing the RL process in two
distinct phases of sampling and learning. As discussed in the previous
sections, batch RL algorithms have been rarely adopted in transfer learn-
ing up to now. In this section, we discuss how batch RL can also be used
as a suitable framework for transfer in RL.

Batch RL is an appealing framework for achieving transfer in RL for
two main reasons: (i) the distinction between sampling and learning
allows a more thorough analysis about how transfer objectives can be
achieved, (ii) the learning phase can be stated as a supervised problem
and, thus, transfer solutions in SL can be easily extended to transfer in
RL.
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3.4.1 Batch Reinforcement Learning

The learning process of a batch RL algorithm can be represented as in
Figure 3.5. The sampling algorithm defines the way the agent explores
the task and collects trajectory samples, used to form a set of samples.
Once the sampling algorithm is finished, the set of samples is used as
input for a learning algorithm that computes an approximation of the
optimal action-value function (Q∗). As the number of samples tends to
infinity the learning algorithm learns the best approximation of Q∗ ac-
cording to the space of functions that can be represented by the function
approximator. 5

In the following, we denote a set of m samples drawn from T as T̂ =
{τi}i∈Nm , where τi = 〈si, ai, s

′
i, ri〉. In general, sample sets T̂ belong to

a space T̂ that contains all the sample sets that can be generated from
the tasks in the task space T . Following the general definition of a RL
algorithm in (3.1), we define:

Definition 3.4 A sampling algorithm ASampling is a mapping from the

space of tasks T to the space of set of samples T̂
ASampling : T → T̂ , (3.6)

where the sample set T̂ ∈ T̂ contains samples drawn from T ∈ T .

Definition 3.5 A learning algorithm ALearning is a mapping from the

space sample sets T̂ to the space of action-value functions Q
ALearning : T̂ → Q, (3.7)

where Q defines the action-value functions that can be learned by the
learning algorithm.

The objective of the sampling algorithm is to collect samples that are
informative (e.g., samples of the goal states) for the achievement of the
task, while the objective of the learning algorithm is to exploit the sam-
ples collected by the sampling algorithm in order to compute the most
accurate approximation of the action-value function. It is interesting
to notice, that, unlike on-line algorithms, in batch RL, sampling and
learning algorithms are not strictly related. In fact, the value function
approximated by the learning algorithm does not impact on the sampling
strategy and, at the same time, the sampling algorithm does not directly
affect the actual possibility for a function approximator to converge, as
it may happen in on-line algorithms [53].

5The function approximator can represent only a limited space of functions that, in
general, does not contain the optimal action-value function.
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Figure 3.6: A qualitative representation of a transfer algorithm in batch
RL. The transfer algorithm biases both the sampling and the learning
algorithms according to the knowledge retained from other tasks.

3.4.2 A Batch Reinforcement Learning Approach to Transfer

Building on the previous definitions, we analyze how a transfer algorithm
could affect the performance of a batch RL algorithm. A general model
of the transfer problem in batch RL, is depicted in Figure 3.6. Unlike
the model in Section 3.3.1, here we have two distinct algorithms and we
consider the case in which the transfer algorithm can either modify the
sampling algorithm or the learning algorithm. Furthermore, the transfer
algorithm has not direct access to the model of the task T but it can
only receive information about the task from the sampling algorithm.

Thanks to the distinct effects of the two phases of a batch RL system,
a transfer algorithm can pursue the objectives described in Section 3.3.2
by modifying the definition of each algorithm separately. Elements that
can affect the performance of a batch RL algorithm are:

• Set of samples. The complexity of a batch RL algorithm is usu-
ally measured as the number of samples directly collected from the
task. The “quality” of samples significantly impacts on the learn-
ing performance of batch RL algorithms, the more informative the
samples, the better the final approximation of the optimal action-
value function. Unlike on-line approaches, in batch RL only the
sampling algorithm is responsible for the collection of samples and
it does not depend on the learning algorithm. Therefore, the ob-
jective of learning speed improvement can be achieved by directly
biasing the sampling algorithm with the aim of reducing the num-
ber of samples needed to learn the optimal solution. Following
the classification in Section 3.3.2, a transfer algorithm can impact
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on the effectiveness of the set of samples used as input for the
learning algorithm by transferring either structural knowledge or
experience. In particular, while transfer of structural knowledge
can impact on the definition of the task, the transfer of experience
can either bias the exploration strategy towards specific regions of
the state space (e.g., transfer of policy) or integrate the samples
collected from the task with samples saved from the exploration of
previous tasks (see Chapter 4).

• Action value function space. In Section 3.3.2, we discussed how
the objective of generalization improvement can be achieved by
biasing the hypothesis space. In case of batch RL, only the learning
algorithm determines how the approximation of the optimal action-
value function is computed. Therefore, a transfer learning should
bias the value function space of the learning algorithm towards the
a suitable space for the approximation of the value functions of the
tasks in the environment. Since the learning algorithm learns on a
given set of training samples, it is similar to a SL problem and it
could be integrated with transfer solutions in SL (see Chapter 5).

• Initialization. As discussed in Section 3.3.2, the initialization of
a learning algorithm can either result in an improvement in the
learning speed or of the initial performance. The advantage of
batch RL algorithm is that it is possible to map these two effects
to the initialization of the sampling and learning algorithm, respec-
tively. The initialization of the sampling algorithm means that the
exploration strategy is biased towards a specific policy determined
according to the knowledge retained from the solution of previ-
ous tasks. The expected result is an improvement in the learning
speed, since the biased exploration policy should collect samples
more informative than those collected by a random policy. On the
other hand, the initialization of the learning algorithm, that is, the
choice of an initial hypothesis, affects the initial performance of the
agent.

Although batch RL received little attention as a framework for trans-
fer in RL, the previous analysis shows how transfer objectives could be
effectively achieved by biasing either the sampling or the learning algo-
rithm.

Although many different algorithms can be designed for transfer in
batch RL, in this thesis we focus on two aspects of transfer: the trans-
fer of samples and the learning of features of function approximators.
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According to the analysis in Section 3.3.3, these aspects have been ad-
dressed by very few works but in Chapter 4 and 5 we highlight the moti-
vations for designing algorithms able to achieve transfer following these
two perspectives. Furthermore, by focusing on sample transfer and on
feature learning, we follow both the inductive transfer and the multi-task
learning perspectives.

More specifically, the first transfer algorithm is aimed at the improve-
ment in the learning speed from an inductive transfer perspective. The
idea is to bias the output of the sampling algorithm by modifying the
space of the sample sets

ATransfer : T̂ × T̂ n−1 → T̂. (3.8)

That is, given a set of samples collected from a target task and n−1 sets
of samples collected from source tasks, the transfer algorithm modifies
the space of the sample sets by adding a subset of the source task samples.
Under the assumption that some tasks are related in terms of domains
and goals, the batch RL algorithm benefits from these additional samples
and converges to a better approximation of the optimal value function
even when a limited set of samples is actually collected from the target
task.

The second transfer algorithm is meant to improve the generalization
performance from a multi-task perspective. The idea is to change the
hypothesis space of the learning algorithm by identifying the features
shared across the task in the environment

ATransfer : T̂ n → Q. (3.9)

Starting from a set of samples collected from n tasks, the transfer al-
gorithm biases the hypothesis space towards functions that provide an
accurate approximation of the optimal value functions of the tasks at
hand, thus improving the generalization performance.

In the rest of the thesis, we restrict the set of transfer problems we focus
on. In particular, we require all the tasks to share the same state and
action space. This requirement may exclude some relevant applications
(e.g., robotic problems in which sensors and/or actuators can change
among different tasks). Nonetheless, the algorithms proposed in the
next chapters can be extended to the general case of domain transfer if
a mapping among the state and action spaces of the tasks is available
(e.g., using inter-task mapping algorithms [144]). A recent work [140]
proposed a mechanism for transferring samples from source to target
tasks by mapping each sample of the source task into a sample defined
in the state-action space of the target task.
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Reinforcement Learning

In this chapter, we propose a technique to achieve the first objective of
transfer, the improvement of the learning speed, in a batch RL algorithm.
In particular, we introduce a method to transfer samples from a set of
source tasks to a target task, thus reducing the complexity of the learning
process in terms of the number of samples actually collected through
direct interaction with the target task.

4.1 Introduction

It is widely recognized that the main objective of transfer in RL is to
reduce the learning time. In fact, the solution of a set of source tasks
can provide useful information about how to solve a related target task,
thus reducing the amount of experience needed to learn its solution. For
instance, if two tasks (source and target) share almost the same optimal
policy, the solution of the source task can be used to bias the learning on
the target task towards policies that are similar to the source task optimal
policy. As a result, the algorithm will converge in a number of episodes
smaller than that needed when learning from scratch. Similarly, other
elements characterizing a learning problem could be transferred from
source to target tasks, such as value functions, action spaces, reward
functions, and so on. Nonetheless, when transferring from a source task
that is not related to the target task, negative transfer may occur, that
is, the learning algorithm may be slowed down because biased towards
solutions that are completely different from the optimal one. Therefore,
when defining a transfer algorithm for the improvement of learning speed,
two critical aspects must be taken into account: what to transfer and
when to transfer.

In this Chapter, we focus on a perspective that received very little
attention so far, that is the transfer of experience in terms of samples
(i.e., experience tuples of the form 〈s, a, s′, r〉). We propose a mechanism
that selectively transfers samples from source to target tasks on the basis
of the likelihood (compliance) of source tasks with the samples collected
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in the target task and that can be applied to any of the batch RL al-
gorithms reviewed in Section 2.7. Furthermore, we introduce a criterion
(relevance) to select from which source tasks samples should be trans-
ferred and, within a single source task, which samples are more likely to
speed up the learning process.

Unlike the transfer of policies, the transfer of samples require only local
similarity between tasks. In fact, even local and small variations to the
task can lead to very different policies, thus preventing from transferring
policies at all. On the other hand, samples in regions that are similar in
source and target tasks can be always transferred independently from the
similarity of their corresponding solutions. As a result, through sample
transfer, we reduce the number of samples that must be actually collected
in the target task to achieve convergence.

4.2 Background

In general, in RL algorithms, many aspects can affect the amount of ex-
perience needed to achieve convergence to the optimal or nearly optimal
solution. The problem of improving learning speed is usually studied in
RL under the perspective of the exploration/exploitation dilemma, that
is, the problem of finding the optimal trade-off between high rewarding
actions and explorative actions in order to achieve high performance in
few learning episodes (Section 2.4.2). In particular, this problem has
been framed within the PAC framework [62], that defines the problem
of bounding the number of samples needed to achieve a ǫ-suboptimal
solution with at least 1− δ probability. Although a thorough theoretical
analysis is now available for a number of algorithms [62, 127, 125, 66, 30],
it is still difficult to understand how different elements and parameters
of traditional learning algorithms actually affect these bounds. In fact,
complexity bounds in exploration/exploitation literature contain infor-
mation about the state-action space, the maximum performance loss ǫ,
the probability of being nearly-optimal δ, and the mixing time, but they
rarely provide reliable estimations of the actual learning time of an al-
gorithm in specific problems. Furthermore, at the moment, a rigorous
theoretical analysis of the relationship between the learning speed and
the techniques usually adopted to speedup RL algorithms (e.g., options,
shaping rewards) is still lacking. On the other hand, there exists a large
empirical evidence of the effectiveness of these techniques in improving
the learning speed of RL algorithms and in Section 3.3.3 we reviewed
how they are applied to transfer problems.
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Most of these works identified the transfer of policies as the main
technique to achieve effective transfer from source to the target task.
The augmentation of an MDP with the inclusion of options “relevant”
to learn the solution of the target task, leads to a significant bias to the
exploration towards the goals of the options that can ease the learning.
Similarly, the automatic shaping of the reward function [68] reduces the
time needed to achieve high rewarding regions of the state space, thus
reducing the learning time. Other approaches [48, 120] transfer value
functions that can be used to initialize the learning algorithm to solutions
near to the optimal one. Finally, a recent work [140] proposes a technique
for the transfer of samples from one source task to a target task that
share the same goal but are defined on different state-action spaces.
It is interesting to notice that all these approaches affect the learning
speed of the learning algorithm, but do not change the accuracy of the
approximation of the optimal value function. This objective will be
analyzed in Chapter 5.

Although these approaches study how the transfer of different elements
from source to target tasks can impact on a RL algorithm, they often rely
on the assumption that the tasks are somehow related and they do not
address the problem of negative transfer [107]. Some works focused on
the definition of relatedness measures between tasks that can be used to
select from which source tasks it is actually convenient to transfer so as
to avoid negative transfer. Carroll and Seppi [33] provide an experimen-
tal analysis of different similarity measures that estimate the expected
speed-up on the basis of elements such as policy overlapping, Q-values,
and reward structure. Unfortunately, it is often difficult to compute
these measures before actually learning the solution of the target task
and, thus, they are mainly used as a mean of analysis of the effective-
ness of a transfer mechanism. In [113], although no relatedness measure
is adopted, the loss of performance caused by the reduction of the ac-
tion space of the target task to the optimal actions of the source task
is bounded. Finally, in [47], different metrics for the distance between
tasks are proposed and a theoretical analysis about how the distance be-
tween tasks is related to the difference between the performance of the
corresponding optimal value functions is reported.

4.3 Motivating Example

Let us consider the domain shown in Figure 4.1, in which the general task
is to hit a ball into a hole. The main factors characterizing the dynamics
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Figure 4.1: The golf problem. The agent hits the ball with a given force.
Depending on the initial velocity of the ball, the friction of the ground
and the size of the hole the ball can either enter in the hole, overcome
the hole or remain at a given distance from the ball.

of the problem are the friction of the ball on the green and the size of
the hole 1. While the former impacts on the transition model, the latter
affects the reward function and the termination of episodes. Any batch
RL algorithm requires the sampling of samples 〈s, a, s′, r〉 from the task
at hand and the offline computation of an approximation of the optimal
policy. Let us consider the case of a problem of goal transfer from one
source to a target task, in which the friction is exactly the same and
the size of the hole in the source task is greater than in the target task.
Although there are regions of the state space in which the optimal policy
of the two tasks could be different, a large amount of samples collected
in the source task is exactly the same as those in the target task. In
fact, since the dynamics does not change, all the samples in which the
next state s′ is not in or beyond the hole, are common to the source and
to the target task. Therefore, if only few samples are collected from the
target task, the batch RL algorithm can greatly benefit from re-using the
samples collected in the source task, thus improving the accuracy of the
approximation of the optimal policy and its corresponding performance.
On the other hand, if we consider tasks in which the frictions are very
different it may happen that the transfer of samples from source to target
task worsens the performance of learning in the target task because of
misleading samples. Therefore, it is important to design a mechanism
able to identify which samples are actually informative for the target
task so as to improve the learning performance.

1A more detailed description of the dynamics of the problem is reported in Sec-
tion 4.5.
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4.4 Transfer of Samples in Batch Reinforcement

Learning

In this section, we outline a novel mechanism for sample transfer.

4.4.1 Problem Formulation

As illustrated in Figure 3.6, in a batch RL algorithm, the main element
that can directly affect the learning speed is the set of samples. Here,
we focus on the way the set of the samples used to feed the learning
algorithm can be augmented by the inclusion of samples drawn from a
set of source tasks. The basic intuition underlying this idea is that, since
the tasks are related through the task distribution Ω, some of the source
tasks are likely to contain samples similar to samples of the target task.
Therefore, a batch RL algorithm could greatly benefit from additional
samples extracted from the source tasks when learning the solution of the
target task. Under this perspective, we define the complexity of a batch
RL algorithm as the sample complexity of the sampling algorithm, that
is, the number of samples actually drawn from the task at hand through
direct interaction.

Formally, we define this transfer algorithm as a mapping from the
samples collected from source and target tasks to an augmented set of
samples for the target task

ATransfer : T̂ × T̂ n−1 → T̂, (4.1)

where n is the total number of tasks at hand (one target task and n− 1
source tasks), T̂ is the space of the sets of samples, and T̂ is the family
of all the possible sample sets spaces T̂ . Before transfer, the space of
sample sets T̂ ∈ T̂ contains all the possible sets of samples that can be
obtained from the target task T . When the transfer takes place, the new
space of sample sets T̂ ′ augments the samples sets in T̂ with a given set
of samples that are transferred from the source tasks. Thus, given the
set of samples collected from the target task T̂ ∈ T̂ and the n − 1 sets
of samples of the source tasks Ŝk ∈ T̂ , k ∈ Nn−1, the objective is to
bias the space of the sets of samples by building a set of samples T̃ ∈ T̂
obtained by transferring samples from the source tasks to the target
task. Samples in T̃ are finally used as input for the learning algorithm.
It is worth noting that the transfer algorithm that follows is completely
independent from the specific learning algorithm used to compute the
approximation of the optimal action-value function.
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Figure 4.2: Comparison of the probability of two source tasks (S1 and S2)
to be the models from which the samples of target task are drawn. Here
we report only the transition model, that is the probability distributions
PS1

(·|s, a) and PS2
(·|s, a), the tics on the x-axis represent the samples

collected in state-action pair (s, a) from the target task T .

4.4.2 Task Compliance

The main problem of transferring samples from one task to another is to
reduce the probability negative transfer, that is the transfer of samples
drawn from a source task that is significantly different from the target
task. In order to avoid negative transfer, we need to identify which source
tasks are more likely to have samples similar to those available for the
target task.

Alternatively, this problem can be stated as a model identification
problem. Let us consider the following scenario. The task space T con-
tains n tasks, and m samples have been already collected from each task.
Let T be a new task drawn according to Ω and T̂ the set of samples col-
lected from it, with |T̂ | = t≪ m. Since the transfer of samples from all
the tasks in T can make the learning performance on T worse, we need
to identify which of the previously solved tasks is actually T according
to the available samples. Starting from a uniform prior over the tasks
in T , we compute the posterior distribution as the probability of a task
to be the model from which samples in T̂ are drawn. As the number
of samples t increases, the posterior distribution is updated accordingly
until the probability is concentrated only on the task equal to T . Then,
the m samples previously collected in the task equal to T can be added to
T̂ and used to feed the batch RL algorithm, thus improving its learning
performance.

In the case in which T is infinite or contains many tasks, the probabil-
ity to have one source task identical to the target task is negligible, but
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we can still identify the source tasks that are more likely to generate sam-
ples similar to those of the target task. Bayesian models in RL [36, 128]
usually define the likelihood of a model S as the joint probability of S
given the samples in T̂ . Under the assumption that all the samples are

independent, this results in the product of the likelihood P
(
S|T̂〈s,a〉

)
in

all the state-action pairs. Unfortunately, this perspective is not suitable
for our scenario. Let us consider the case in which all the samples in T̂
but one perfectly fit S, that is there exists one sample τi for which the
compliance λi is very low. As a result, the global likelihood is very low.
Since our objective is to identify the source task that is more likely to
contain samples that is worth transferring, if a task S contains most of
the samples with high-compliance and only one low-compliant sample,
the transfer from S should take place. Therefore, instead of the proba-
bility of a source task to generate all the samples collected in the target
task, we compute its compliance with T by averaging the probability of
generating the samples in T̂ . Then, we transfer samples of source tasks
proportionally to their compliance with the target task.

In Figure 4.2 we report a qualitative scenario with two source tasks
S1 and S2 and a set of samples collected from T in a generic state-action
pair 〈s, a〉. The two distributions represent the probability to achieve a
state s′ taking a in s. As it can be noticed, S2 is more likely to have
generated the samples than S1.

Let us consider a generic source task S and the samples extracted
from the target task T̂ . Given a state-action pair 〈s, a〉, the probability
of S to be the model from which the samples of the target task in 〈s, a〉
are extracted, that is the likelihood of the model, can be computed by
applying Bayes theorem as

P
(
S|T̂〈s,a〉

)
∝ P

(
T̂〈s,a〉|S

)
P (S)

=
∏

τi∈ bT〈s,a〉

P (τi|S)P (S)

=
∏

τi∈ bT〈s,a〉

PS(s′i|si, ai)RS(ri|si, ai)P (S) , (4.2)

where T̂〈s,a〉 is the set of samples {τi ∈ T̂ |〈si, ai〉 = 〈s, a〉} and P (S)

is a prior on the source task S. Probability P
(
S|T̂〈s,a〉

)
is a posterior

distribution over the source tasks in 〈s, a〉.
Unfortunately, the posterior probability cannot be immediately com-

puted, since we do not have the exact model of the source task S. On the
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other hand, we have a set of m samples Ŝ previously collected in S, from
which an approximation of the continuous model can be computed. In
the following, with an abuse of notation, with T̂ and Ŝ we denote both
the sets of samples and the model approximations. Let τi = 〈si, ai, s

′
i, ri〉

be a generic transition sample in T̂ , the probability of this transition to
be generated by S given the set of samples Ŝ is

P (〈si, ai, s
′
i, ri〉|Ŝ) = PbS(s′i|si, ai)RbS(ri|si, ai), (4.3)

where PbS and RbS are respectively the approximated transition model
and reward function. In discrete tasks the transition model can be eas-
ily approximated using the maximum likelihood estimator obtained by
counting the number of occurrences of the transitions. In the general case
of tasks with continuous state and action spaces, this approach cannot
be adopted because the probability to have many samples in the same
state-action pair 〈s, a〉 is negligible. Therefore, in order to estimate the
probability of a transition in a state-action pair, it is necessary to gener-
alize the maximum likelihood approach by taking into consideration all
the samples close to 〈s, a〉. In particular, we build on the kernel-based
solution proposed in [60, 58]. The estimation of the probability of a
transition τi to occur depends on all samples σj ∈ Ŝ. The contribution
of σj to the probability of τi is divided in two parts: (i) the closeness
of the two samples in the state-action space, (ii) the similarity of the
outcome (either next state s′ or reward r). The closeness of two samples
can be computed by applying a kernel function ϕ(·) to a given distance
metric d defined on S ×A. More specifically, we adopt a Gaussian ker-

nel ϕ(·) = exp
(
‖·‖
δ

)2
, where δ is the bandwidth of the kernel (i.e., the

standard deviation of the Gaussian).
First of all, we define the similarity (compliance in the following) be-

tween the trajectory of τi and the trajectories of samples σj ∈ Ŝ in terms
of dynamics and reward. We define the compliance of τi with respect to
σj for the transition model as

λPij = wij · ϕ
(
d(s′i, si + (s′j − sj))

δs′

)
,

where

wij =
ϕ
(

d(〈si,ai〉,〈sj ,aj〉)
δsa

)

∑m
l=1 ϕ

(
d(〈si,ai〉,〈sl,al〉)

δsa

) .
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Figure 4.3: Computation of the approximated transition model of a task

S for the transition of a sample τi according to the samples in Ŝ. We
consider six samples σj ∈ Ŝ such that aj = ai. The transition probability
is obtained by weighting the difference in the outcome (b) by the distance
between the samples in the state space (a). The darker the arrow the
higher the weight (value).

The first term weighs the difference between the outcome of taking
action ai in si and the outcome of aj taken in sj. Instead of a simple
comparison of s′i and s′j, the second element computes the distance be-
tween the state achieved in τi and the state that it would be achieved if
aj were taken in si. As shown in the example of Figure 4.3, σ5 gets a
relatively small weight because of its distance from the state-action pair
of τi (Figure 4.3-(a)) but the outcome of action aj is almost the same as
ai (Figure 4.3-(b)). On the other hand σ3 is next to τi but its outcome
is completely different. As a result, compliance λPi3 is less than λPi5.

Similarly, the compliance for the estimation of the reward function is
defined as

λRij = wijϕ

( |ri − rj |
δr

)
.

where d(ri, rj) is the difference between the two rewards. The approx-
imated transition model and the reward model are the average of the
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compliance between τi and all the samples in Ŝ

PbS(s′i|si, ai) =
1

ZP

m∑

j=1

λPij ; RbS(ri|si, ai) =
1

ZR

m∑

j=1

λRij ,

where ZP and ZR are normalization terms 2.
Finally, we define the compliance of a sample τi to a source task S

approximated using its samples in Ŝ as

λi = P (〈si, ai, s
′
i, ri〉|Ŝ) =

1

ZPZR




m∑

j=1

λPij






m∑

j=1

λRij


 .

Recalling the probability in (4.2), given the compliance of each sample
in 〈s, a〉, the likelihood of the model in 〈s, a〉 becomes

P
(
S|T̂〈s,a〉

)
∝

∏

τi∈ bT〈s,a〉

λiP (S) . (4.4)

Starting from the probability of the model in each state-action pair,
we compute a global measure of the probability for the task to contain
samples similar to those in the target task. We define the compliance of
a task S as the average likelihood computed over each state-action pair
experienced in the target task.

Definition 4.1 Given the set of samples of the target task T̂ and of a
source task Ŝ, the task compliance of S with the target task samples is

Λ =
1

|Û |
∑

〈s,a〉∈bU

P
(
S|T̂〈s,a〉

)
, (4.5)

where Û contains all the distinct state-action pairs in the samples of T̂ .

Since the probability to have two samples in the very same state-action
pair is negligible, we can consider |Û | = |T̂ | = t and the definition of task
compliance reduces to

Λ =
1

t

t∑

i=1

λiP (S), (4.6)

where P (S) is a prior on the source task. When n source tasks with
m samples each are available, and t samples are collected from T , the
computation of the task compliance has a time complexity of Θ(nmt).

2For the transition model the normalization term Z is the integral of the kernel
function on the state space , while for the reward function is the integral on R.
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Figure 4.4: The relevance function ρj for different values of average
distance dj .

4.4.3 Sample Relevance

Although the measure of compliance is effective in identifying which
sources, in average, are more convenient to transfer samples from, it
does not provide any suggestion about which samples in Ŝ are actually
better to transfer. In the following, we introduce the concept of relevance
of each sample σj ∈ Ŝ. The idea is to use the compliance of σj with the
target task. Unfortunately, in this case, the measure of compliance is
often unreliable because of a poor approximation of the target task. In
fact, while each source task contains m samples, only t ≪ m samples
are available for the target task. As a result, it may happen that the
compliance of a sample σj is computed according to samples τi that are
significantly far in the state-action space. Therefore, we need a formula-
tion of relevance strictly related to the compliance whenever the number
of samples in T̂ close to σj is sufficient, while tending to a default value
when the compliance is not reliable.

Given the definition of compliance λPji and λRji of σj with a sample τi,

the compliance of σj with the approximated model of the target task T̂
is

λj = P (σj |T̂ ) =
1

ZPZR

(
t∑

i=1

λPji

)(
t∑

i=1

λRji

)
. (4.7)

Let the samples τi be sorted in descending order according to the
compliance λji. Given the distance between the two samples in the
state-action space d(〈sj , aj〉, 〈si, ai〉), we compute the average distance
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τi

τi

σj σj

Figure 4.5: Two configurations in which sample σj has high relevance.
The samples are represented in the state-action space and the thickness
of the lines represents the compliance λji. In the first case, there is a
number of samples τi near to σj with high compliance, thus the relevance
function returns a high value. In the second case, although the compli-
ance is very low, the samples are very far from σj , thus its relevance is
high by default.

between σj and the samples τi ∈ T̂ as

dj =
1

hj

hj∑

i=1

d(〈sj , aj〉, 〈si, ai〉), (4.8)

where hj is such that
∑hj

i=1 wji < µ, where µ ∈ (0; 1] determines the
fraction of the total number of samples considered in the computation of
the average distance. The value of fraction µ is not particularly critical
for the performance of the system and it is used only to limit the samples
considered in the computation of the average distance.

Definition 4.2 Given the compliance λj and the average distance dj ,
the relevance of σj is defined as

ρj = ρ(λj , dj) = e
−

„
λj−1

dj

«2

, (4.9)

where λj is the compliance normalized over all the samples in Ŝ.

The relevance function is shown in Figure 4.4 for different values of
distance dj . As it can be noticed, sample σj may have a high relevance in
two distinct cases (Figure 4.5). In the first case, σj can be highly relevant
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Ŝk

Ŝ1

Figure 4.6: Sample transfer process. After the computation of the com-

pliance Λk of the source task Sk with the samples available in T̂ , Λk(m−t)
samples are drawn with a probability proportional to their relevance from
Ŝk and transferred to the set of samples T̃ used to feed the batch learning
algorithm.

because of a number of close samples τi which it is compliant with.
On the other hand, in case there are no close samples, independently
from the compliance, we assume a high relevance for sample σj. The
assumption underlying the definition of relevance is that, whenever there
is no evidence against the transfer of a sample, it is convenient to transfer
it to the target task. During the transfer process, the probability of a
sample σj to be transferred to T̃ is proportional to its relevance ρj .

4.4.4 Task Transfer

Given the definition of compliance of a source task with the samples
collected from the target task, we need to define a suitable mechanism to
choose the source tasks from which the samples are actually transferred.
For sake of simplicity, we bound the number of samples used by the
learning algorithm tom. Since |T̂ | = t samples are already available in T̂ ,
m−t samples need to be extracted and transferred from the source tasks,
so as to obtain a set of samples T̃ that contains the samples actually
collected from T and the samples transferred from the source tasks. The
most straightforward criterion is to draw all the m− t samples from the
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Algorithm 8 The sample transfer algorithm

Input: source tasks {Sk}k∈Nn−1
, target task T

Parameters: bandwidth δsa, δs′ , δr, t number of samples of task T , m
number of samples of tasks Sk

Output: transferred sample set T̃

for k = 1 to n− 1 do

Collect m samples from source task Sk and form the sample set Ŝk

end for

Collect t samples from the target task T and form the sample set T̂
for k = 1 to n− 1 do

Compute compliance Λk of source task Sk with samples T̂
Compute relevance ρj of samples σj ∈ Ŝk

Sample Λk(m− t) samples from Ŝk with probability proportional to ρj

end for

Put all the additional samples in T̂ and form the transferred sample set T̃

most compliant source task. Thus, the probability to extract samples
similar to those in the target task is maximized. Another criterion is to
draw the m− t samples from all the source tasks proportionally to their
compliance Λk as shown in Figure 4.6.

If transfer occurs only on the basis of the task compliance, there is no
theoretical reason to actually prefer one criterion over the other (an em-
pirical comparison is reported in Section 4.5.3). However, if we consider
the region transfer mechanism based on sample relevance introduced in
the previous section, there are situations in which transferring only from
the most compliant task is not efficient. Let us consider an environment
in which each source task has only one specific region similar to the
target task while it is significantly different elsewhere and all the tasks
have similar compliance (an example of this scenario is reported in Sec-
tion 4.6). In this case the transfer from the most compliant task would
transfer only samples from a limited region of the state-action space. On
the other hand, the proportional criterion would equally draw samples
from all the tasks. As a result, set of samples T̃ would contain samples
from many different regions, thus significantly improving the learning
performance.

Therefore, in the general case, the transfer process is as follows. For
each source task Sk, the number of samples transferred to the sample
set T̃ of the new target task is proportional to its normalized compliance
Λk = ΛkPn

l=1
Λl

. Then, in each source task, samples are drawn according to
their relevance, thus avoiding to transfer samples that are quite dissimilar

76



4.5 Experiments: the Golf Problem

from those in the target task. The whole process of sample transfer is
summarized in Algorithm 8.

It is worth noting that the number of samples m used to feed the learn-
ing algorithm constrains the fraction of transferred samples in T̃ . While
this constraint could limit the effectiveness of the transfer, it assures
that as the number of samples t collected from the target task increases,
the use of source samples decreases and when t = m the performance
depends only on samples from the target task. As a consequence, the
value of m is chosen to balance the use of source and target samples.
While low values of m lead to exploit the target samples at most, thus
possibly reducing the advantage of transfer, high values of m make the
transferred samples more relevant. In the experiments, m is usually set
to the number of samples needed by the learning algorithm to achieve
convergence when using samples coming only from the target task.

4.5 Experiments: the Golf Problem

4.5.1 Definition and Settings

The first domain we consider is a variant of the mini golf game (Fig-
ure 4.1) [72]. The agent has to shoot a ball inside a hole with the mini-
mum number of strokes. Given the distance x0 of the ball from the hole
(x0 assumes value in [−2000; 0]cm), the agent must determine the initial
velocity to put the ball in the hole in one stroke. Let dball = 4.5cm and
dhole be the diameters of the ball and of the hole and f the coefficient
of friction between the ball and the ground. The agent selects the ini-
tial velocity a in a limited interval [100; 200]cm/s discretized by 20cm/s.
The chosen velocity a is perturbed by a uniform noise U [−5; 5]. The
resulting dynamics is

xf = x0 + v0t− 0.5ft2, (4.10)

where x0 is the initial position, v0 = a + U [−5; 5] is the initial velocity
applied to the ball and t = v0

f
is the time before the ball stops. If the

final position xf is greater than 0, we need to verify whether, when the
ball arrived at x = 0, its velocity is low enough to let the ball fall in the
hole. The maximum velocity the ball can have to fall in the hole when
it arrives at x = 0 is

vmax =
dhole√
dball

2
2
g

. (4.11)
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Parameter Value

m 1000
µ 0.8
δsa 5.0
δr 0.1
δs′ 10.0

Table 4.1: Parameters for sample transfer used in all the experiments in
the golf problem.

Transfer Source Task Definition

Goal S1 f = 40cm/s2 dhole = 11.5cm
Dynamics S2 f = 70cm/s2 dhole = 8.0cm
Domain S3 f = 80cm/s2 dhole = 9.0cm
Domain S4 f = 20cm/s2 dhole = 6.0cm

Table 4.2: Source tasks used to analyze single-source sample transfer.

As a result, the minimum and maximum initial velocity to make the
ball to enter in the hole are vmin

0 =
√

2gkx0 (the ball stops exactly at
the hole position) and vmax

0 =
√

2gkx0 + (vmax)2 (the velocity allows
the ball to fall in the hole), where g is the universal constant of gravity.
At the beginning of each episode the ball is placed at random, between
20cm and 2000cm far from the hole. When the ball enters the hole
the episode ends with reward 1. If v0 > vmax

0 , the ball is lost and the
episode ends with reward −10. Finally, if v0 < vmin

0 the episode goes on
and the agent can try another stroke with reward −1. Since the problem
is episodic we set the discount factor γ to 1.0. The performance of the
learned policy is tested on a finite set of 50 states evenly distributed
between −2000cm and −10cm.

In the following experiments, we use Gaussian kernels and Maha-
lanobis distance (see Section 4.4.2) and the parameters summarized in
Table 4.1. The results are obtained by averaging 100 runs. In FQI, we
use extra-randomized trees [41] with 50 trees, 2 random splits, and 30
minimum sample size for each node, trained on 20 iterations. Samples
are obtained through random sampling run on independent episodes of
maximum 10 steps each.
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Figure 4.7: The 〈s, a, r〉 part of samples from T and S1.

4.5.2 Results: One Source Task Transfer

In this section, we analyze the results obtained by transferring samples
from one source task to a target task. The following experiments are
meant to illustrate the effectiveness of sample transfer when tasks are
similar and to show the negative effects of transfer when tasks are signif-
icantly different. We consider a space of tasks T = {T, S1, S2, S3, S4} and
a uniform distribution Ω. The target task T has a friction f = 40cm/s2

and a hole size dhole = 8cm, while the different source tasks are sum-
marized in Table 4.2 with the corresponding type of transfer. Tasks
S1, S2, S3 has higher friction and bigger holes but are relatively simi-
lar to T and we expect positive effect from the transfer of samples in
terms of an improved initial performance and a reduction of the number
of samples collected from the target task in order to obtain a nearly-
optimal performance. On the other hand, task S4 has a friction much
less than that of the target task and the hole has a smaller diameter.
Therefore, samples from S4 are likely to cause negative effects on the
learning performance in the target task.

In order to clarify the reasons for either positive or negative trans-
fer, before studying the learning performance, we analyze the differences
between the samples coming from different tasks. In particular, we com-
pare the samples of T , S1 and S4. In the case of transfer from S1, the
transition model does not change (the friction is the same as in T ) and
only the size of the hole is different. As a result, most of the samples
collected from S1 can be profitably reused in T . However, a larger hole
may cause a significantly different outcome when the ball reaches the
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Figure 4.8: The 〈s, a, s′〉 part of samples from T and S4.

hole with the limit velocity vmax. In fact, as shown in Figure 4.7, while
in S1 this results in a positive reward, in T the agent receives a nega-
tive reward of −10. Nonetheless, even few samples with negative reward
from T are enough to counter-balance the effect of the transfer of “wrong”
positive samples from S1. Furthermore, most of the samples are exactly
the same in the two tasks and, thus, the learning algorithm is likely to
greatly benefit from the additional samples, in particular at the begin-
ning of the learning process. On the other hand, we expect samples from
S4 to cause negative transfer. As shown in Figure 4.8 the dynamics of
samples in S4 is completely different from T because of different fric-
tion. In this case, there is no sample that provides useful information
about the target task. Furthermore, the optimal policy in S4 selects low-
velocity actions because of the low friction and this leads to accumulate
negative rewards when used in T . As a result, the transfer of samples in
S4 is likely to worsen the learning performance in T .

Figure 4.9 shows the performance obtained in the target task when
either original or transferred samples are used. As it can be noticed,
transferring samples from S1 obtains the best performance. In fact,
the difference between S1 and T is limited to few samples of the goal
region and this does not lead to any worsening of the performance. At
the beginning of the learning process, the performance is significantly
improved thanks to the samples from S1, while as the learning progresses
the number of samples from T becomes more relevant with respect to
the transferred samples (when t = m, no transfer occurs), thus allowing
the learning to achieve the optimal policy.
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Figure 4.9: Total reward in the Golf problem with or without transfer
from one source task.
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Figure 4.10: Area ratios in the Golf problem for transfer from one source
task.

Since in task S2, the goal (the hole size) is the same, but the friction
is greater, the policy initially learned on the transferred samples uses
velocities that are greater than the optimal ones in the target task and
the risk is to go beyond the hole and get a negative reward. Similarly to
transfer from S1 this difference does not actually lead to negative because
it is counter-balanced by samples from T . Although samples collected
from task S3 are different both in transition model and reward function,
the transfer still leads to a significant improvement to the learning per-
formance. As a result, transfer from both S2 and S3 is successful and
reduces the learning time. On the other hand, the effects of transfer
from S4 is completely different. In fact, S4 greatly differs from T both
in transition model and reward function and almost no sample is useful
for learning the optimal policy of the target task.
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In order to evaluate the improvement in terms of learning speed, we
analyze the cumulative reward in all the four configurations. Although
other measures of learning speed can be used (e.g., the number of samples
before achieving a desired performance), this measure takes into account
the global performance of the learning algorithm and it is often used
to compare different exploration strategies [126]. More precisely, we
consider the area ratio measure introduced in [144]:

r =
area of curve w/ transfer− area of curve w/o transfer

area of curve w/o transfer
, (4.12)

where we measure the area of the learning curve as the area between
the curve and the convergence value. Figure 4.10 shows the area ratio of
sample transfer from the source tasks. As it can be noticed, transfer from
S1, S2, S3 significantly improves the global performance of the learning
algorithm, while S4 causes negative transfer.

This illustrative experiment shows that, depending on the structure of
the source task, the transfer of samples can result in either positive or
negative transfer. It is interesting to notice that in case of single source
transfer, the performance obtained by transferring samples is conceptu-
ally equivalent to the transfer of policies in the case of online learning.
In fact, the improvement in the learning speed is mainly due to a bet-
ter initial performance strictly related to the performance of the optimal
policy of the source task when transferred to the target task. Since at the
beginning of the learning process almost all the samples in T̃ are drawn
from the source task and only a few are actually collected from the target
task, the learned policy is exactly the optimal one for the source task. As
the learning progresses the number of transferred samples decreases and
the performance gets similar to that of learning on target task samples.
On the other hand, whenever the source tasks are more than one and, in
particular, when the region transfer is adopted (see Section 4.6.2), the
sample transfer technique is radically different from policy transfer, since
samples are obtained from different regions of different tasks and, thus,
the result is not the same of policy transfer from one single source.

Finally, we report the compliance of S1 with the samples in T̂ together
with the confidence (p = 0.01) averaged over 10 runs (Figure 4.11). As
it can be noticed, after about 200 samples, the value of the compliance is
almost constant. Therefore, for t > 200 the compliance becomes reliable,
thus allowing to determine whether the transfer will be effective or not.
While with only one source task, the compliance could be used only as an
indirect measure of the expected speed-up (the higher the compliance the
higher the expected speed-up), when multiple source tasks are available,
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Figure 4.11: Compliance in the Golf problem of the source task S1 with
the target task T .

Transfer Source Task Definition

Goal S1 f = 40cm/s2 dhole = 7.5cm
Dynamics S2 f = 42.5cm/s2 dhole = 8.0cm
Domain S3 f = 15cm/s2 dhole = 8.0cm
Domain S4 f = 20cm/s2 dhole = 4.5cm
Domain S5 f = 80cm/s2 dhole = 6.0cm
Domain S6 f = 10cm/s2 dhole = 3.5cm

Table 4.3: Source tasks used to analyze n-source sample transfer.

it can be used to identify from which task is more convenient to transfer
samples.

4.5.3 Results: n-Source Task Transfer

In this section, we analyze whether the task compliance is effective in
avoiding the transfer of samples from tasks that are dissimilar from the
target task and, at the same time, identify those which are more con-
venient to transfer from. We consider a task space T = {T, S1, S2, S3,
S4, S5, S6} and a uniform distribution Ω. As summarized in Table 4.3, we
use tasks with different changes with respect to the target task. In par-
ticular, S1 and S2 are very similar to the target task, while S3, S4, S5, S6

significantly differ from T in both the transition model and the reward
function.

Besides the analysis of the task compliance, we also report the compar-
ison between three different transfer policies: best, proportional, random.
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Figure 4.12: Total reward in the Golf problem with or without transfer
from n source tasks.
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Figure 4.13: Area ratios in the Golf problem with or without transfer
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In the first case, the transfer occurs only from the most compliant source
task, while in the second case, samples are extracted from all the tasks
proportionally to their compliance (see Figure 4.6). Finally, with the
random policy, the compliance is ignored and tasks are chosen at ran-
dom.

Figure 4.12 shows the learning performance on the target task and
the three transfer algorithms. The transfer of samples from the most
compliant task obtained the best performance with a significant speed-
up with respect to the version without transfer (Figure 4.13). Also the
transfer proportional to the task compliance achieved a good result, with
an improvement of the 55.6%±7.18 of the performance without transfer.
On the other hand, the random sampling from all the tasks obtained a
very poor performance caused by the presence in T of many tasks whose
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Figure 4.14: Compliance of different source tasks as the number of sam-

ples in T̂ increases.

samples lead to negative transfer.

In Figure 4.14, we report the normalized task compliance for each task,
as the number of samples collected from T increases. After few tens of
samples the compliance stabilizes and the transfer algorithm successfully
identifies that the most compliant task is S1, while S3, . . . , S6 have a very
low compliance. Finally, S2, that is pretty similar to the target task, has
an intermediate value of compliance.

4.6 Experiments: the Car on the Hill Problem

4.6.1 Definition and Settings

The second problem we consider is the Car on the Hill problem (or
mountain car problem), in which a car must achieve the top of a hill in
the minimum time. The dynamics model we adopt is the same as in [41].
Given the two state variables, position p and velocity v, the shape of the
hill Hill(p), and a control variable a = {−4, 4}, the dynamics of the car
is:

ṗ = v

v̇ =
a

M(1 +Hill′(p)2)
− gHill′(p)

1 +Hill′(p)2
− s2Hill′(p)Hill′′(p)

1 +Hill′(p)2
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Parameter Value

m 3000
µ 0.8
δsa 0.1
δr 0.5
δs′ 0.1

Table 4.4: Parameters for
sample transfer parameters
used in the hill car experi-
ments.

Hill(p)
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Figure 4.15: The profile of the hill.

where M is the mass of the car and g is the gravitational constant. The
shape of the hill is (Figure 4.15):

Hill(p) =

{
p2 + p if p < 0

p√
1+5p2

if p ≥ 0 (4.13)

The state variables are limited in the ranges p ∈ [−1, 1] and v ∈ [−3, 3].
Whenever the car reaches the top of the hill (p > 1) the agent receives
a positive reward of 1.0, while if the velocity |v| > 3 or the position
p < −1 it receives a negative reward of -1.0 and the episode is ended.
The default reward in any other situation is 0.

The parameters of the transfer algorithm are summarized in Table 4.4.
The results are obtained by averaging 200 runs. In FQI, we use extra-
randomized trees [41] with 50 trees, 2 random splits, and 2 minimum
sample size for each node, trained on 30 iterations. Samples are collected
through random sampling run on independent episodes of maximum 40
steps each. Each episode restarts with random position and velocity.
Testing is performed on 50 episodes in which the car is placed at random
with p ∈ [−1, 0] and velocity v = 0.

4.6.2 Results: Region Transfer

In this section, we analyze the effectiveness of the region transfer com-
pared to the random transfer. As described in Section 4.4.3, for each
sample in the source task a measure of relevance is computed according
to its compliance with the samples in the target task and its average
distance from them. Whenever the distance is high, the relevance gets a
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Figure 4.16: Total reward with or
without transfer from S1.
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Figure 4.17: Total reward with or
without transfer from S1 and S2.

default high value, under the assumption that in case of lack of evidence
against the transfer of a sample, it is better to transfer it. On the other
hand, when the distance is low, the relevance is directly related to the
compliance of the sample.

The objective of the following experiment is to illustrate the effective-
ness of the proposed transfer mechanism in identifying which samples
are worth transferring in order to improve the learning performance. We
consider a target task with “standard” dynamics and reward function
and two source tasks in which the transition model undergoes a radical
change in one region of the state-action space where the effect of the
actions is inverted, that is for a = −4 the car accelerates, while for a = 4
the car decelerates. In particular, we consider a task S1 in which the
effect of the actions is inverted when the velocity is positive, while in
task S2 actions are inverted when velocity is negative. Thus, when agent
selects an action a, the action executed in S1 is

aS1
=

{
−a if a > 0
a otherwise

, (4.14)

while in S2

aS2
=

{
a if a > 0
−a otherwise

. (4.15)

As a result, each task has roughly the same dynamics as the target task
in half of the state-action space. As a result, while random sampling
introduces samples that are significantly different from the correct dy-
namics (are exactly the opposite!), we expect the transfer mechanism in
Algorithm 8 to identify the most relevant samples, thus avoiding negative
transfer and improving the learning performance.
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At first, we report the effect of relevance-based transfer (Algorithm 8)
from one single source task, namely S1. In this case, no significant im-
provement is expected with respect to learning without transfer. Samples
from S1 provide very limited information about the dynamics and the
reward function. In fact, the optimal policy traverses many regions of
the state space (i.e., both positive and negative velocity), thus the trans-
fer of samples limited to one specific region is not likely to improve the
performance of the learning algorithm in terms of learning speed. On
the other hand, if samples from the region with different dynamics is
transferred, negative transfer is expected.

Figure 4.16 compares the performance of the batch learning algorithm
on the target task without transfer, with random transfer and with sam-
ples selected according to their relevance. As it can be noticed, the
transfer of samples can lead to significant negative effects. In fact, half
of the samples in the source are completely different from those of the
target task and their transfer induces a policy that has a very poor perfor-
mance. On the other hand, the transfer based on the relevance succeeds
in avoiding negative samples, but the new samples are limited only to
one region and are not informative enough to improve the learning speed
of the learning algorithm. Considering the area ratio, we obtain that ran-
dom transfer has a negative area ratio of rrandom = −198.46% ± 8.05%,
while the relevance-based transfer achieves almost the same performance
as learning without transfer (rrelevance = −9.98% ± 10.26%).

In the second experiment, samples are transferred both from S1 and
S2. In this case, we expect the transfer based on relevance to significantly
improve the learning performance thanks to the transfer of samples from
the regions of both the sources that are similar to the target task. On the
other hand, the random transfer of samples is expected to obtain again
a poor performance. In fact, it has a probability of 50% of transferring
negative samples from any of the two source tasks to the target task. Fig-
ure 4.17 shows the average reward without transfer and with random and
region transfer. As it can be noticed, region transfer greatly improves the
performance of the learning algorithm. Unlike the experiments in the golf
environment, in this case the improvement is not due only to a better ini-
tial performance. In fact, the region mechanism needs a sufficient number
of samples before becoming effective. After few hundreds samples col-
lected in the target task, the transfer algorithm succeeds in identifying
which samples is more convenient to transfer and, as a consequence, the
performance improves. In particular, while the random transfer has still
a negative area ratio of r = −115.12% ± 10.68%, the relevance-based
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Figure 4.18: Transferred sample set T̃ for t = 100, 2000. In blue the
samples drawn from the target task T , in red the samples transferred
from S1 and in green the samples transferred from S2.

Figure 4.19: Relevance of samples in Ŝ1 (left) and Ŝ2 (right) for t = 2000.

transfer achieves an improvement of r = 44.93% ± 10.07%. Finally, it
is worth noting that the simple transfer of the policy of either S1 or S2

would obtain a very poor performance, since their optimal policies are
significantly different from the optimal policy of the target task and they
are not likely to improve the learning speed.

In order to get a better understanding of how the transfer algorithm
works, in Figure 4.18, we report the transferred set of samples T̃ for t =
100, 2000, while in Figure 4.19, we report the relevance for the two source
tasks for t = 2000 (the plots are obtained by interpolating the relevance
of the samples on the state space and averaging along the two actions).
As described in Section 4.4.3, the relevance is based on the estimation of
the target task model. Therefore, since in the initial stages of the learning

89



4 Transfer of Samples in Batch Reinforcement Learning

process, when few samples are available, the accuracy of the estimation
is poor, the relevance of the samples of the source tasks depends on the
distribution of the samples of the target task and a high value is given by
default. As the learning progresses and more samples are available, the
estimation of the model is more accurate and the relevance becomes more
reliable. As it can be noticed in Figure 4.18-left, for t = 100, samples
drawn from S1 and S2 are distributed over all the state space because
the relevance is high in many regions by default. On the other hand,
when 2000 target task samples are available, the relevance of the source
tasks converges to a fixed configuration (Figure 4.19), in which only
samples for positive velocity (source S1) and negative velocity (source
S2) are transferred to the target task (Figure 4.18-right). As a result,
the samples transferred from the source tasks are limited to their most
relevant regions.

These experiments show that even when only a limited region of a
source task is similar to the target task, the sample transfer algorithm
can improve the learning speed of a batch RL algorithm, thus achiev-
ing nearly optimal performance even with a limited number of samples
actually collected from the target task.

4.7 Experiments: the Boat Problem

4.7.1 Definition and Settings

The final experiment we consider is meant to sum-up the features of
the proposed transfer method and to assess its effectiveness when source
tasks are either chosen by hand or drawn from a continuous distribution
of tasks. In particular, we consider the boat problem proposed in [72].
The problem is to learn a controller to drive a boat from the left bank to
the right-bank quay of a river, in presence of a non-linear current. The
boat’s bow coordinates, x and y, are defined in the range [0, 200] and the
controller sets the desired direction U ∈ [−90◦,−45◦, 0◦, 45◦, 90◦]. The
action chosen by the agent is perturbed by a uniform noise in the range
[−5◦; 5◦]. The control frequency is set to 1Hz and the dynamics of the
boat’s bow coordinates is described by the following equations:

xt+1 = min(200,max(0, xt + st+1 cos(δt+1)))

yt+1 = min(200,max(0, yt − st−1 sin(δt+1)− E(xt+1)))

where the effect of the current is defined by E(x) = fc

(
x
50 −

(
x

100

)2)
,

where fc is the force of the current, and the boat angle δt and speed st
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Parameter Value

I/p 0.1 / 0.9
sMAX/sD 2.5 / 1.75

Zs / Zv width 10.0 / 10.0

Parameter Value

m 2000
µ 0.8
δsa 0.1
δr 0.5
δs′ 0.1

Table 4.5: (left) Parameters of the dynamics of the boat. (right) Param-
eters for the sample transfer algorithm in the boat experiments.

are updated according to the desired direction Ut+1 as:

δt+1 = δt + IΩt+1

Ωt+1 = Ωt + ((ωt+1 −Ωt)(st+1/sMAX))

st+1 = st + (sD − st)I

ωt+1 = min(max(p(Ut+1 − δt),−45◦), 45◦)

where I is the system inertia, sMAX is the maximum speed allowed
for the boat, sD is the speed goal, ω is the rudder angle, and p is a
proportional coefficient used to computed the rudder angle in order to
reach the desired direction Ut. Furthermore, we introduce regions of the
river in which the speed is reduced by 20% because of sandbanks. The
reward function is defined as:

R(x, y) =





+10 x = 200 and y ∈ Zs

D(x,y) x = 200 and y ∈ Zv

-10 x = 200 and y ∈ Zf

-2 (x, y) ∈ sandbank
-2 y ≤ 0 or y ≥ 200
0 elsewhere

(4.16)

where D is a function that gives a reward decreasing linearly from 10 to
-10 relative to the distance from the success zone, Zs is the quay, Zv is
the viability zone around the quay, and Zf is the failure zone in all the
other bank points.

The dynamics and learning parameters are summarized in Table 4.5.
In the following experiments, we use Gaussian kernels and Mahalanobis
distance (see Section 4.4.2). The results are obtained by averaging 100
runs. In FQI, we use extra-randomized trees [41] with 50 trees, 2 ran-
dom splits, and 2 minimum sample size for each node, trained on 25
iterations. Samples are obtained through random sampling run on in-
dependent episodes of maximum 50 steps each. Each episode restarts

91



4 Transfer of Samples in Batch Reinforcement Learning

 0

 50

 100

 150

 200

 0  50  100  150  200

sandbank1

sandbank2

G1

π*1
π*2
π*

Figure 4.20: Position of sandbanks and of the goal in the target task and
trajectories of the optimal policies of S1, S2, and T tested in T .
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Figure 4.21: Position of sandbanks and of the goal in S2.

the boat at the left bank in a random position. Testing is performed on
1,000 episodes with the initial position drawn at random from 20 evenly
spaced positions at the left bank.

4.7.2 Results: Sample Transfer

The first experiment is meant to illustrate the effectiveness of compliance
and relevance in identifying which samples are worth transferring. We
consider a transfer problem with three tasks in which S1 and S2 are the
source tasks and T is the target task. In T the quay is G1 and there
are two sandbanks as illustrated in Figure 4.20. In task S1 there are two
quays G1 and G2, and there is only one sandbank corresponding to the
region labeled as sandbank1 in Figure 4.20. Task S2 has the quay G2 and
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Figure 4.22: Total reward and area ratio for all the configurations.
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Figure 4.23: Relevance of samples in Ŝ1 at convergence.

the sandbanks illustrated in Figure 4.21. While T and S1 have the same
current force (fc = 0.5), the current in S2 is in the opposite direction
(fc = −0.5). The source task S2 has a completely different dynamics
and reward function from those in T because of different sandbanks and
current. Therefore, samples transferred from S2 are likely to induce
negative effects on the learning performance of T . Furthermore, as it
can be noticed from the trajectories shown in Figure 4.20, the optimal
policy π∗2 of S2 obtains very poor performance when tested on T . On
the other hand, S1 has the same dynamics as T in large regions of the
state-action space and shares one goal with T . Although its optimal
policy π∗1 is still significantly different from π∗, it is possible to choose
samples drawn from S1 that can actually improve the performance of
the learning algorithm in T .

In Figure 4.22-(left) we report the performance obtained by FQI with
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4 Transfer of Samples in Batch Reinforcement Learning

four different configurations: No Transfer, Random, Compliance, and
Relevance Transfer. The first configuration is FQI with an increasing
number of samples directly collected from T . The other three config-
urations are run on the sample set T̃ obtained by transferring samples
chosen at random, according to the compliance, and according to the
relevance (Algorithm 8) respectively. Furthermore, we also report the
performance obtained by transferring policies π∗1 and π∗2 as baselines.
The augmentation of T̂ with samples drawn from S1 and S2 at random
does not lead to any significant improvement of the performance with
respect to learning directly on samples in T̂ . In fact, the only advan-
tage achieved with the transferred samples is that the agent avoids to go
outside of the boundaries, but she learns neither to avoid sandbanks nor
to achieve the goal. The main reason for this poor performance is that
samples drawn from S2 do not provide any information about the actual
dynamics and rewards of T and, thus, may lead to learning very bad
policies. On the other hand, the compliance-based transfer successfully
excludes samples of S2 from the transfer process (the normalized com-
pliance of S1 for t = 200 is Λ1 = 0.93 ± 0.09), thus augmenting T̂ with
samples mainly coming from S1. Since S1 shares with T the dynamics
and the rewards in all the state space but at sandbank2 and in the quay
G2, the transfer is positive and leads to a significant improvement in the
performance of the learning process. Nonetheless, there are still many
trajectories leading to the quay G2 and crossing the sandbank because
of the negative effect of transferring samples from regions with dynam-
ics and reward different from T . In Figure 4.23 we report the relevance
of the samples in Ŝ1 (averaged on all the actions). As it can noticed,
the relevance succeeds in identifying regions where samples are actually
similar in source and target tasks, excluding samples coming from the
region sandbank2 and the lower quay G2. 3 As a result, the performance
of the transfer based on the relevance is further improved.

In order to evaluate the relative improvement of transfer, we compute
the area ratio [144] of the three transfer configurations, defined as the
difference between the accumulated reward with and without transfer
divided by the reward accumulated without transfer. Figure 4.22-(right)
shows the area ratio for the three transfer configurations. As it can be
noticed, the random transfer of samples does not lead to any significant
improvement, while transfer based on relevance increases the cumulative

3It is worth noting that sandbanks have a slightly higher relevance than other regions
because the boat moves slower and, thus, samples are more concentrated in those
regions.
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Figure 4.24: Performance of sample transfer with five random source
tasks.

reward of about 75.3%±13.2. The difference between the configurations
is statistically significant (p < 0.01).

In the previous experiment, source and target tasks have been chosen
by hand with the aim of illustrating how the algorithm works. Now,
we consider the general case in which tasks are drawn from an infi-
nite task space T . For sake of simplicity, we consider the same tar-
get task of the previous experiment, while source tasks have current
fc = 0.5 and one sandbank. Source tasks are drawn from a distribution
Ω such that the coordinates of the center, height, and width of the sand-
bank are uniformly drawn from the space [20.0; 180.0] × [20.0; 180.0] ×
[40.0; 100.0] × [40.0; 100.0], while the quay position is drawn uniformly
from [20.0; 180.0]. In Figure 4.24, we report the results of relevance-
based transfer obtained by averaging the result with 10 different sets of
five source tasks. Although the source tasks are different from the target
in large regions, the transfer algorithm is able to identify which samples
are worth transferring from the source tasks and it successfully improves
the performance of the learning, with an area ratio of 59.5% ± 15.4.

4.8 Related Works

Since the algorithms of transfer in RL proposed so far rely on temporal-
difference or model-based algorithms, an empirical comparison with the
performance of sample transfer would not be fair. In this section, we
discuss its similarities and differences with other transfer approaches.

The idea of transferring either samples or solutions from different
sources in order to improve learning speed is not new in transfer learn-
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ing literature [115]. At the same time, when multiple sources are avail-
able the problem of transfer comes with the problem of avoiding neg-
ative transfer and measuring task relatedness. In [22], Ben-David and
Schuller introduce a data generating framework, for which a task related-
ness measure is proposed. Given the task relatedness they derive strong
generalization bounds proving the advantage of transfer learning over
single task learning. In [79, 107], the problem of estimating a Bayesian
network exploiting a set of samples generated from other networks is
considered. It is shown that by approximating the models of the source
networks, it is possible to achieve positive transfer by using the approx-
imated models to estimate the parameters of the model of the target
network. A similar idea is used in the context of MDPs in [129], where
a Bayesian perspective is followed, in which the source task models are
pre-posteriors distributions for the parameters distributions of the target
model and a model based RL algorithm is used to compute the solution.
Although we similarly adopt a Bayesian argument for the computation
of the compliance of samples, we directly transfer samples and a model-
free algorithm is used to learn the solution on the transferred sample set.
Furthermore, instead of a parametric approximation of the model of the
source tasks, we followed a non-parametric solution, that is more strictly
related to the samples available from the tasks at hand. Finally, our
transfer technique is related to [97], where the problem of model identi-
fication is stated as a POMDP in which the task at hand is considered
as a partially observable variable. The proposed algorithm updates a
belief state about the task that is used in the update formula of SMDP
Q-learning [136] performed over a set of options transferred across tasks.

More theoretically founded metrics for MDP similarity are introduced
in [47] in the context of bisimulation. They propose two distance met-
rics, defined on the state space, used to identify states with equivalent
outcomes (i.e., dynamics and reward) that can be aggregated into equiv-
alence classes, thus reducing the dimensionality of the MDP. Under a
transfer perspective, these metrics can be used to measure the difference
between states in two distinct tasks and to bound the performance loss
of using the optimal policy of a source task in the target task. Unfor-
tunately, this technique cannot be directly applied to our scenario for
different reasons. The computation of the distance between different
states is very expensive, because it requires the solution of a complex
optimization problem. Furthermore, the proposed algorithm needs ei-
ther the exact models of tasks or an accurate approximation. On the
other hand, the proposed method relies on a lightweight solution with
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low complexity depending only on the number of samples of the source
tasks actually available. Finally, empirical analysis [98] showed that the
theoretical bounds on the performance loss are often too loose in prac-
tical situations and thus they rarely provide useful directions about the
actual performance of the transferred policy.

The transfer of samples is strictly related to works about transfer of
policies in the RL context (see Section 3.3.3 for the references). In the
experimental section, we discussed that transferring samples from one
source task is almost equivalent to the transfer of the optimal policy of
the source task to the target task. Nonetheless, there are situations in
which the transfer of samples can obtain significantly different results
with respect to the transfer of policies. Let us consider the case in which
the difference between the source and the target task is limited to a
change in the transition model in few state-action pairs, while the rest
of the models is identical. In this case, the two optimal policies can be
significantly different and when the optimal source policy is applied to
the target task, it may achieve very poor performance. On the other
hand, the transfer of samples, in particular when performed using the
region transfer criterion, can still be effective. In fact, since most of
the samples in the two tasks are identical, the learning algorithm can
benefit from samples coming from the source task independently from
the actual difference of the two optimal policies. Furthermore, most
of the works based on policy transfer are either limited to transfer the
same set of policies in all the tasks (option transfer) or only to one source
task (optimal policy transfer). In fact, it is still not clearly defined how
to transfer policies from different source tasks, in particular if we want
to transfer only parts of the policies as in the region sample transfer.
Furthermore, the transfer of samples does not require to actually solve
the source tasks, and it can be used even when the samples are not
enough to solve source tasks. A solution more sophisticated than simple
policy transfer is proposed in [82], in which the model-based hierarchical
task decomposition allows for transfer at multiple levels of the hierarchy.
Nonetheless, this approach relies on the assumption that rewards are a
linear combination of basis reward functions and it can be applied only
to problems of goal transfer, with a fixed transition model. On the other
hand, sample transfer can be applied to any transfer scenario.

Finally, a recent work [140] proposes a techniques for the transfer of in-
stance in model-based RL. Although similar in principle, this work deals
with transfer problems with only one source task and focuses mainly on
the issues arising from tasks with different state-action spaces.
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4.9 Conclusions

In this chapter, we introduced a transfer mechanism for the improvement
of learning speed on the basis of the most simple form of experience avail-
able to the agent, the trajectory samples. At the best of our knowledge
this is the first attempt to use samples for transfer in batch RL. The
main advantages of the proposed solution are: (i) the transfer of sam-
ples is completely independent from the similarity of the policies and
action-value functions of the tasks at hand, (ii) the kernel-based com-
putation of the approximated models has low complexity, (iii) it can
be applied in conjunction with any batch RL algorithm, (iv) it can be
applied to the general scenario of domain transfer, (v) there is no need
for explicitly solving the source tasks. Experimental results show the
effectiveness of the method in reducing the learning time and in avoiding
negative transfer when the source tasks are significantly dissimilar from
the target task. Furthermore, it is worth noting that sample transfer can
be iteratively used as new tasks are extracted from Ω.

Future directions of investigation are:

1. Transfer of trajectories. In many problems, the performance of
batch RL algorithms is affected from the way samples are collected
from the environment. The transfer introduced here does not take
into account the way samples are obtained. Nonetheless, in case of
samples collected in few trajectories, it could be useful to extended
the current approach to the transfer of segments of trajectories by
extending the definitions of compliance.

2. Separated transfer of model and reward. In transfer problems, it
may happen that some tasks either share exactly the same tran-
sition model or the same reward function (e.g., the golf problem
discussed in Section 4.5). In this case, it is possible to transfer
only the part of the samples in common between the source and
the target task. For instance, if two tasks share the same tran-
sition model but has different goals, it is possible to transfer the
〈s, a, s′〉 part of the samples and to “complete” the sample using
an approximation of the reward function of the target task (e.g.,
using the first iteration of fitted Q-iteration).

3. Approximated models and compliance definitions. More sophisti-
cated algorithms of model approximation [129, 36] could be com-
pared to the kernel-based solution adopted here. Furthermore, the

98



4.9 Conclusions

definition of compliance could be compared to the similarity met-
rics introduced in [47].

4. Theoretical analysis. The main drawback of the proposed solution
of sample transfer is the lack of a theoretical relationship between
the compliance of tasks and the actual speed-up that can be ob-
tained from their transfer. Unfortunately, the problem of defining
the “utility” of a sample in batch RL algorithm, that is, the ad-
vantage in terms of accuracy of the optimal action-value function
approximation, is still an open question [40]. A possible research
direction on this topic should take into account recent results on
sample complexity of batch RL algorithm proved in [5] and perfor-
mance bounds of policy transfer derived in [47].
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5 Multi-Task Batch

Reinforcement Learning

In this chapter, we investigate the possibility to adopt a multi-task per-
spective in the RL paradigm. In particular, we analyze how a batch RL
algorithm, notably fitted Q-iteration (Section 2.7.3), can be integrated
with a multi-task optimization algorithm in order to achieve a general-
ization improvement.

5.1 Introduction

As discussed in Section 3.2.2, multi-task learning is concerned with ex-
ploiting data collected from different tasks to improve the generalization
performance in all of them. The main difference with respect to induc-
tive transfer is that here the focus is on the tasks at hand and not on
new tasks that will be eventually solved. Multi-task algorithms have as
primary goal the reduction of the test error of a learning algorithm.

While many research activities in supervised learning focused on the
multi-task perspective, in RL almost all the literature about learning on
multiple tasks focuses on the perspective of inductive transfer, in which
the goal is the improvement of learning speed. Nonetheless, it is widely
recognized that one of the most relevant problems in RL algorithms is to
design function approximators able to compute an accurate approxima-
tion of the optimal (action) value function. In this chapter, we analyze
how it is possible to integrate multi-task learning algorithms into batch
RL algorithms in order to change the structure of a function approxi-
mator and improve the generalization performance over a finite set of
tasks.

5.2 Background

In traditional supervised problems the objective is to learn a function
that accurately approximates a training set of data and that generalizes
well in previously unseen inputs. Given a set of n tasks, the objective
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of a multi-task learning algorithm is to learn a set of n functions so as
to improve the generalization performance with respect to learning the
functions for each task independently. The implicit assumption under
multi-task learning is that all the tasks are somehow related and that
learning algorithms can benefit from sharing the information stored in
the training sets of each task. This relatedness can be of two types:
(i) all the functions are close and, thus, learning one function can be a
useful bias for learning the others [14, 42], (ii) there exists an underlying
feature space shared across all the tasks, and, thus, learning the feature
space can simplify the learning for all the functions [3, 9, 34, 106, 148].
In this chapter, we focus on the second perspective.

A large part in the success of a learning algorithm is determined by the
representation of the tasks at hand and by the structure of the approxi-
mator. This evidence is at the basis of the multi-task learning approach
on neural networks proposed in [34], where the functions are learned
using one single neural network with n outputs, so that all the func-
tions share at least one layer of the neural network, thus implicitly forc-
ing a common representation shared across tasks. A more theoretically
founded approach to multi-task learning is introduced in [18]. The main
contribution of that work is in the definition of a model of multi-task
learning (inductive bias learning in the paper) and a formal definition
of the objective of a multi-task learning algorithm, that is the bias of
the feature (hypothesis) space so as to minimize the empirical approxi-
mation error over all the tasks. Furthermore, bounds that demonstrate
the effectiveness of the multi-task approach with respect to single-task
learning are proved. A structural learning algorithm is proposed in [3]
in the context of semi-supervised learning. The main intuition is that
the feature space can be parameterized and the learning problem be-
comes a joint optimization problem on learning and feature parameters.
The main problem is that the optimization problem is non-convex and
only approximated solutions can be learned. Finally, in [9] a similar
approach is introduced along with the definition of an equivalent opti-
mization problem that is convex and that can be solved by iteratively
minimizing on learning and feature parameters.

In RL, many works focused on the adaptation of function approxi-
mators in order to improve the performance of learning algorithms in
single-task problems [161, 122, 84]. Recent works tried to define prin-
cipled ways to extract basis functions (i.e., feature space) for batch RL
algorithms (namely, LSPI) following different approaches, such as spec-
tral structural learning [78, 45], dimension reduction [67], basis function
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Figure 5.1: Optimal value functions of two tasks defined in a continuous
maze environment.

expansion [95], discovery of irrelevant variables [59]. Nonetheless, none
of these works addresses multi-task problems. On the other hand, a
number of works highlighted the relevance of the representation in the
performance of RL algorithms applied to multi-task problems. In [39]
a mechanism for the identification and transfer of relevant features is
proposed. Unsupervised, mixture model, learning methods are adopted
in [48] to analyze the optimal value functions and extract fragments of
value functions that are common to all the tasks. In [11] the subgoal de-
composition of a MAXQ algorithm is shared across the tasks along with a
state abstraction obtained through model-minimization techniques. Fi-
nally, [164] explicitly addresses the problem of multi-task in RL by fol-
lowing a hierarchical Bayesian approach.

5.3 Motivating Example

Before entering in details about the integration of multi-task learning in
batch RL algorithms, we discuss a very simple example with the aim of
showing how the representation affects the actual possibility to achieve
effective transfer between different tasks.

We consider a simple continuous maze environment1 in which the tasks
share the same dynamics but have different goals. The reward function
is zero everywhere but in the goal state where a positive reward is re-
turned. Besides the position on the maze (x1, x2), the agent perceives
two irrelevant variables (x3, x4) that take random values at each step.
Furthermore, we introduce a bias variable x0 fixed to a constant value

1Experiments in a more complex maze environment are reported in Section 5.5.
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Figure 5.2: Learning parameters learned on 30 tasks independently

drawn from Ω for two linear function approximators f and f̃ .

of 1, thus obtaining the state vector x ∈ R5. The task distribution Ω
is a uniform distribution that gives high probability to goals near the
borders of the maze. An example of the optimal value functions of two
tasks is reported in Figure 5.1. It is worth noting that all the functions
are in general very different (e.g., in 2-norm), but they are very similar in
terms of the underlying representation (i.e., state variables x1 and x2).
In order to approximate the optimal value function of t-th task task, we
use two linear function approximators

ft(x) =

4∑

i=0

ϑtixi, f̃t(x) =

4∑

i=0

ϑ̃tiφi(x), (5.1)

where ϑti is the i-th learning parameters. While the former is defined
directly on the state space x, the latter is defined in a feature space φ
such that φ0(x) = x0, φ1(x) = x1 +x3, φ2(x) = x2x3, φ3(x) = x1 +x2x4,
φ4(x) = x1x3 +x4. Using these approximators we implicitly force all the
tasks to share the same underlying representation.

We draw 30 tasks with the same transition model but with differ-
ent reward functions defined according to Ω and few samples for each
task, then we approximate their optimal value functions using fitted Q-
iteration. In Figure 5.2 we report the learning parameters of both the
approximators for each task. On columns the parameters vectors ϑt,ϑ̃t

for the t-th task are reported, while on rows there are the parameters
corresponding to each feature across the tasks. Since only x1 and x2

are actually useful for the approximation of the value function, in f the
only relevant parameters are ϑ0, ϑ1 and ϑ2, while ϑ3 and ϑ4 are always
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negligible (almost zero). On the other hand, in f̃ the relevance of a fea-
ture φi depends on the specific task. Therefore, while the feature space
φ cannot be generalized across tasks, the feature space of f is shared
by all the tasks. As a result, we expect a multi-task learning algorithm
to work better with the representation in f than with the feature space
of f̃ . In fact, even when few samples are available for each task, if the
chosen representation is actually shared across all the tasks, a learning
algorithm can greatly benefit from learning on all the tasks at the same
time. Conversely, the feature space of f̃ does not allow any effective
transfer of information across the tasks.

From this simple example, it appears clear that a critical aspect of
multi-task learning is the representation used to define the multi-task
problem. Therefore, in defining a multi-task perspective to transfer in
RL, it is important not only to define a joint learning problem on all the
tasks but also to adapt their representation in order to achieve effective
transfer across tasks. In the following, we discuss the integration of fitted
Q-iteration with a recent multi-task algorithm [9] able to learn both the
learning parameters and the feature space at the same time.

5.4 Multi-Task Batch Reinforcement Learning

In this section we introduce a formulation of the multi-task problem
in batch RL and integrate one multi-task learning algorithm in fitted
Q-iteration (FQI).

5.4.1 Problem Formulation

In the following, we consider tasks in which the use of function ap-
proximation is mandatory (e.g., tasks with continuous state and action
spaces). The structure of the appoximator (e.g., basis functions in a
linear function approximator, layers and nodes in a neural network) de-
termines the space Q of the functions that can be represented, while the
learning algorithm computes the function Q̂ ∈ Q that better approxi-
mates the optimal value function Q∗ of the task at hand. It is clear that
the choice of Q is critical in order to have a good approximation of Q∗,
and, thus, a policy with a nearly-optimal performance. When multiple
tasks must be solved, the problem becomes the problem of choosing a
suitable Q in which a good approximation for the optimal value function
of each task is available.

Thus, in this chapter, we focus on the multi-task learning perspective
as the most suitable approach to achieve the improvement of the learning
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Figure 5.3: Qualitative representation of the desired effect of a multi-
task learning (MTL) algorithm. The space of action-value functions Q
is biased so as to reduce the approximation error (computed in a given
norm ‖ · ‖p).

performance. Unlike the scenario in Chapter 4, we do not distinguish
between source and target tasks, but we have a finite set of n tasks
{Tt}t∈Nn extracted from Ω. We can qualitatively state the problem of
defining an algorithm that biases the space of action-value functions Q
as

ATransfer : T̂ n → Q. (5.2)

Given the samples available for each task, the objective is to identify an
action-value function space Q ∈ Q that leads to small approximation
errors of each optimal action-value function (Figure 5.3).

As discussed in Section 3.4, the advantage of batch RL algorithms
is the possibility to distinguish between the sampling algorithm, that
mainly affects the learning time, and the learning algorithm, that di-
rectly affects the quality of the approximation. Although the multi-task
perspective could be implemented in different batch RL algorithms, fitted
Q-iteration (FQI) is the most suitable for the integration with multi-task
algorithms. In fact, since at each iteration of FQI a regression problem
is solved, it is possible to state the problem of regression on multiple
tasks as a multi-task learning problem and different solutions defined in
supervised literature can be easily adapted to the FQI process.

The definition of the fitted Q-iteration algorithm under the multi-
task perspective is summarized in Algorithm 9. At each iteration k, we
build a dataset for each task, with input samples xk

ti = (sti, ati) and
output samples yk

ti = rti + maxa′ Qk−1(s′ti, a
′). The set of input (output)

samples for task Tt is denoted by xk
t (yk

t ), while the set of all the input
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Algorithm 9 The Multi-Task Fitted Q-iteration algorithm

Input: sets of samples {T̂t}t∈Nn

Parameters: γ, N , multi-task-regressor

Output: {Q̂N
t }t∈Nn

Initialize {Q̂t
0}t∈Nn

for k = 1 to N do

for t = 1 to n do

Generate input set xk
t , with xk

ti = (sti, ati), i = 1 . . . |T̂t|
Generate output set yk

t , with yk
ti = rti + maxa′ Q̂k

t (s′ti, a
′), i = 1 . . . |T̂t|

end for

Let xk be the vector of input sets xk
t and yk be the vector of output sets

yk
t

{Q̂k+1
t } ← multi-task-regressor(xk,yk), t ∈ Nn

end for

samples is xk (yk). Given the joint dataset (xk,yk), we solve a multi-task
problem and compute functions Qk

t . The basic assumption underlying
this algorithm is that the action-value functions approximated at each
iteration k share a common underlying representation and, thus, the
accuracy of the approximation can be improved by solving a multi-task
regression problem. Furthermore, it can be easily proved [41] that the
more accurate the approximation at each iteration k, the more accurate
the final approximation of the optimal action-value function and, as a
result, of the optimal policy.

In the following, we focus on the case of n linear function approxima-
tors that share the same basis functions. Let Q̂k

t (x) be the action-value
function used to approximate the dataset (xk

t , y
k
t )

Q̂k
t (x) =

M∑

i=1

ϑtiφi(x) = 〈ϑt, φ(x)〉, (5.3)

where M is the dimensionality of the feature space, φ : Rd → RM is
the vector of basis functions, and ϑt ∈ RM is the vector of learning
parameters for task t. While the basis functions determine the space
of functions Q, an assignment of parameters vectors ϑt determines one
specific function Q̂k

t ∈ Q. As it can be noticed, at each iteration k, we
force all the tasks to share exactly the same function space, while the
parameters can be optimized for the specific task at hand. Therefore,
the multi-task problem is how to learn the parameters ϑt and to change
the feature space φ in order to achieve the best approximation of the

107



5 Multi-Task Batch Reinforcement Learning

action-value function Qk
t .

The first approach that can be adopted is to design the feature space
φ in advance and to define a joint optimization problem on the learning
parameters ϑt. Therefore, unlike running n independent regression prob-
lems, we define a global loss function that combines the losses on each
task and a learning algorithm that learns the set of parameters vectors
that minimizes this loss function. This perspective is implicitly adopted
in some algorithms of multi-task learning [34, 37]. This algorithm forces
all the action-value functions to have a common representation, but it
does not directly change the action-value function space Q. The main
drawback is that it is often difficult to identify the most suitable space
by hand and, although the learning algorithm can benefit from samples
of different tasks, the final performance can be negatively affected by a
wrong choice of Q.

Another approach is to define a feature extraction algorithm that de-
fines a set of basis functions according to the information available for
each task. After the feature extraction, the learning parameters are
learned by solving n independent regression problems. Examples of this
approach in SL literature are structure learning algorithms, whose goal
is to identify the structure shared across the tasks [7, 88]. An example
of this approach in the RL paradigm is the proto-value function frame-
work [78]. Although it does not explicitly address a multi-task problem,
proto value functions can be seen as a multi-task feature extraction algo-
rithm based on spectral analysis of the MDP graph, in which all the tasks
share the same transition model. While this approach actually change
the space Q, the learning algorithm independently optimizes the param-
eters ϑt for each task and does not benefit from the possible similarities
among the value functions to be learned.

Finally, some recent works [9, 8, 3, 18] focused on the definition of a
joint learning problem where both the parameters and the feature space
are optimized by minimizing a global loss function. This perspective is
the most complete multi-task approach, since all the elements involved in
the approximation problem (i.e., learning parameters and feature space)
are optimized according to the tasks at hand. The main difficulty in
solving such problems is in the computation of the solution of the op-
timization problem. In fact, in general they are non-linear non-convex
problems whose solution has a high complexity. In the following, we
will focus on Multi-Task Feature Learning (MTFL) [9, 8], a recent algo-
rithm in which the optimization problem is defined in a kernel space for
which there exists an equivalent convex optimization problem that can
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be exactly solved through an iterative algorithm.

5.4.2 Fitted Q-iteration with Kernel Regression

Since MTFL defines the multi-task problem in kernel spaces, before en-
tering in details about its definition when applied to a RL problem, we
briefly introduce a version of fitted Q-iteration with kernel regression
(or kernel ridge regression) [108]. We consider a generic iteration of Al-
gorithm 7 and we focus on the action-value function of one task. Let
(x, y) = {(xi, yi)}i∈Nm be the dataset used to train a linear function
approximator

Q̂(x) = 〈ϑ,ϕ(x)〉, (5.4)

where Q̂ : Rd → R is defined in a reproducing kernel Hilbert space
(RKHS) and ϕ : Rd → RM is the feature space for which the kernel
function K(x, x′) = 〈ϕ(x), ϕ(x′)〉 can be computed. The kernel regres-
sion problem, is usually stated as the problem of finding the function Q̂,
i.e., parameters ϑ, that minimizes the following regularized error function
(Tikhonov minimization problem)

E(ϑ) =

m∑

i=1

L (yi, 〈ϑ,ϕ(xi)〉) + λ‖ϑ‖2, (5.5)

where L(·, ·) is a loss function, λ is a regularization parameter, and ‖·‖2
is the 2-norm. The regularization parameter λ determines the sparsity
of the solution, that is the number of zero elements in the optimal vector
of parameters ϑ. The intuition underlying regularized approximators is
that many dimensions of the feature map ϕ are often useless and forcing
the solution to be sparse increases the generalization capability of the
approximator. The choice of λ is critical for the actual performance of
the regressor and it is usually determined through leave-one-out valida-
tion. An advantage of kernel regression with respect to other regular-
ized algorithms is that there exist formulas to compute the leave-one-out
mean-squared error using the results of the training, without actually
performing the leave-one-out. In the following, we consider a square
loss function L(y, f(x)) = (y − f(x))2, thus reducing to the traditional
regularized least squares problem. Let G be the Gram matrix, whose
generic element Gij is K(xi, xj) with i, j ∈ Nm. Following the result of
the representer theorem [85, 109], the optimal vector of parameters can
be computed in the space of the training data x as

ϑ =
m∑

i=1

ciϕ(xi). (5.6)
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Therefore, the problem of computing the vector ϑ minimizing the ap-
proximation error, becomes the problem of computing the vector of co-
efficients c ∈ Rm. By minimizing the error function on c, we obtain

c = (G+ λIm)−1y, (5.7)

where Im ∈ Rm×m is the identity matrix. Finally, the approximated
action-value function becomes

Q̂(x) =

M∑

i=1

ϑiϕi(x) =

m∑

i=1

ciK(xi, x). (5.8)

As it can be noticed, in the computation of the coefficients c and in the
evaluation of the approximated action-value function in a state-action
x, there is no need to compute the value of the basis function ϕ(x)
but only the value of K(xi, x) must be computed. As a result, it is
possible to use high-dimensional kernel functions ϕ(x) (in the limit, M
could also be infinite) and, at the same time, to have a very efficient
regressor. In fact, the kernel regression algorithm can be easily optimized
in the case of fitted Q-iteration. Since the input samples are always the
same in each iteration k, the inversion of the matrix (G + λI) can be
performed only once and the computation of the optimal coefficients c
is obtained from a simple matrix multiplication. The main drawback
of kernel regression is that it becomes more and more inefficient as the
number of samples increases. In fact, the minimization problem has
a complexity of O(m3), that is the complexity of the inversion of the
matrix (G+λI). Furthermore, all the samples must be kept also after the
optimization in order to evaluate the learned function Q̂(x). A possible
optimization is to use the eigendecomposition of the Gram matrix G, that
is a semi-definite positive matrix, thus reducing the complexity of the
inversion operation. Furthermore, several mechanisms for the selection
of subsets of samples are available.

The performance of kernel regression is strictly related to the choice of
the function ϕ(x) or, more precisely, to the choice of the kernel function
K(x, x′). Examples of kernels are [110]:

• polynomial : K(x, x′) = (〈x, x′〉+ c)d

• sigmoid : K(x, x′) = tanh(c〈x, x′〉+ d)

• Gaussian: K(x, x′) = exp
(
−‖x−x′‖2

2σ2

)

110



5.4 Multi-Task Batch Reinforcement Learning

The Gaussian kernel is one of the most common kernel functions be-
cause its corresponding feature space has an infinite dimensionality (the
Gaussian kernel is obtained from the polynomial kernel when the degree
tends to infinity) and the bandwidth σ directly affects the generalization
of the approximator.

5.4.3 Multi-Task Feature Learning

In this section, we review the Multi-Task Feature Learning algorithm [9]
and we discuss its application to the approximation of the action-value
functions Qk

t generated at each iteration k of fitted Q-iteration. In the
following, we omit the index k in the formulas and we describe the ap-
proach for generic action-value functions Qt. The objective of multi-task
feature learning is to adapt the feature space shared across a set of n
tasks, together with the optimization of the learning parameters for each
task. In MTFL we consider a feature space φ defined as a linear combi-
nation of a kernel function ϕ

φ(·) = UTϕ(·),

where U is an orthonormal matrix. The resulting linear function approx-
imator is

Q̂t(x) = 〈ϑt, U
Tϕ(x)〉. (5.9)

The multi-task problem is then defined both on the learning parameters
ϑt of each task and on the transformation matrix U ∈ RM×M that
modifies the feature space φ.

For the sake of simplicity we first consider the case of linear kernel
ϕ(x) = x, thus reducing the function approximator to

Q̂t(x) =

d∑

i=1

ϑti〈ui, x〉 = 〈ϑt, U
Tx〉, (5.10)

where x ∈ Rd and ui ∈ Rd is the i-th column vector of the matrix
U ∈ Rd×d. Notice that in this case we set the number of features M equal
to the dimensions of the task d, that is the number of state variables plus
the number of action variables.

The MTFL definition of the multi-task problem is based on two main
assumptions: (i) the solution of each task is a sparse vector of learning
parameters ϑt, (ii) the features whose corresponding learning parameter
is non-zero are common across all the tasks. While the first assumption is
common to all the regularized algorithms (e.g., kernel regression, SVM),
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Tasks

Features

ϑt

ϑi

Figure 5.4: Matrix Θ of learning parameters. Columns ϑt contain the
learning parameters for task t, while rows ϑi contain the weight for fea-
ture i across the tasks.

the second assumption is specific of the multi-task problem and forces
the relevant features to be exactly the same in all the tasks.

These two assumptions are formalized in MTFL as the problem of
computing the learning parameters ϑt and the matrix U that minimizes
the error function

E(Θ, U) =

n∑

t=1

m∑

i=1

L
(
yti, 〈ϑt, U

Txti〉
)

+ λ‖Θ‖22,1, (5.11)

where Θ ∈ Rd×n is the parameter matrix with vectors ϑt on columns
(Figure 5.4) and the matrix norm ‖Θ‖22,1 is defined as

‖Θ‖22,1 =

(
d∑

i=1

‖ϑi‖2
)
, (5.12)

where ϑi is the i-th row of Θ that contains the parameters of ϑt corre-
sponding to feature φi across the tasks.

While the loss function L is an average of the approximator errors in all
the tasks, the regularization term is computed over the whole parameter
matrix and penalizes configurations in which the relevant features are
different in each task. Since the basic assumption is that all the tasks
share a common sparse representation (i.e., the set of relevant features
is relatively small and it is the same in each task), we expect all the
vectors ϑt to have only few non-zero elements corresponding to the same
features. Thus, we force matrix Θ to have only few non-zero rows ϑi.
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Algorithm 10 The Linear Multi-Task Feature Learning algorithm

Input: dataset (xk,yk)
Parameters: λ, ǫ, tol
Output: W ∗, D∗

Initialize D = Id

d

while ‖W −Wprev > tol‖ do

for t = 1 to n do

Compute wt = argmin
(∑m

i=1 L(yti, 〈w, xti〉) + λ〈w,D−1w〉
)

end for

Set D = (WW T+ǫId)
1

2

trace(WW T+ǫId)
1

2

end while

At the same time, the optimization on U forces to identify the feature
space in which the assumption of common features actually holds.

Although the problem of minimizing (5.11) is effective in modeling
the initial assumptions, it is difficult to be solved for two main reasons:
(i) the joint problem on Θ and U is non-convex, (ii) the regularization
term is non-smooth. Therefore, the optimization problem cannot be
directly solved with exact methods and, similarly to other multi-task
problems [89], approximated solutions should be applied. Nonetheless,
in [9], it is shown that there exists an equivalent convex optimization
problem whose solution is strictly related with the global optimal solution
of 5.11.

The equivalent problem is

J (W,D) =
n∑

t=1

m∑

i=1

L (yti, 〈wt, xti〉) + λ
n∑

t=1

〈wt,D
+wt〉, (5.13)

where W ∈ Rd×n has vectors wt on columns, D ∈ Rd×d is a diagonal
matrix and D+ is its pseudoinverse. It can be proved that the problem
of minimizing J (W,D) is a convex problem and that the optimal solu-
tion (W ∗,D∗) has a direct relationship with the optimal solution of the
original problem

(W ∗,D∗) =

(
U∗Θ∗, UDiag

( ‖ϑ∗,i‖2
‖Θ∗‖2,1

)d

i=1

U∗T

)
. (5.14)

Furthermore, it can be proved that the solution of the equivalent opti-
mization problem can be obtained by iteratively minimizing on W and D
separately. The algorithm works as follows. We initialize D to Dinit and
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we define the problem of computing W that minimizes J (W,Dinit). As
it can be noticed from (5.13), if D is kept fixed, the optimization problem
can be divided into n 2-norm regularization problems on wt, that can
be solved through kernel regression 2. Given the optimal solution Wopt,
we keep W constant and we optimize on D. By iterating on separated
optimizations of W and D, this process converges to the optimal solution
(W ∗,D∗). More formally, in order to guarantee the convergence to the
optimal solution, the following minimization problem is defined

Jǫ(W,D) =

n∑

t=1

m∑

i=1

L (yti, 〈wt, xti〉)+λtrace(D−1(WWT+ǫId)). (5.15)

It can be proved that the alternating algorithm summarized in Algo-
rithm 10 converges to the optimal solution by letting ǫ→ 0.

Although the definition of the problem and the structure of the so-
lution remain mainly unaltered in case of kernel functions ϕ(x), there
are some critical passages in the solution of the optimization step on
W of the alternating algorithm. In case of one single task, the problem
reduces to the case illustrated in Section 5.4.2, while in the multi-task
scenario the representer theorem must be extended to take into account
the different scenario. The result is that the optimal matrix W can be
computed as

W = ΦC, (5.16)

where Φ ∈ RM×mn contains in each column the value of the features cor-
responding to sample xti, that is ϕ(xti), and C ∈ Rmn×n is the matrix of
coefficients ct. The main problem of this formulation is the dimension-
ality M of the kernel function ϕ that in general is high or even infinite,
thus leading to the impossibility to solve the optimization problem in C.
Therefore, we need a transformation that reverts to a problem with finite
dimensionality. Let L = {ϕ(xti), t ∈ Nn, i ∈ Nm} be the space of the
features evaluated in the input samples and let δ be its dimensionality.
Given a matrix H whose columns form an orthogonal basis for L, there
exist a matrix Ψ such that

W = ΦC = HΨ, (5.17)

where H ∈ RM×δ and Ψ ∈ Rδ×n. As it can be noticed, with this trans-
formation we obtained an optimization problem defined on Ψ that is

2Other algorithms, such as SVM, can be used to solve the 2-norm regularization
problems.
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Algorithm 11 The Kernel Multi-Task Feature Learning algorithm

Input: dataset (xk,yk)
Parameters: λ, ǫ, tol
Output: Ψ∗, {x̃}δi=1

Find samples x̃ so that ϕ(x̃) is a basis for L
Build R through Gram-Schmidt orthogonalization
Initialize ∆ = Iδ

δ

while ‖Ψ−Ψprev > tol‖ do

for t = 1 to n do

Compute ψt = argmin
(∑m

i=1 L(yti, 〈ψ, zti〉) + λ〈ψ,∆−1ψ〉
)

end for

Set ∆ = (ΨΨT+ǫIδ)
1

2

trace(ΨΨT+ǫIδ)
1

2

end while

independent from the dimensionality of the kernel function. The result-
ing optimization problem is

min

(
n∑

t=1

m∑

i=1

L (yti, 〈ψt, zti〉) + λ‖Ψ‖2tr

)
, (5.18)

where zti = HTϕ(xti). Unfortunately, the problem of dimensionality is
still present in the transformation from samples xti to samples zti since
it requires the evaluation of the kernel function ϕ and the use of matrix
H. Let us consider the set of δ samples x̃ that defines a basis for the
feature space L and let Φ̃ ∈ RM×δ be a matrix with ϕ(x̃) on columns.
Matrix H can be written as

H = Φ̃R, (5.19)

where R ∈ Rδ×δ can be computed through Gram-Schmidt orthogonal-
ization [51] using only kernel values K(x, x′). Therefore, the transformed
input samples become

zti = HTϕ(xti) = RTΦ̃Tϕ(xti) = RTK̃(xti), (5.20)

where K̃(xti) ∈ Rδ is a vector whose components are K(x̃, xti) where x̃
is one of the samples used to compute Φ̃.

Finally, given the output of the algorithm (Ψ) and the samples x̃ used
to build an orthonormal basis for L, we define a matrix B ∈ Rδ×n that
plays a role similar to coefficients C but in the space L

B = RΨ. (5.21)
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Figure 5.5: Map of colors used in the experiments in the colored maze
environment.

Therefore, the resulting optimal matrix W becomes

W = Φ̃B, (5.22)

and, thus, the approximation of the action-value function becomes

Q̂t(x) = 〈ϑt, U
Tϕ(x)〉 = 〈wt, ϕ(x)〉 = 〈bt, Φ̃Tx〉 = 〈bt, K̃(x)〉. (5.23)

As it can be noticed, the definition of the optimization problem in Ψ
does not require the evaluation of functions ϕ and, at the same time, the
computation of B and K̃ guarantees that the approximate action-value
function can be evaluated in each state-action x with no need to compute
ϕ(x).

The overall MTFL with kernel function is summarized in Algorithm 11.
As it can be noticed, it is exactly the same as in Algorithm 10 except
for the different space δ in which the optimization is carried out.

5.5 Experiments: the Colored Maze

5.5.1 Definition and Settings

The first problem we consider is a variant of the colored maze experiment
introduced in [164]. We consider an empty maze with state variables
x and y limited in the interval [0, 1], one action variable a with four
discrete values {0, 1, 2, 3} that moves the agent of a step 0.1 perturbed
by a Gaussian noise with zero mean and standard deviation 0.05 along
the chosen direction. The maze is divided into 100 areas with different
colors ci that correspond to a negative number in [−1, 0]. The color
settings used in this experiment is illustrated in Figure 5.5. The reward
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Parameter Value

λMTFL 0.01
λInd 0.1
ǫ 0.0
tol 0.0001

Table 5.1: Parameters for multi-task fitted Q-iteration in the colored
maze environment.

in each state is obtained as R(s) = wc, where c is a vector that contains
the color of the area corresponding to the current state and the colors
of the surrounding areas and w is a normal vector of weights. The goal
of the agent is to achieve the upper left corner of the maze by following
the highest reward path. The task distribution Ω is defined as a uniform
distribution over w ∈ R5. Therefore, all the tasks share the same domain
but have different goals.

From Ω we draw n = 20 independent tasks and we consider six different
configurations:

• Independent : fitted Q-iteration with kernel regression running on
each task independently

• MTFL-i: fitted Q-iteration with MTFL running on i tasks

where i = 1, 2, 5, 10, 15, 20. It is worth noting that the version MTFL-1
is not necessarily equal to the independent version. In fact, while kernel
regression use a 2-norm regularizer, MTFL applied to only one task at a
time, reduces to a regularized algorithm in 1-norm. For all the algorithms
we adopted a Gaussian kernel with standard deviation 0.1.

The parameters used in the experiment are summarized in Table 5.1.
In all the following experiments, the discount factor is γ = 0.9, the
number of iterations of fitted Q-iteration is N = 10.

5.5.2 Results: Generalization Improvement

The objective of the following experiment is to assess the effectiveness of
multi-task batch RL in reducing the error of the approximated action-
value functions. In particular, we analyze the approximation as the
number of tasks increases. In fact, we expect that the optimal value
functions share a common representation that can be identified and ex-
ploited by the MTFL algorithm. All the tasks are drawn according to Ω,
the learned action-value functions are tested on a set of testing samples
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Figure 5.6: Example of optimal value function for the colored maze for
a given w.

randomly extracted from the same tasks used in the training phase. The
results are averaged over 30 runs.

In Figure 5.7, we report the mean square errors for the six configu-
rations of the algorithm and for different number of samples extracted
from the tasks (m = 50, 100, 150, 200, 250, 300). Although MTFL-1 ob-
tains results slightly worse than learning independently in some cases,
as the number of tasks considered in MTFL increases, the testing error
is significantly reduced. As it can be noticed, the improvement is almost
monotonic with the number of tasks and MTFL-20 reduces the MSE
to half of the error of the algorithm that learns each task separately.
In fact, according to the environment the tasks are strictly related and
FQI in conjunction with MTFL succeeds in exploiting this relatedness by
adapting the feature space so as to maximize the advantage of learning
all the tasks at the same time.

5.5.3 Results: Irrelevant Variables

The second experiment in the colored maze environment has the ob-
jective of analyzing the approximation error when irrelevant variables
are introduced in the definition of the problem. In fact, since MTFL
automatically adapt the feature space according to a joint optimization
problem defined on all the tasks, we expect it to benefit from the informa-
tion stored in all the samples in order to reduce the negative effect due to
introduction of irrelevant variables. In the following experiment we add
up to 2 irrelevant variables (z1 and z2) to x and y. The value of z1 and
z2 is randomly drawn in the interval [0, 1] at each step. We consider the
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Figure 5.7: Approximation error averaged over all the tasks for different
algorithms.

case in which m = 500 samples are available for each task. In Figure 5.8
we report the mean squares error for the case of two, three and four vari-
ables (x, y, z1, z2). As it can be noticed, the introduction of irrelevant
variables significantly worsens the performance of all the configurations,
such that when both z1 and z2 are added to the state space the MSE
is three times higher than the MSE of the default setting. Nonetheless,
even when two irrelevant variables are added, MTFL-20 still keeps a
significant advantage with respect to independent learning.

5.6 Experiments: the Boat Problem

5.6.1 Definition and Settings

The second environment we consider is the boat problem introduced in
Section 4.7. The chosen action at+1 is perturbed by a uniform noise
U [−10; 10]. Unlike the problem in Section 4.7, there are no sandbanks
and the reward function is defined as

R(x, y) =





+10 (x, y) ∈ Zs

D(x, y) (x, y) ∈ Zv

-10 (x, y) ∈ Zf

-0.1 otherwise

(5.24)

where D is a function that gives a reward decreasing linearly from 10 to
-10 relative to the distance from the success zone. The discount factor
is γ = 0.99.
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Figure 5.8: Approximation error averaged over all the tasks for different
algorithms with the introduction of irrelevant variables.

Parameter Value

λMTFL 0.1
λInd 0.005
ǫ 0.0
tol 0.0001

Table 5.2: Parameters for multi-task fitted Q-iteration in the boat envi-
ronment.

The parameters used in the following experiments are summarized in
Table 5.2. Both the independent version of FQI and the version with
MTFL are run on five iterations and use a Gaussian kernel with param-
eter σ = 15.0.

5.6.2 Results: Policy Performance

The objective of the following experiment is to evaluate the actual per-
formance achieved by the multi-task batch RL algorithm. While in the
colored maze environment we focused only on the approximation of the
action-value function, here we analyze the performance on the learned
policy with and without multi-task learning. Since MTFL should im-
prove the accuracy of the approximation, we also expect the correspond-
ing policy to achieve a better performance than learning each task from
scratch.

Since the problem is more complex than the previous maze problem
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Figure 5.9: The boat environment.

a greater number of samples is needed and this negatively impacts on
the complexity of the pre-processing of Algorithm 11. In particular,
the computation of R through Gram-Schmidt orthogonalization becomes
particularly expensive. In order to avoid this problem, in the following
experiments we used a generative model of the boat environment to draw
the samples of different task. At first we collected m samples of state-
action pair 〈s, a〉 at random from the environment, independently from
the specific task considered. Then, we used the generative model to
build the outcomes s′ and r for each task. As a result, the input set
x = {〈s, a〉i}i∈Nm is shared across all the tasks and the computation of
the basis for L can be reduced to this input set, instead of using nm
samples.

We consider a task space T = {T1, T2, T3, T4} and a uniform distri-
bution Ω on T . Each task shares the same domain but differs for the
position of the quay: T1: yquay = 70, T2: yquay = 80, T3: yquay = 90, T4:
yquay = 100. It is worth noting that in order to reach even relatively near
positions of the bank the sequence of actions can be different because of
the highly non-linear dynamics of the environment.

In Figure 5.10 we report the total reward achieved by the policy learned
with and without MTFL with m = 100, . . . , 2000. The performance is an
average of the performance on all the tasks and is obtained by averaging
30 runs. The initial performance is almost the same. In fact, with
a limited number of samples FQI does not succeed in learning a good
policy and even the joint use of samples coming from different tasks does
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Figure 5.10: Total reward in the boat environment for different algo-
rithms of FQI.

not provide enough information about the underlying representation of
the optimal action-value functions. On the other hand, as the number
of samples increases the advantage of learning through MTFL becomes
more and more relevant. It is interesting to notice that the difference in
performance is still present at convergence (m = 2000) (the difference
is statistically significant with p < 0.05). In fact, although both the
algorithms shares the same regressor (kernel regression with Gaussian
kernel) and, in principle, they have the same capability to approximate
functions, MTFL succeeds to adapt the feature space so as to bias the
learning towards a set of functions that are more similar to the action-
value functions to be approximated.

5.7 Related Works

This work is obviously strictly related to the main works in multi-task
learning [34, 18, 3, 9]. Nonetheless, our focus is not on developing a
new method for feature learning but to show how existing solutions can
be integrated into the RL paradigm. The main differences between the
approach of MTFL with respect to other multi-task learning algorithms
are: (i) a joint optimization problem on learning and feature parameters,
(ii) an exact solution through an alternating algorithm, (iii) use of high-
dimensional kernel spaces.
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As far as reinforcement learning is concerned, to the best of our knowl-
edge this is the first attempt to adopt recent results in multi-task learning
literature into a reinforcement learning algorithm. Many works faced the
problem of extracting basis functions for linear function approximators
in batch reinforcement learning algorithms. The most similar approach
to our algorithm is introduced in [84], where a set of basis functions
is parameterized and optimized together with the learning parameters
by gradient descent and cross-entropy methods in single-task problems.
In [59] an algorithm for the identification of irrelevant state variables is
proposed. Although relevant in many domains, MTFL faces the more
general problem of feature learning (instead of feature selection) in the
context of multi-task learning. In [95], a given set of basis functions
is expanded by adding basis functions obtained from the Bellman error
in order to improve the accuracy of the approximation of the optimal
value function of a given task. In [78] and [67], the focus is on the prob-
lem of feature extraction, while each task is solved independently. It is
worth noting that, besides the scenario (single- vs multi-task), we also
differ in the batch RL algorithm adopted and in the use of the func-
tion approximator. All the approaches described before rely on LSPI
as learning algorithm, while we focused on fitted Q-iteration. All the
regularized multi-task learning algorithms define a joint approximation
error with a loss function defined on the current approximation and the
target function. In RL no target function is actually available. The only
way to define a similar loss function is to use the Bellman residual er-
ror (TQ̂ − Q̂). The fixed-point LSPI does not rely on the definition of
an approximation error and thus it cannot be directly integrated with
multi-task learning algorithms. On the other hand, since at each itera-
tion of FQI a regression problem based on the Bellman error is solved, the
extension to a multi-task perspective is more straightforward. Further-
more, the solutions proposed in [78, 95] require to store basis functions
by enumerating state-action pairs. Although this allows to consider fea-
ture spaces crafted for tasks at hand, their representation can have a
complexity comparable to learning the action-value function itself. On
the other hand, the use of kernel spaces, in which it is not necessary
to explicitly define the basis functions, avoids this problem and, at the
same time, makes it possible to use high-dimensional feature spaces.

Finally, the proposed method is related to the recent work on multi-
task RL based on a hierarchical Bayesian approach [164]. Both of them
merge results from the SL literature on multi-task learning. Nonetheless,
the objective of hierarchical Bayesian approaches is to identify a distri-
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bution over models that allows to rapidly infer the characteristics of new
environments based on previous environments.

5.8 Conclusions

In this chapter we proposed an integration of FQI with a multi-task
learning algorithm, with the main objective of improving the generaliza-
tion performance of the learning algorithm on a finite set of tasks. At the
best of our knowledge this is the first attempt to pursue the objective of
multi-task learning by merging RL and SL solutions. The experimental
results show that the multi-task version of FQI actually reduces the ap-
proximation error and improves the learning performance with respect
to FQI when applied on each task independently.

Future directions of investigation are:

1. Extension to transfer. The main drawback of the proposed solution
is that the learned feature space cannot be easily transferred to
new tasks extracted from the same distribution. In fact, matrix U
cannot be explicitly computed in case of kernel functions because
of the dimensionality of the feature space. It would be interesting
to define a suitable method to transfer the output of Algorithm 11
to bias the kernel regression on new tasks.

2. Theoretical analysis. The implicit assumption underlying the inte-
gration between MTFL and FQI is that at each iteration k action-
value functions Qk

t share the same representation. It is possible to
define problems in which only the optimal action-value functions
(k → ∞) are actually related but the intermediate functions are
significantly different. In these situations, MTFL is likely not to
provide any significant generalization improvement. A theoretical
analysis about the characteristics of the action-value functions for
which the benefit from MTFL is maximized should be carried out.

3. Multi-task feature extraction. While MTFL focuses on the prob-
lem of adapting a given set of features, another relevant topic of
multi-task learning is the extraction of features starting from some
characteristics of the tasks at hand. This perspective is implicitly
adopted in the proto-value functions (PVF) framework [78] but a
very generic class of tasks is taken into consideration. A possible
extension is to integrate the PVF framework with recent works of
multi-task structure learning with spectral regularization [7].
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6.1 Contributions

Transfer of knowledge in Reinforcement Learning (RL) is a challenging
problem and the results obtained so far in literature showed that it can be
an effective approach to improve the learning performance in complex
tasks. Nonetheless, a deep understanding of how transfer should be
accomplished in RL and how it affects the final performance is mostly
an open problem. Furthermore, the connections between transfer in
supervised learning and in RL are still unexplored.

The main contributions of this thesis to the research in transfer RL
can be summarized as follows:

• Classification of the state of the art. In Chapter 3, we intro-
duced a novel classification of works of transfer in RL. We focused
on three different dimensions: the objectives, the scenarios, the
knowledge retained and transferred across tasks. The analysis of
the state of the art under this perspective showed that most of
works of transfer in RL focused on the objective of improving the
learning speed and the initial offset. The main techniques adopted
to achieve these objectives are either the direct transfer of solutions
or the transfer of subpolicies (i.e., options). On the other hand,
little attention has been devoted to other topics, such as, transfer
of trajectory samples and multi-task perspective for generalization
improvement.

• Transfer in batch RL. RL algorithms performance depends on
many aspects, such as, the exploration policy, the function approx-
imator, the update rule, and so on. These elements contribute all
together to determine the performance. As a result, it is often
difficult to analyze how transfer solutions affect the final learning
performance and which aspects should be considered to achieve
the different objectives of transfer. In Chapter 3, we proposed the
batch RL framework as the most suitable perspective to analyze
the problem of transfer in RL. In fact, in batch RL algorithms it
is possible to distinguish different aspects of the learning process
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(i.e., sampling and learning) so that the effect of transfer solutions
can be isolated to specific elements of the algorithm.

• Transfer of samples. In Chapter 4, we introduced a novel sample-
based transfer algorithm pursuing the objective of improving the
learning speed. We considered the typical inductive transfer sce-
nario in which a set of source tasks are used to improve the per-
formance in one target task. Under the assumption that tasks are
somehow related, the idea is to transfer part of the samples col-
lected in the source tasks to augment the set of samples collected
in the target task used to feed the batch RL algorithm. The main
problem is to avoid transfer of samples from tasks that are dissim-
ilar from the target task. Therefore, we introduced a method for
the identification of which source tasks are more similar to the tar-
get task (compliance) and, among the samples of one source task,
which samples are more convenient to transfer (relevance). The
proposed method has been tested on a number of domains aiming
at investigating properties and performance of the algorithm. The
results show that the relevance-based transfer of samples can sig-
nificantly improve the learning performance by avoiding negative
transfer effects.

• Multi-task fitted Q-iteration. In Chapter 5, we proposed the
integration of batch RL with the multi-task learning perspective
pursuing the objective of improving the generalization performance.
This objective received little attention in works of transfer in RL
so far and this is the first attempt of integration of a RL algorithm
with a multi-task learning algorithm. The basic assumption is that
the optimal action-value functions of the tasks at hand share an
underlying common representation. If this representation can be
learned starting from the information collected from each task, the
accuracy of approximation can be significantly improved. In par-
ticular, we focused on fitted Q-iteration (FQI) and we defined a
multi-task learning problem at each iteration of FQI. Then, we
adopted Multi-Task Feature Learning (MTFL) to solve the joint
optimization problem on the learning parameters of each task and
on the feature space shared across tasks. Preliminary results show
that the integration of MTFL with FQI leads to a significant im-
provement both in terms of reduction of the approximation error
and improvement of policy performance.
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6.2 Future Works

Although this thesis represents a contribution to the advancement of
research in transfer RL, many aspects of the problem remain unexplored.
Following the perspective introduced in this thesis, future directions of
investigation are:

• Formalization of transfer objectives in batch RL. Although
in this thesis we proposed a first definition of the objectives in batch
RL, much work should be devoted in providing a more rigorous
formal definition. In fact, the algorithms introduced in Chapter 4
and Chapter 5 are not guaranteed to achieve their corresponding
objectives and only experimental evidence of their effectiveness is
provided. Possible directions of research could rely on the theoret-
ical results and formalizations proposed in [64, 5, 18].

• Transfer among tasks with different state and action spaces.

The main limit of the algorithms proposed in this thesis is that they
require all the tasks to share the same state and action spaces. On
the other hand, recent works [144] specifically focused on the defi-
nition of suitable mappings between tasks defined on different state
and action spaces. The integration of these works with the transfer
algorithm proposed in this thesis could lead to more sophisticated
transfer algorithms able to face complex real-world problems.

• Integration of sample-based transfer and multi-task fitted

Q-iteration. The transfer solutions introduced in Chapter 4 and 5
are orthogonal. In fact, while the transfer of samples changes the
output space of the sampling algorithm, the multi-task algorithm
adapts the output space of the learning algorithm. Therefore, the
two solutions could be easily integrated into one single transfer
algorithm.

• Improvement of initial offset. In this thesis we considered the
objectives of improvements of learning speed and generalization
performance, no transfer algorithm for the improvement of the ini-
tial offset is proposed. Nonetheless, the sample transfer algorithm
could be extended along the direction introduced in [164], where a
prior is computed over the tasks distribution through a hierarchical
Bayesian model. The samples could be obtained from a generative
model defined by merging all the source tasks, obtaining the most
likely task. This way, the performance of the batch RL algorithm
could be initialized by learning on this set of samples.
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