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Abstract. The application of reinforcement learning algorithms to mul-
tiagent domains may cause complex non-convergent dynamics. The repli-
cator dynamics, commonly used in evolutionary game theory, proved to
be effective for modeling the learning dynamics in normal form games.
Nonetheless, it is often interesting to study the robustness of the learning
dynamics when either learning or structural parameters are perturbed.
This is equivalent to unfolding the catalog of learning dynamical scenar-
ios that arise for all possible parameter settings which, unfortunately,
cannot be obtained through “brute force” simulation of the replicator
dynamics. The analysis of bifurcations, i.e., critical parameter combina-
tions at which the learning behavior undergoes radical changes, is manda-
tory. In this work, we introduce a one-parameter bifurcation analysis of
the Selten’s Horse game in which the learning process exhibits a set of
complex dynamical scenarios even for relatively small perturbations on
payoffs.

1 Introduction

Game Theory (GT) [9] provides formal models (i.e., games) for the study of
the interaction between self-interested rational agents, whose goal is the maxi-
mization of the return (i.e., payoff). In particular, GT identifies the conditions
for the existence of equilibria (e.g., Nash equilibria), i.e., strategic configura-
tions in which no agent can change her strategy without worsening her payoff.
Nonetheless, the computation of equilibria requires each agent to have a complete
knowledge of the game (actions available to other agents and their payoffs).

On the other hand, Reinforcement Learning (RL) [11] enables autonomous
agents to learn the optimal strategy that maximizes the return through a direct
interaction with an unknown environment. Multiagent Reinforcement Learn-
ing [8] extends the traditional single-agent RL approach to game theoretic prob-
lems in which several agents interact. Although RL algorithms are guaranteed to
find the optimal (Nash) strategy in problems with stationary environments, they
may fail to converge in environments where other learning agents are involved. As
a result, the learning process may exhibit very complex non-convergent (periodic
or aperiodic) dynamics [6, 10] that are often difficult to study by stochastically
simulating single runs of execution.



Evolutionary Game Theory (EGT) [4] studies the evolution of populations
of agents as dynamical systems, notably with the replicator dynamics equation.
The translation of Q-learning [13], one of the main RL algorithms, into suit-
able replicator dynamics [1, 12] makes possible the study of the dynamics of
the learning processes as the study of nonlinear dynamical systems. The simu-
lation (numerical integration) of the replicator dynamics therefore provides an
alternative approach to study the behavior of learning agents, which is however
effective only when all parameter values are assigned. In fact, as better explained
in Sec. 4.2, how robust the observed learning dynamics are, when either learning
parameters or parameters defining the structure of the game change because of
noise or system perturbations, cannot be assessed by simply organizing extensive
simulations.

Bifurcation analysis [7] provides strong theoretical foundations and effective
numerical techniques to study the robustness of a dynamical system to param-
eter perturbations. In particular, robustness, called structural stability in the
dynamical system jargon, is lost at the critical parameter combinations, called
bifurcations, at which arbitrarily small parameter perturbations induce radical
qualitative, other than quantitative, changes in the system dynamics.

In this paper, we introduce bifurcation theory and we apply it to the analysis
of the dynamics of the learning process in a three agents representative exten-
sive form game: the Selten’s Horse. We investigate the problem characteristics
and the learning solutions through a bifurcation analysis with respect to one
of the payoffs of the game. In particular, we show that the dynamical system
can repeatedly loose structural stability even in relatively small payoff intervals,
that multiple stationary and non-stationary (periodic) attractors can be present,
and that several bifurcations regulate their appearance, disappearance, and the
catastrophic transitions between them.

The rest of the paper is organized as follows. In Section 2 we introduce
definitions of normal and extensive form games. In Section 3 we briefly review
Q-learning and how its dynamics can be translated into replicator-like dynamics.
An introduction to bifurcation analysis is provided in Section 4 and, finally, in
Section 5 we analyze the Selten’s Horse game as a case study for bifurcation
analysis of multiagent reinforcement learning systems.

2 Game Theory Background

2.1 Normal Form Games

In Game Theory, games are defined as conflict situations between agents. In
a normal form game, agents execute actions simultaneously according to their
strategies and the outcome of the game is a payoff for each agent. Formally:

Definition 1. A normal form game Γ is defined by the tuple 〈N ,A,R〉, where:

– N = {1, . . . , n} is the set of agents in the game



– A = A1×. . .×Ai×. . .×An is the set of joint actions a = (a1, . . . , ai, . . . , an),
where ai is an element of the set Ai = {ai1, . . . , aij , . . . , aimi

} of the mi

actions available to agent i (mi = m in the following)
– R = {R1, . . . , Rn} is the set of payoff functions, where Ri : A → ℜ is the

payoff function for agent i that maps each joint action to a numerical payoff

Furthermore, we define:

– X = X1 × . . . × Xi × . . . × Xn as the set of joint strategies x = (x1, . . . ,xi,
. . . ,xn), where strategy xi = (xi1, . . . , xij , . . . , xim) is a probability distribu-
tion over the action set Ai, so that xi∈Σm ={xi : 0 ≤ xij ≤ 1,

∑m

j=1 xij =1},
where Σm is the m-dimensional simplex

– ρ = {ρ1, . . . , ρn} as the set of expected payoff functions, where ρi : X → ℜ
is the expected payoff function for agent i that maps each joint strategy to
a numerical payoff, that is the sum of the payoffs for all the possible joint
actions weighted by their probabilities according to the joint strategy

At each round of the game, each agent chooses an action ai, a joint action a is
executed, and a payoff Ri(a) is returned. When an agent plays deterministically
one action (say aij with xij = 1), then the strategy is pure, otherwise is a
mixed strategy. The joint action of all agents but agent i is usually denoted as
a−i =(a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =A1×· · ·×Ai−1×Ai+1×· · ·×An. Similarly,
the joint strategy of all the agents but i is defined as x−i = (x1, . . . ,xi−1,
xi+1, . . . ,xn). In the following, we refer to matrix games, in which the payoff
functions Ri are matrices Pi with dimensions |Ai| × |A−i|, i.e. ρi(x) = xiPix−i.

The main solution concept in a normal form game is the Nash equilibrium.

Definition 2. Given a normal form game Γ = 〈N ,A,R〉, the joint strategy
x∗ = (x∗

1, . . . ,x
∗
n) is a Nash equilibrium when:

ρi(x
∗
1, . . . ,x

∗
i , . . . ,x

∗
n) ≥ ρi(x

∗
1, . . . ,xi, . . . ,x

∗
n), ∀i ∈ N , ∀xi ∈ Σm. (1)

In a Nash equilibrium none of the agent can improve her expected payoff by
changing her strategy while all other agents keep playing the same strategies. In
other words, each strategy x∗

i is the best response to x∗
−i.

2.2 Extensive Form Games

In contrast with normal form games, extensive form games describe the sequen-
tial structure of decision making explicitly, and therefore allow the study of
situations in which agents play one after the other and possibly several times at
different stages of the game round [9]. An extensive form game is represented by
a tree (Fig. 1). Each node represents a state of play of the game. The game be-
gins at a unique initial node, and flows through the tree along a path determined
by the actions taken by the agents until a terminal node is reached, where the
game ends and payoffs are assigned to agents. At each non-terminal node only
one agent plays by choosing among a set of available actions, each action being
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Fig. 1. A two agents, two actions, extensive form game with imperfect information.
Dotted lines represent information sets. Labels at decision nodes identify the agent
that plays, labels on edges agents’ actions, and values at leaves agents’ payoffs.

represented by an edge leading from a node to another. Games in which each
agent knows exactly the node in the tree where she plays are games with perfect
information, otherwise information is imperfect. The agents’ uncertainty about
the state is represented by information sets that group the states that cannot
be distinguished by the agents. Formally:

Definition 3. An extensive form game is a tuple Γ = 〈N ,G, {Ri}, ι, {Hi}, {Ai}〉,
where:

– N is the set of the agents
– G = 〈S, s0, T 〉 is a finite tree with a set of decision nodes S, a unique initial

node s0 ∈ S and, a set of terminal nodes T
– Ri : T → ℜ is the payoff function for agent i that maps each terminal node

to a numerical payoff
– ι : S → N is the agent function that maps decision nodes to the agent that

plays at that node
– let H be the set of information sets h ⊂ S that partitions the set of decision

nodes: S =
⋃

h∈H h and ∀h, h′ ∈ H, h ∩ h′ = ∅; H is partitioned into sets
of information sets which belong to the same agent: Hi = {h ∈ H, ∀s ∈
h, ι(s) = i}

– Ai(h) is the set of actions available to agent i = ι(s) in each information set
h ∈ Hi, such that s ∈ h

Unlike normal form games, in the extensive form the strategies are defined
as functions of the information set perceived by the agent, i.e., xi(h) = (xi1(h),
. . . , xim(h)), h ∈ Hi. This is due to the fact that agent i may play more than
once at different stages of the game. Thus, in the following, we denote by xi the
functional strategy over the information sets, while the joint strategy x is called
strategy profile of the game.

In extensive form games some refinements of the Nash equilibrium are usually
adopted as solution concepts. In the following, we focus only on the sequential
equilibrium of Kreps and Wilson [5], which is the most suitable equilibrium for
extensive form games with imperfect information. In fact, the sequential equilib-
rium takes into account not only the strategies, but also the agents’ beliefs about
the state of the game. A belief for agent i is defined as a probability distribution



µi(h) = (µi1, . . . , µij , . . . , µi|h|) over the states in the perceived information set
h ∈ Hi, where µij is the probability for agent i to be in the j-th state of h.
The set of beliefs µ = (µ1, . . . µi, . . . , µn) is called system of beliefs. The ex-
pected payoff ρi(x|µi) for agent i, given her belief µi and a joint strategy x, is
defined as the expected payoff when the probability to be in the states of her
information sets is exactly given by her belief. The system of beliefs together
with the strategy profile define an assessment σ = 〈µ,x〉. A sequential equilib-
rium is an assessment σ∗ = 〈µ∗,x∗〉 such that the strategies in x∗ are mutual
best responses (sequential rationality) and the beliefs in µ

∗ are consistent with
the probability distribution induced by x∗ on the states of the game (Bayesian
consistency). Finally, the notion of consistency in the sense of Kreps and Wilson
also requires the existence of a sequence of assessments σk = 〈µk,xk〉, each with
fully mixed xk and Bayesian consistent µk, that converges to σ∗. Technically,
this latter condition avoids that beliefs on information sets never visited at the
sequential equilibrium remain undetermined. More formally:

Definition 4. An assessment σ∗ = 〈µ∗,x∗〉 is a sequential equilibrium of an
extensive form game Γ if:

– (sequential rationality):

ρi(x
∗
1, . . . ,x

∗
i , . . . ,x

∗
n|µ

∗
i ) ≥ ρi(x

∗
1, . . . ,xi, . . . ,x

∗
n|µ

∗
i ), ∀i ∈ N . (2)

– (Bayesian consistency): the joint strategy x∗ induces a probability distribution
on states equal to the system of beliefs µ

∗

– (Kreps and Wilson consistency): there is a sequence σk =〈µk,xk〉, such that

xk → x∗, k → ∞ (3)

being xk fully mixed and µk consistent with xk

2.3 From Extensive Form to Normal Form Games

Sometimes it is convenient to transform a game from its extensive form to a
normal form, so as to benefit from the results coming from the normal form
representations. The transformation from extensive to normal form can be done
as follows. The set of agents N remains the same. For any agent i, the set
of actions Ai in the normal form game contains one action for each possible
sequence of choices that the agent takes at decision nodes s such that ι(s) = i.
Finally, payoff functions are such that for each joint action the payoff is defined
as that obtained at the termination node reached in the extensive form game.

It can be shown [9] that sequential equilibria of the extensive form game are
always preserved as Nash equilibria of the normal form game. Nonetheless, other
Nash equilibria could be generated, and this may prevent learning algorithms
designed for normal form games, that are generically aimed at converging to
Nash equilibria, from successfully solving extensive form games.



3 Reinforcement Learning and Q-learning Dynamics

RL is a learning paradigm that enables an agent to learn the optimal strat-
egy to solve a given task through a trial-and-error process of direct interaction
with an unknown environment. At each time instant, the state of the envi-
ronment evolves in response to the action taken by the agent and a reward
is returned. The goal of a reinforcement learning agent is to learn the strat-
egy x∗ that maximizes the rewards through time. More formally, a strategy
x(s) = (x1(s), . . . , xi(s), . . . , xm(s)) is defined as a mapping from a state s to a
probability distribution over actions, where xi(s) is the probability of taking ac-
tion i in state s. The quality of a strategy x can be measured by the action value
function Qx(s, a), defined as the expected sum of discounted rewards obtained
by taking action a in state s and following x thereafter:

Qx(s, a) = E
[
∑∞

k=0δ
krk|a(0) = a

]

where δ ∈ [0, 1) is the discount factor, and rk is the reward returned at time
k. The optimal action value function Q∗(s, a) is defined as the function whose
value is maximum in each state-action pair. Learning the optimal strategy x∗

is equivalent to learning the optimal action value function Q∗(s, a). In order to
learn Q∗(s, a), the agent needs to explore all possible actions in all the states of
the environment. On the other hand, as the learning progresses, in order to assess
the performance of her strategy, the agent should exploit the estimation of the
action value function by taking in each state the greedy action, i.e., the action
whose action value is highest. A common exploration policy is the Boltzmann
strategy:

xi(s) =
eτQ(s,ai)

∑m

j=1 eτQ(s,aj)
(4)

where τ is the exploitation factor (the lower [higher] τ , the higher [lower] the
exploration).

While the agent explores the environment according to Eq. 4, the estimation
of the action value function should be updated on the basis of the rewards
received by the agent. In Q-learning [13], one of the most used RL update rules,
when the agent takes an action a and receives a reward r, the action value
function is updated as:

Q(s, a) = (1 − α)Q(s, a) + α
(

ri + δ max
a′

Q(s′, a′)
)

(5)

where α ∈ [0, 1] is the learning rate and s′ is the state after the execution of a.
In a multiagent context, the environment is populated by n agents, at each

time instant k the state evolves according to the joint action a(k), and the re-
ward for each agent depends on the joint action as well. In the simple case in
which the interaction between the agents is described by a normal form game,
the environment is characterized by a single state, and the reward ri is defined by
the payoff function Ri(a) (Sec. 2.1). Although Q-learning is guaranteed to find
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Fig. 2. In the replicator dynamics equations, a learning agent is represented by a set
of m populations of identical agents that play pure strategies with proportions such
that their densities correspond to the probability to play that strategy.

the optimal strategy (that in normal form games corresponds to a Nash equilib-
rium) in stationary environments under very loose hypotheses [13], in multiagent
problems payoffs depend on the joint action and, since agents do not know the
other strategies, each agent perceives a non-stationary environment. Thus, the
learning process is not guaranteed to converge and may exhibit complex dynam-
ics that are often difficult to study by stochastically simulating single runs of
execution.

Evolutionary Game Theory (EGT) is the application of population genetics-
inspired models to game theory. With respect to classical game theory, it is more
focused on the dynamics of proportions (i.e., the relative abundance or density,
also called frequency) of homogeneous populations of agents all playing the same
action. As depicted in Fig. 2, agent i can be imagined as a large population of
xi identical strategists, or, equivalently, as m homogeneous sub-populations of
pure strategists, one for each action aij ∈ Ai with proportions nij = xij , j =
1, . . . , m. Thus, a pure strategist playing action aij is randomly extracted from
the population with the same probability xij according to which agent i plays
that action. Then, assuming that the game is repeatedly played many times in
any small time interval dt and that from time to time (but still many times in
dt) a pure strategist is randomly extracted from the population and offered the
option of switching to the pure strategy of another randomly selected strategist,
the continuous-time dynamics of the sub-population proportions or, equivalently,
the strategy dynamics, are ruled by the replicator dynamics:

ẋij = xij [(Pix−i)i − xiPix−i] (6)

where Pi is the payoff matrix of agent i. In [12], the Q-learning dynamics in nor-
mal form games is proved to converge to the following replicator-like dynamics:

ẋij = xijατ [(Pix−i)i − xi · Pix−i] + xijατ

m
∑

k=1

xik ln

(

xik

xij

)

(7)

where the number of ordinary differential equations (ODEs) for agent i can be
reduced to |Ai| − 1, since the probabilities xij , j = 1 . . . , n sum to 1.
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4 Bifurcation Analysis of Dynamical Systems

In this section we recall the main notions on non-linear dynamical systems,
with particular emphasis on structural stability and bifurcations. The following
sections are adapted from [2] (Appendix A). We refer the reader to [7] for a more
complete treatment of bifurcation theory.

4.1 Dynamical Systems Background

A continuous-time finite-dimensional dynamical system is defined by a system
of ordinary differential equations (ODEs):

ẋ(t) = f(x(t)) (8)

where the state vector x is n-dimensional and ẋ is its time derivative. Given
the initial state x(0), the ODEs uniquely define a trajectory of the system, i.e.,
the state vector x(t) for all t ≥ 0. Trajectories can be easily obtained through
simulation (i.e., numerical integration). The set of all trajectories is the state
portrait of the system. In Fig. 3 a representative example of 13 trajectories from
a two-dimensional (i.e., n = 2) system is reported. Three trajectories (A, B, C)
are points (corresponding to constant solutions of the system) called equilibria,
while one (γ) is a closed trajectory (corresponding to a periodic solution of the
system) called limit cycle. The behavior of the trajectories allow one to conclude
that A is a repellor (no trajectory starting closing to A tends or remains close
to A), B is a saddle (almost all trajectories starting close to B go away from
B but two trajectories tend to B and compose the so-called stable manifold ;
the two trajectories emanating from B compose the unstable manifold) while
C and γ are attractors (all trajectories starting close to C [γ] tend to C [γ]).
Attracting equilibria and cycles are said to be (asymptotically) stable (globally
stable if they attract all initial conditions, technically with the exclusion of sets
with no measure in state space), while saddles and repellors are unstable. The
trajectories in Figure 3 also identify the basin of attraction of each attractor: in
fact all trajectories starting above [below] the stable manifold of the saddle tend
toward the limit cycle γ [the equilibrium C].



The study of the stability of equilibria can be done through linearization
of the dynamical system at equilibrium points, that is, by approximating the
behavior of the system in the vicinity of an equilibrium x̄ through the linear
system d/dt(x − x̄) = ∂f/∂x|x=x̄(x − x̄). This way, it is possible to study the
stability of x̄ by looking at the eigenvalues λi, i = 1, . . . , n of the Jacobian matrix
∂f/∂x|x=x̄. If all the eigenvalues have negative real part then the equilibrium
is stable, while if at least one eigenvalue has positive real part the equilibrium
is unstable. Similarly, the stability of limit cycles can be analyzed through lin-
earization of the (n−1)-dimensional discrete-time dynamical system whose state
is defined by the intersections of the system trajectories close to the limit cycle
with a given transversal manifold (the so-called Poincaré section). Whenever
these intersections converge to the equilibrium at which the cycle intersects the
manifolds the limit cycle is stable, otherwise is unstable.

4.2 Structural Stability and Bifurcation Analysis

The goal of the structural stability analysis is the study of the asymptotic be-
havior of parametrized families of dynamical systems of the form:

ẋ = f(x(t),p) (9)

where p is a vector of parameters.
If a parameter is slightly perturbed, by continuity the position and form of the

asymptotic behaviors of trajectories, namely attractors, saddles, and repellors,
are smoothly affected (e.g., an equilibrium might slightly move or a limit cycle
might become slightly bigger or faster), but all trajectories remain topologically
the same (e.g., stable equilibria and cycles remain attractive). In regions of the
domain of p in which this continuity holds, the system is structurally stable. The
above continuity argument fails at particular parameter values called bifurcation
points [7], which correspond in state space to collisions of attractors, saddles, and
repellors. Thus, the robustness of the dynamical characteristics of the system,
as summarized by the state portrait, depends on how far the parameters are
from bifurcation points. A thorough robustness investigation therefore requires
to produce the catalog of all possible modes of behavior of the system family,
i.e., its complete bifurcation analysis. An exhaustive review of bifurcation theory
is certainly beyond the scope of this paper. In the following, we focus on three
types of bifurcations involving a single parameter p that are relevant for the case
study in Sec. 4: saddle-node, Hopf, and homoclinic bifurcations.

The saddle-node bifurcation corresponds to the collision, at a critical value
p∗, of two equilibria: a stable node N (i.e., a stable equilibrium characterized by
real eigenvalues of the linearized system) and, in its simplest two-dimensional
formulation, a saddle S (Fig- 4-top). For p < p∗, N has two negative eigenval-
ues, while the eigenvalues of S are one positive and one negative. For p > p∗ no
equilibrium is present, so that at the bifurcation point p = p∗ the largest eigen-
value of N and the smallest eigenvalue of S both vanish. In short, a saddle-node
bifurcation can be identified by the change of sign of one of the eigenvalues of an
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Fig. 4. Example of saddle-node (top), Hopf (mid) and homoclinic (bottom) bifurcations
in a two-dimensional dynamical system.

equilibrium when a parameter p is varied. Geometrically, two equilibria, which
are non necessarily a node and a saddle in higher-dimensional systems, collide
and disappear as p crosses the bifurcation.

The second type of bifurcation, the Hopf bifurcation, involves the appearance
of limit cycles. With reference to two-dimensional systems, if a focus, that is
an equilibrium with two complex conjugate eigenvalues, is stable for p < p∗

and becomes unstable at p = p∗, then a stable limit cycle γ may appear for
p > p∗ (the so-called supercritical case, see Figure 4-mid). But the cycle may
also be unstable and surround the stable focus for p < p∗ (subcritical case)
and the distinction between the two cases depends upon the nonlinear terms
in the expansion of the function f in Eq. 8 and is typically implemented in
software packages for numerical bifurcation analysis [3, 7]. In both cases, however,
the cycle is small for p close to p∗, so that the Hopf bifurcation can be seen
geometrically as the collision of a vanishing cycle with a focus. Moreover, the
pair of complex conjugate eigenvalues cross the imaginary axis of the complex
plane at the bifurcation, thus changing the stability of the equilibrium.

Finally, the homoclinic bifurcation is characterized by the collision of a limit
cycle and a saddle (Figure 4-bottom). When p approaches p∗, the cycle γ gets
closer to saddle S, so that the period of the cycle diverges, since the state of the
system moves very slowly when close to S. At the bifurcation (p = p∗) the cycle



touches the saddle and collides with its stable and unstable manifolds which
coincide at the bifurcation. The identification of a homoclinic bifurcation cannot
rely on the analysis of eigenvalues but involve the global behavior of the system.
For this reason, the homoclinic bifurcation is classified as a global bifurcation, in
contrast with local bifurcations that can be detected through eigenvalue analysis.

Whenever a perturbation of the parameter from p to p+∆ (p < p∗ < p+∆)
triggers a transient toward a macroscopically different asymptotic regime (i.e., a
different attractor), the bifurcation at p∗ is called catastrophic. By contrast, if the
catastrophic transition is not possible, the bifurcation is called noncatastrophic.

Although one might hope to detect bifurcations by simulating the system for
various parameter settings and initial conditions, saddles, which have a funda-
mental role in bifurcation analysis, cannot be studied just through simulation.
In fact, any small approximation introduced by the numerical scheme of inte-
gration would lead to trajectories that miss the saddle and go away from it
along its unstable manifold. Moreover, the “brute force” simulation approach is
never effective and accurate in practice, since bifurcations are often related to a
loss of stability of equilibria and cycles, so that the length of simulations need
to be dramatically increased while approaching the bifurcation. This is why the
proper tools for numerical bifurcation analysis are based on continuation (see [7],
Chap.10 and [3]), a simulation-free numerical method which locates bifurcations
by continuing equilibria and cycles in parameter space, that is by studying their
position in the state space when the parameter is changed.

5 Bifurcation Analysis on the Selten’s Horse Game

In the following, we illustrate the results of the bifurcation analysis on the Sel-
ten’s horse game [4] (named from its inventor and from the shape of its tree).
This game, commonly adopted in GT for the study of sequential equilibria, is
particularly suitable for our analysis because (i) it involves more than two agents,
(ii) it is an extensive form game and (iii) one agent has imperfect information
about the state of the game. All these factors of complexity lead to the definition
of a complex learning system exhibiting interesting dynamics. At the same time,
the game is simple enough to allow an intuitive analysis of its dynamics and a
detailed bifurcation analysis on one of the payoffs.

5.1 Learning Dynamics in the Selten’s Horse Game

The Selten’s horse game [4] (Fig. 5-left) is an extensive form game with imperfect
information involving three agents with two actions each (Ai = {li, ri}, i =
1, 2, 3). While both agents 1 and 2 have perfect information about the state of
the game, agent 3 cannot distinguish the state in which it plays (dotted line in
the figure), that is, she is characterized by a single information set containing the
two decision nodes where she plays. According to Definition 4, the game has a
unique sequential equilibrium strategy (r1, r2, r3) (we omit the derivation for lack
of space). On the other hand, as one can easily verify, in the equivalent normal
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Fig. 5. Selten’s Horse game and payoff tables of the equivalent normal form game.
Parameter p is set to 5 in the original configuration of the game.

form game (Fig. 5) there are two Nash equilibria (r1, r2, r3) and (l1, r2, l3) (in
bold in payoff tables), while there are no mixed equilibria. The joint strategy for
this game is the vector x = (x1,x2,x3), where xi = (xi1, xi2) (being xi2 = 1−xi1)
is the strategy of agent i. Strategy xi = (1, 0) corresponds to action li, while
xi = (0, 1) is action ri.

In the following, we analyze the dynamics of the strategies when all the agents
learn through Q-learning. As discussed in Section 3, for the study of the learning
process, we derive the dynamical system defined by the replicator dynamics for
x11, x21 and x31 as defined in Eq. 7, where

P1 =

[

4 1 4 1
5 2 3 3

]

P2 =

[

4 1 p 2
4 1 3 3

]

P3 =

[

4 4 0 0
1 1 2 0

]

are the payoff matrices, where p is equal to 5 in the original setting.
The replicator dynamics is bounded in the open 3-dimensional cube of the

state space (x11, x21, x31) (the other three variables can be eliminated as xi2 =
1 − xi1). The faces of the cube cannot be reached due to the exploration log-
arithmic terms in Eq. 7. The sequential equilibrium (r1, r2, r3) corresponds to
point (0, 0, 0) in the state space, while the other Nash equilibrium is (1, 0, 1).

Let us first consider the dynamics of the system in its original settings (panel
5 in Fig. 7). Although the equivalent normal form game has two Nash equilibria,
the learning process converges to a point close to the sequential equilibrium.
Starting from any initial joint strategy, the trajectories of the system reach a
globally stable equilibrium close to the joint strategy (r1, r2, r3). This would be
the expected solution from a game theoretical perspective, since (r1, r2, r3) is the
unique sequential equilibrium in the game. At the opposite, the learning dynam-
ics continues and, because of the residual exploration of the agents converges to
a different equilibrium point. By exploring action l2, agent 2 allows agent 3 to
play r3 and obtain a payoff greater than 0 (the payoff of agent 3 at the sequential
equilibrium). Then, agent 3 takes advantage by mixing her strategy toward l3,
since this tempts agent 2 to play l2 more frequently. In fact, the payoff of agent
2 for action l2 is a weighted average between 5 and 2 depending on the agent
3 mixed strategy (Fig. 5), and the result can be greater than 3 (the equilib-
rium payoff). This is possible because of the payoff for agent 2 in (r1, l2, l3) is
sufficiently high, while this scenario is likely to change for lower values of the



Fig. 6. Bifurcation diagram of the learning system. The curve identifies the number of
equilibria and the value of their x31 component for each value of p in the considered
range. The shaded area represents the x31 excursion along a family of stable limit
cycles present in interval 3. Vertical dotted lines indicate bifurcation points (SN1,SN2:
saddle-node, HO: homoclinic; H: Hopf). Dashed and solid parts of equilibrium curve
distinguish unstable and stable equilibria (e.g., one stable and two unstable equilibria
characterized by increasing value of x31 are present in interval 4). Parameter values:
α = 0.3, τ = 0.6. Diagram obtained through the software package Matcont [3].

payoff. This means that, from this preliminary analysis, the system is expected
to preserve structural stability only for a limited range of values of the payoff (in
the following parameter p) and to possibly show complex dynamics otherwise.
This is the reason for the following bifurcation analysis with respect to p.

5.2 Bifurcation Analysis

The bifurcation analysis of the learning system is reported in Fig. 6 (for vari-
able x31) and Tab. 1 and identifies five qualitatively different learning dynamics
corresponding to five intervals of p (the learning dynamics are shown in Fig. 7).
As discussed in Section 4, the identification of the bifurcations cannot be done
by simulating the system for different values of p. A complete bifurcation anal-
ysis needs the continuation of equilibria and cycles in parameter space and the
identification of the parameter values in which the system looses its structural
stability.

The analysis starts with p = 5, the value in the original game setting, at
which, as already discussed in Sec. 5.1, the system is characterized by a globally
stable equilibrium close to (0, 0, 0). The numerical continuation of this equilib-
rium with respect to p allows to track its position for different parameter values
and produces the curve in Fig. 6. By decreasing p from its original value, the
equilibrium moves away from (0, 0, 0). In fact, in order to tempt agent 2 to play
l2, agent 3 is forced to mix her strategy more and more toward l3, but so doing
she vanishes her own return. Similar considerations can be made for x11 and x21.



Parameter Bifurcation

p1 = 3.04651 SN1
p2 = 3.06392 H
p3 = 3.07235 HO
p4 = 3.17361 SN2

Interval Equilibria Limit Cycles

[1] p < p1 1 globally stable -
[2] p1 ≤ p < p2 2 stable, 1 saddle -
[3] p2 ≤ p < p3 1 stable, 2 saddles 1 stable
[4] p3 ≤ p < p4 1 globally stable, 2 saddles -
[5] p ≥ p4 1 globally stable -

Table 1. Bifurcation analysis of the replicator dynamics with respect to parameter p.

Further reductions of p are less easy to interpret on an intuitive ground, also be-
cause a different mix of Nash/sequential pure/mixed equilibria might arise, and
this is indicative of impending dynamical complexity. In fact, the first bifurcation
is encountered at p = p1 (SN1), a saddle-node bifurcation at which the equilib-
rium collides with a saddle and they both disappear for p < p1. Notice, however,
that the equilibrium is not globally stable in intervals 2 and 3, since three more
bifurcations occur for p1 < p < 5, but involve other equilibria of the system and
are therefore initially unnoticed by the local continuation of the equilibrium.
The continuation direction reverts at a saddle-node bifurcation, so that we now
continue the saddle for increasing values of p. The first encountered bifurcation
is another saddle-node (SN2) at p=p4, approaching which one of the two stable
eigenvalues of the saddle vanishes, as well as one of the two unstable eigenvalues
of another saddle, characterized by only one stable eigenvalue. The two saddles
collide at the bifurcation and do not exist for p > p4, while the continuation
proceeds by tracking the new saddle for decreasing values of p. The two unstable
eigenvalues are real close to p4, but become complex (saddle-focus) somewhere
before the Hopf bifurcation (H) detected at p=p2. The Hopf is supercritical, so
that a family of stable limit cycles can be continued for increasing values of p
starting from p=p2 (shaded area in Fig. 6). The saddle-focus becomes stable by
crossing the bifurcation and its continuation to lower values of p does not point
out new losses of structural stability. Moreover, the equilibrium becomes globally
stable for p < p1 and x31 approaches 1 as p is further reduced. At the same time,
x11 and x21 approach 1 and 0, respectively, so that the equilibrium approaches
(1, 0, 1), i.e., the other Nash equilibrium of the original game. In particular, it
is easy to verify that (1, 0, 1) is Nash for all p and can be shown to be the only
sequential equilibrium for p sufficiently small. Finally, increasing p from p=p2,
the family of limit cycles is interrupted by an homoclinic bifurcation (HO) at
p=p3, where the cycle gets in contact with the saddle originated at (SN1).

All together, the bifurcation analysis shows that the learning dynamics are
dominated by two sequential equilibria, (0, 0, 0) for large values of p and (1, 0, 1)
for small values of p, in the sense that close to them there is an equilibrium of
the learning dynamics (the lower [upper] equilibrium in Fig. 6 for large [small]
p) which attracts all initial conditions (see intervals 1 and 5 and in particular
interval 4 where, though the presence of two saddles, all trajectories, except those
composing the saddle stable manifolds, converge to the stable equilibrium). The
switch from one equilibria to the other as p is varied involves two catastrophes :
the homoclinic bifurcation for increasing values of p (HO) and the saddle-node



Fig. 7. Learning dynamics for five different values of p (3.0, 3.05, 3.07, 3.1, 5).

(SN1) for decreasing values of p. In particular, in the first case, the learning
dynamics follow the family of limit cycles. The period of the cycle diverges as
the bifurcation is approached and the joint strategy remains for most of the time
very close to the saddle, at the point that finite-time simulations can erroneously
reveal convergence to a stable equilibrium. Crossing the bifurcation, the cycle
suddenly disappears and the dynamics converge to the lower equilibrium.

Finally notice that in intervals 2 and 3 the system has two alternative at-
tractors, two equilibria in 2 and an equilibrium and a cycle in 3. The attractor
which is reached by the learning process depends on the initial joint strategy
and the saddle (actually its stable manifold) delimits the two attraction basins.

6 Conclusions and Future Works

In this paper we applied bifurcation analysis to the study of Q-learning mul-
tiagent dynamics in the continuous-time limit provided by the replicator dy-
namics of evolutionary game theory. A preliminary one-parameter analysis of
the Selten’s Horse game is presented as a case study. The first result of the
analysis is that in extensive form games with imperfect information Q-learning
may exhibit complex learning dynamics, including multiple stable equilibria and
periodic non-convergent attractors. Furthermore, the analysis pointed out that
Q-learning is not robust to payoff perturbations and that the corresponding dy-
namical system looses stability in four different bifurcation points. In particular,
at the two catastrophic bifurcations, small variations of the payoff correspond
to radically different asymptotic regimes, thus leading the three agents to signif-
icantly change their strategies. In general, we showed that bifurcation analysis



can be an effective way to study the structural stability of learning systems
and that it could also be used to compare the robustness of different learning
algorithms.

Although the bifurcation analysis presented in the paper focused on a struc-
tural parameter (i.e., a payoff), the same analysis can be carried out when learn-
ing parameters are varied, and this could lead to useful suggestions about pa-
rameter settings. A preliminary joint analysis with respect to the payoff p and
the exploitation factor τ showed that for low values of τ (high exploration) the
bifurcation points disappear and the system is globally structurally stable, while
for high values of τ (low exploration) the system becomes more robust to payoff
perturbations as the regions of structural stability become larger.

In general, we believe that this novel, though preliminary, analysis opens
interesting scenarios for a more complete investigation of the dynamics of mul-
tiagent learning systems. Future efforts will be devoted to: (i) the development
of a replicator dynamics model more compliant to learning algorithms (e.g.,
decreasing learning rates and exploration factors), (ii) two parameters bifur-
cation analysis (e.g., a joint analysis with respect to learning and structural
parameters), (iii) study of more complex games (e.g., signaling game, bilateral
negotiations, auctions).
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