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Abstract

Q-learning is one of the most popular reinforcement learning methods that allows an agent to learn the relationship between
interval-valued state and action spaces, through a direct interaction with the environment. Fuzzy Q-learning is an extension to this
algorithm to enable it to evolve fuzzy inference systems (FIS) which range on continuous state and action spaces. In a FIS, the
interaction among fuzzy rules plays a primary role to achieve good performance and robustness. Learning a system where this
interaction is present gives to the learning mechanism problems due to eventually incoherent reinforcements coming to the same
rule due to its interaction with other rules. In this paper, we will introduce different strategies to distribute reinforcement to reduce
this undesired effect and to stabilize the obtained reinforcement. In particular, we will present two strategies: the former focuses on
rewarding the actions chosen by each rule during the cooperation phase, the latter on rewarding the rules presenting actions closer
to those actually executed rather than the rules that contributed to generate such actions.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Fuzzy systems; Fuzzy Q-learning; Reinforcement learning; Reinforcement distribution

1. Introduction

Fuzzy Q-learning is an approach to learn a set of fuzzy rules by reinforcement. It is an extension of the popular
Q-learning [1] algorithm, widely used to learn tabular relationships among states, described by a finite number of
values for each variable, and discrete actions. Learning fuzzy rules makes it possible to face problems where inputs
are described by real-valued variables, matched by fuzzy sets, and also actions are real-valued. Fuzzy sets play the
role of the ordinal values used in Q-learning, thus making possible an analogous learning approach, but overcoming
the limitations due to the interval-based approximation needed by Q-learning to face the same type of problems.
The partial overlapping among close fuzzy sets covering the range of each variable, although suitable for improving
robustness, smoothness, and many other desired characteristics of fuzzy inference systems (FIS), induces problems
for the evaluation of the contribution of the single rules, since each of them is activated in turn with different rules,
and may obtain from this collaboration [2] different reinforcements. This may result in an incoherent reinforcement
assignment which makes convergence more difficult. Thus, reinforcement distribution becomes a relevant issue in the
definition of fuzzy Q-learning.

In this paper, we propose a new reinforcement distributionmethod for fuzzyQ-learning that gives better performances
than the traditional one when the domain is described by a large number of fuzzy sets, and that combines favorably
with the traditional one when equivalently optimal actions are possible.
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The paper is structured as follows: the next section describes the main results about the use of function approximation
techniques in reinforcement learning (RL) algorithms, with particular attention to methods based on the fuzzy theory.
Section 3 introduces the basic notation of the RL framework and the FIS with particular attention to the problem of
function approximation. Section 4 describes in detail the main phases of the fuzzy Q-learning algorithm. Two different
strategies for reinforcement distribution are formally defined in Section 5. Their main differences are discussed in
Section 6 and highlighted by experimental results presented in Section 7. In the last section we draw conclusions and
propose new directions for future research activities.

2. State of the art

RL is a learning paradigm that has become the standard framework in machine learning for designing agents able
to learn how to behave optimally in uncertain environments. An agent performing RL gets no direct information about
the optimal control strategy, but simply receives instantaneous reinforcement signals. In its simplest form, it is based
on the idea that, if an action is followed by a reward (i.e., an “improvement” in the state of affairs), then the tendency
to produce that action is reinforced; otherwise, the tendency to produce that action is weakened [3,4]. The objective is
to find a policy, a function that maps the states of the system to actions, that maximizes the utility in each state of the
environment. It is often considered that the utility is the expected sum of the reinforcements collected from a state on.
This requires the computation of the action-value function Q(s, a), that is the expected sum of reinforcements starting
from a state s and taking an action a.

2.1. Function approximation in RL

Most of the RL algorithms [5] represent the action-value function as a look-up table with one entry for each state–
action pair. While this approach has strong theoretical foundations [6–9] and is effective in many applications, it is a
severe limitation when applied to problems characterized by large state and action spaces or with continuous domains,
due to the phenomenon called curse of dimensionality [5]. Several approaches try to overcome this problem by applying
function approximation so as to approximate the action-value function with few parameters. Therefore, the agent can
experience only a limited subset of the state space and then, through generalization, can produce a good approximation
on a larger portion of the state space.

The problem of building a function approximator from a set of input–output mappings has been extensively studied
by supervised learning [10]. However, function-approximation and generalization in RL are harder to implement than
in supervised learning, because the training data are not given in advance by a trainer, but are in part determined by
the output of the learned function. Since learning must occur on-line, while interacting with the environment, not all
function-approximation methods used in supervised learning are well-suited for use in RL.

State aggregation is one of the most-studied function approximators in which subsets of the original state space are
aggregated, thus reducing the size of the state space. Several algorithms use multiple overlapping partitions of the state
space so that the value function is approximated by a linear combination of the values in each partition. Many learning
algorithms [11,12] are based on a multigrid approach that uses partitions with different resolutions to speed-up the
learning process. Another solution is the introduction of soft-state aggregations [13], in which states are soft clustered.
Most of the state-aggregation approaches suffers from two problems. First of all, it may turn necessary to partition the
state space into tiny regions in order to solve the problem, thus obviously reducing the advantages of the aggregation.
Moreover, the criterion used to partition the state space is crucial in order to obtain an effective approximation of the
value function over all the state space. Nonetheless, when there are no clues about how to divide the state space (e.g.,
knowledge about the shape of the function), uniform partitioning is commonly used, and this may result in a huge set of
input features. Multiple overlapping partitions, called tilings, are also used in CMAC (or tile coding) [14]. The shape of
the tilings determines the nature of the generalization. The generalization is mainly affected by the size and the shape of
the tilings, while the resolution, that is the finest discrimination available, depends on the total number of tilings. radial
basis functions (RBFs) are the natural generalization of tile coding to continuous state space [15,16]. Each tiling is no
longer associated to a binary activation value, but it can take any value in the interval [0, 1]. The primary advantage of
RBFs over binary activations is that they produce approximate functions that are smooth and differentiable. The main
drawbacks of RBF networks are in their great computational complexity and in the fact that they often require long
manual tuning in order to make the learning robust and efficient.
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In many real applications, the agent has to choose actions very precisely in the action domain. Nonetheless, while
the previous approaches are suitable for continuous state space, the problem of continuous action spaces received less
attention. Most of the proposed solutions adapt the techniques used for state spaces to action spaces [17–19].

2.2. Fuzzy systems in RL

FIS have been widely adopted as function approximators for RL problems, in particular in conjunction with
Q-learning [20].

Bellman and Zadeh [21] introduced the first method for decision making in fuzzy environments, which is defined
by fuzzy goals and fuzzy constraints. The basic idea behind this method is that a decision is given by the confluence of
goals and constraints. Since then, a large variety of algorithms for decision making under fuzzy goals and constraints
have been developed [22,23].

Glorennec [24] and the extension proposed by Jouffe [25] provided a fundamental contribution in the definition
of fuzzy Q-learning, that is the basis for many of the existing implementations. In this approach, agents represent
different (predefined) rule bases that are evaluated by Q-values. In a given state the approach selects the agent whose
active rules have the largest Q-values. This agent may then execute the action proposed by its rule base. Afterwards,
the Q-values of this agent are updated. Berenji and Khedkar [26] introduced the Generalized Approximate Reasoning
based Intelligent Control (GARIC) architecture, an extension of this approach. The GARIC system can be considered
as an actor–critic approach, where both the actor and the critic are represented by neural networks. The structure of
the actor network simulates the behavior of a Mamdani fuzzy controller. By adapting the weights of the actor network
the parameters of the corresponding Mamdani controller are tuned. In this framework each agent represents a GARIC
system and both the Q-values and the rule base of the active agent are adapted after the execution of an action. Beom
and Cho [27] presented a fuzzy actor–critic approach that can be considered as a fuzzy extension of the actor–critic
method. Interesting ideas come from Gu and Hu [28], in which they expose a Jouffe-like fuzzy Q-learning, called
accuracy-based fuzzy Q-learning, in which the consequent part of the rules takes into consideration the variation of
the parameter, which is then used as fitness value of the rule for a genetic algorithm that modifies the actions available
in each rule.

Horiuchi et al. [29] presented a fuzzy Q-learning algorithm for continuous state and action spaces. In their approach
the (continuous) Q-function is represented by a Takagi–Sugeno FIS and it can be used also in conjunction with a genetic
algorithm for the generation of suitable discrete action space [30]. Dai et al. [31] proposed a system composed by a
neural network that computes the action-value function, a FIS with one output per rule that interpolates the optimal
action function, and a stochastic action modifier that changes dynamically the output of the rules in order to find the
most appropriate ones.

In [32–34], Meng Joo Er and Chang Deng present a version of fuzzy Q-learning that adapts the representation of
the fuzzification called Dynamic Fuzzy Q-learning (DFQL). This method is based on the one proposed by Jouffe [25]
and focuses on the domain representation: beside the ability of tuning the system parameters on-line, the algorithm is
capable to self-organize itself on-line so that structure and parameters identification are accomplished automatically
and simultaneously based only on Q-learning. The fuzzification of the domain is accomplished by a RBF network that
is initialized with few RBFs and progressively grows when there are regions in the state space that are not covered
“enough”, or when themoving average of the quadratic temporal error is greater than a certain threshold. Other methods
for identifying the position and the widths of newRBFs are proposed in [35] where the distribution of the approximation
error throughout the space is considered.

3. Formalization of fuzzy RL

In this section we formalize the problem of function approximation in RL and we introduce FIS.

3.1. Reinforcement learning

In this section we introduce the notation of RL and we focus on the problem of approximating the action value
function when a tabular approach cannot be used (e.g., in problems with continuous state and action spaces). Finally,
we introduce FIS as a mean for function approximation.
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3.1.1. Markov decision processes
In a RL problem, the environment and its interaction with an agent are formally defined as a finite Markov decision

process (MDP), characterized by:

• a state space S,
• an action space A,
• a state transition function P : S ×A× S → [0, 1],
• a reward function R : S ×A→ R,

where the transition function P(s, a, s′) gives the probability to get from s to s′ by taking action a and the reward
function R(s, a) gives the agent a reinforcement signal for the state–action pair (s, a). The goal of the agent is to learn
the policy (i.e., the best sequence of actions) that is optimal according to a specific evaluation criterion. In case of
infinite horizon MDPs, the most used criterion is the expected sum of discounted rewards accumulated in time:

E[rt+1 + �rt+2 + �2rt+3 + · · ·] = E

[ ∞∑
k=0

�krt+1+k

]
where � ∈ [0, 1) is the discount factor that weights the relevance of future rewards with respect to recent ones. A
policy is defined as a function � : S × A → [0, 1], that maps each state–action pair (s, a) to the probability to take
action a when in state s. The value function V �(s) is defined as the sum of discounted rewards when following policy
� and represents the utility of each state. For any MDP, there exists at least one deterministic optimal policy (�∗) that
maximizes the expected sum of discounted rewards. The optimal policy is defined as the greedy policy with respect to
the optimal value function V ∗(s), defined by the recursive Bellman equation [36]:

V ∗(s) = max
a

[
R(s, a)+ �

∑
s′

P(s, a, s′)V ∗(s′)

]
(1)

Besides the value function V (s), it is possible to define also the optimal action-value function Q∗(s, a) that maps
each state–action pair to the highest expected sum of discounted rewards that can be obtained by taking action a in

Algorithm 1. The Q-learning algorithm
Initialize Q(s, a) arbitrarily
for all episode do
Initialize st

while st is not terminal do
at ← �(st )
Take action at ; observe r t+1 and st+1
Q(st , at )← Q(st , at )+ �[r t+1 + �maxa′ Q(st+1, a′)− Q(st , at )]
t ← t + 1

end while
end for

state s and following the greedy policy thereafter. The Bellman equation for the action-value function is

Q∗(s, a) = R(s, a)+ �
∑
s′

P(s, a, s′) max
a′

Q∗(s′, a′) (2)

The optimal policy is defined as the greedy action in each state: �∗(s) = arg maxa Q∗(s, a). Both versions of the
Bellman equations can be solved using dynamic programming algorithms such as policy iteration and value iteration
[37], but both the transition model and the reward function are required to compute the optimal value functions.

3.1.2. Q-learning
Unlike dynamic programming algorithms, RL algorithms such as Q-learning and SARSA [5] can iteratively estimate

the optimal action-value functionwithout any information about transition probabilities and rewards. In particular, when
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the state and action spaces are discrete, Q-learning [38] (Algorithm 1) enables the agent to compute the optimal action-
value function by a direct interaction with the environment. When the agent takes action a in state s, receives a reward
r = R(s, a) and gets to state s′, the estimation of the action-value function is updated as

Q(s, a)← (1− �)Q(s, a)+ �(r + �max
a′

Q(s′, a′)) (3)

where � ∈ [0, 1] is a learning rate. Q-learning is proved to converge to the optimal action-value function under very
loose hypotheses on the learning rate, derived from stochastic approximation convergence theorem [39], and under the
hypothesis that each state–action pair is visited infinitely often.

The performance of Q-learning, and of most of the RL algorithms, is strongly influenced by the way the agent
faces the exploration–exploitation dilemma. In fact, at each time instant the agent has to exploit what it has already
learned in order to obtain high rewards, but at the same time it also has to explore the environment in order to discover
unexplored and potentially more rewarding regions of the state space. Therefore, the agent must continue to explore
different actions, but progressively favor those that are estimated to be the best. For each state s, the estimation of the
quality of an action a is stored in the corresponding action value Q(s, a).

One of the most simple and frequently used exploration strategy is the �-greedy [5]. According to this strategy, with
probability 1 − �, the action with highest action value is chosen, and with probability � the agent takes one action at
random. Typically the value of � decreases in time, so that the more the agent learns, the greedier its behaviour is.

3.1.3. Function approximation in RL
In problems characterized by continuous state and action spaces,Q-learningmust be used in conjunctionwith function

approximators in order to approximate the action-value function. Starting from the solutions adopted in supervised
learning, many function-approximation techniques have been widely adopted in RL problems 1 to face domains with
high dimensionality or continuous spaces. However, the application of function approximation in RL is more complex
than in supervised learning, because the training data are not given in advance by a trainer, but determined by the value
function currently estimated.

The goal of function approximation is to approximate the function V ∗ with the estimate V̂ t (s, ht ), which is of the
continuous state s and of a set of parameters ht . The approximation error is usually defined as the Mean Squared Error
(MSE), and the best values for the parameters are those which minimize the MSE over a distribution P:

MSE(ht ) =
∑
s∈S

P(s)[V ∗(s)− V̂ t (s, ht )]2 (4)

where P weights the error with the frequency of visit to each state s. The most straightforward technique for the
minimization of the error is the gradient descent: each parameter of ht is updated in the direction of the maximum
effect achievable, i.e., along the gradient direction. The gradient Ght f (h

t ) of a function f is the vector of the partial
derivatives Ght f (h

t ) = {
� f (ht )/��t1, . . . , � f (ht )/��tN

}
.

Since RLworks on-line, the parameters are updated as soon as a sample of the value function is available. The update
of ht with gradient descent method applied to the error function is

ht+1 = ht − 1
2�Ght [V

∗(s)− V̂ t (s, ht )]2 = ht − �[V ∗(s)− V̂ t (s, ht )]Ght V̂
t (s, ht ) (5)

where � is a learning rate.
Unfortunately, in RL no sample of the optimal action-value function is actually available. Thus, at each time instant,

the update rule derived from the gradient descent becomes

ht+1 = ht − �[R(s, a)+ �V (s′)− V̂ t (s, ht )]Ght V̂
t (s, ht ) (6)

While this update rule has been successfully used with many functions in some relevant applications [42,14], several
studies [43–46] showed that it may lead the approximator to unpredictable results and, in some cases, to divergence.
Generally, function approximation in problemswith continuous state space requires long hand-tuning in order to achieve
good solutions.

1 For a detailed review about function approximation in RL we refer the reader to Chapter 2 from [40] and Chapter 5 from [41].
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3.2. Fuzzy inference systems

A FIS is a set of rules, each of which infers fuzzy propositions (consequent) given the evidence of other fuzzy
propositions (antecedent). In this paper we refer to the Tagaki–Sugeno FIS:

R1 : IF x is X1 THEN y = p(n)1 (x)

R2 : IF x is X2 THEN y = p(n)2 (x)
...

RN : IFx is XN THEN y = p(n)N (x) (7)

where “x is Xi” is a proposition with fuzzy variable x taking values in X and Xi modelled by a fuzzy set defined on
the universe of discourse X by its membership function �Xi

(x). 2 The output function p(n)(x) is a polynomial function
of x of order n defined by a vector of M+1 parameters Pn = {p0, . . . , pM }: if n = 0, the output is a constant p0, if
n = 1, the output is a linear combination p0 + p1x1 + · · · + pMxM , and so on. In the following, we will refer to the
case with n = 0 that can be seen also as a particular (and quite common) Mamdani FIS, with singleton membership
functions for the output fuzzy sets.

FISs can be used to define a function f̂ : X→ R mapping a N-dimensional input domain X = X1 × · · · × XN to
real numbers. In the following, we assume that a fuzzy partition is defined over X, so that each dimension Xk of the
state space has nXk fuzzy sets defined on it. Thus, we call �X ik

the membership function of the ik th fuzzy set X ik
on

the kth variable Xk , where ik = 1, . . . , nXk . The fuzzy sets belonging to the partition are the premises of a FIS. The
FIS is a black box in which crisp values x enter and from which crisp values f̂ (x) come out.

In general, the rules that compose the FIS are in the form

R
j1,. . ., jN : IF x1 is X j1 AND . . . AND xN is X jN

THEN y = p(n)
j1,. . ., jN

(x) (8)

where p(n)
j1,. . ., jN

(x) is the polynomial function defined by the order n and the parameters Pn
j1,. . ., jN

associated to the
ruleR

j1,. . ., jN .
The premises of the fuzzy rules give the “fuzzy coordinates” of a region in the state space. The rule R

j1,. . ., jN
covers the region of the intersection (with respect to a T-norm) of the j1th membership function �� j1

(x1) defined on the
first variable X1, with the jN th membership function �X jN

(xN ) defined on the last variable XN . When the crisp input

x = {x1, . . . , xN } is presented to the system, its matching degree with respect to all the fuzzy sets is computed and
used to activate the corresponding rules. The premises of the active rules have the degree of truth given by the T-norm
applied in x. In particular, in this paper we adopt the product as T-norm and we obtain

	
j1,. . ., jN (x) =

N∏
i=1

�X ji
(xi ) (9)

Then the output of each rule is computed and defuzzified. The defuzzification is a mapping from the fuzzy output
of the FIS to a real value, which is the final crisp output f̂ (x). In a Takagi–Sugeno FIS the steps of overall output
generation and defuzzification are usually computed all at once: when the outputs of each rule are available, they are
summed up and normalized by the sum of all 	

j1,. . ., jN (x). Since, in each rule, the single output is obtained by scaling

the consequent evaluated in x, p(n)
j1,. . ., jN

(x), by the factor 	
j1,. . ., jN (x), the overall computation of the final crisp output

can be viewed as the mean of the consequents over the 	
j1,. . ., jN (x):

f̂ (x) =
∑

j1,. . ., jN p(n)
j1,. . ., jN

(x)	
j1,. . ., jN (x)∑

j1,. . ., jN 	
j1,. . ., jN (x)

(10)

2 In general, each rule is described also by a membership function �R(x, y) that gives the degree of reliability of the rule. In this paper, we consider
the reliability to be a constant equal for all the rules.
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Fig. 1. Each fuzzy rule produces an output that is its matching degree multiplied by the value of its consequent. The final result is an interpolation
between consequents. The kind of interpolation is bounded to the shape of membership functions and, depending on the function to be approximated,
it could be more (left) or less reliable (right).

When n = 0, the expression of f̂ (x) becomes

f̂ (x) =
∑

j1,. . ., jN p
j1,. . ., jN [

∏N
i=1 �X ji

(xi )]∑
j1,. . ., jN [

∏N
i=1 �X ji

(xi )]
(11)

Since the Takagi–Sugeno FISs can be used to represent a function, they can be profitably used to approximate a
given function f (x) by changing the values of the consequents. Tuning appropriately Pn

j1,. . ., jN
, the parameters of the

different p(n)
j1,. . ., jN

(x), it is possible to manipulate, within the limits imposed by the structure of the fuzzification of the

domain, the shape of the function f̂ (x) so that it is a good approximation of f (x). In this way, it could be possible to
represent a function with a small number of parameters (Fig. 1-left). Conversely, since the computation is not point-wise
but generalized over a region, the approximation can be rough (Fig. 1-right). According to the definition of MSE in
Eq. (4), we can consider as the best approximation the one that minimizes

MSE(ht ) =
∑
s∈S

P(s)[ f (x)− f̂ht (x)]
2 (12)

where parameters ht in this case are the values of the consequents.
The main issue in using FIS for function approximation in RL is about the process of minimization in order to tune

the consequences of the rules. Many methods have been studied in the past, especially in the framework of supervised
learning. In the following sections we will focus on the solutions that can be used to approximate the action-value
function in RL problems through Takagi–Sugeno FIS.

4. Fuzzy Q-learning

In the rest of the paper we will refer to zero-order Takagi–Sugeno FISs described in the previous section. In the RL
framework, the FIS is used tomap the state, represented as anN-dimensional real-valued domain X = X1×· · ·×XN , to
real-valued actions together with their estimated action values. In the following, we do not assume any particular choice
for the fuzzy partition defined over X, since the algorithm works independently from it. However, its performance is
affected by the quality of the particular structure, thus we will only assume that the partitioning is adequate to the
problem.
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On each dimension Xk of the state space nXk fuzzy sets are defined. Let �X jk
be the membership function of

the jk th fuzzy set X jk
on the kth variable Xk , where jk = 1, . . . , nXk . Each rule is associated to a set of n

j1,. . ., jN
possible discrete actions A

j1,. . ., jN = {a j1,. . ., jN ,1
, . . . , a

j1,. . ., jN ,n
j1,..., jN

} and to the related action values Q
j1,. . ., jN =

{q
j1,. . ., jN ,1

, . . . , q
j1,. . ., jN ,n

j1,..., jN
}, so that q

j1,. . ., jN ,i
is associated to the i th discrete action available in the rule

R
j1,. . ., jN . To simplify the notation, let us associate the set of indexes { j1, . . . , jN } of each rule to a numeric index

r = 1, . . . , nR , where nR is the number of rules. Thus, the rule R
j1,. . ., jN , the discrete actions a

j1,. . ., jN ,i
, and the

corresponding action value q
j1,. . ., jN ,i

simply become, respectively,Rr , ar,i and qr,i . The generic rule rmay be written
as follows:

Rr : IF x1 is X j1
AND . . .AND xN is X jN

THEN y = ar,1 with qr,1
OR

...

OR
y = ar,nr with qr,nr .

where the T-norm used to implement the AND operator and to compute the truth degree of the rule premise is the
product. At each time step, only one action for each active rule participates to the inference, while all the others remain
inactive.

4.1. Activation degree

When a crisp input xt enters the system at time t, all the rules Rr that cover a region to which xt partially belongs
are said to be partially active by a certain activation degree 	r . As stated above, the ruleRr is defined by the intersec-
tion of fuzzy sets along each dimension X j1

, . . . ,X jN
with truth degrees �X j1

(x1), . . . , �X jN
(xN ), and the T-norm is

implemented by the product. The activation degree of rule Rr is

	r (x
t ) =

∏
ji∈r

�X ji
(xi ) (13)

4.2. Action selection

Since the state domain is covered by a number of fuzzy sets, a generic point xt in the continuous state domain,
belongs with some degree to some of the fuzzy sets. We can equivalently say that an agent being in xt has fuzzy
(partial) presence in some of the fuzzy states and activates the corresponding rules. For each fuzzy state the agent is
partially in, it chooses a discrete action, that is, each active rule should infer a discrete action, and the overall executed
action in correspondence of xt is a composition of such discrete actions. The OR in the representation of the rule is
to be intended as exclusive and it stands for a local competition operator among possible actions of the same rule,
thus only one action per state is employed as effective consequent of the rule during the inference. As discussed in
Section 3.1.2, in each fuzzy state the agent choice must face the exploration–exploitation dilemma. For each rule the
expected reward of an action ar,i is its corresponding action value qr,i . According to the �-greedy exploration strategy,
in each rule the agent selects the best action (i.e., the one with highest action value) with probability 1 − � and a
random action with probability �. At the end of the action selection phase, for each active rule the agent has a winning
action ǎtr .

4.3. Continuous action computation

Once the degree of activation of the premises is computed and the action in each active fuzzy rule is chosen,
the rules must cooperate with each other in order to choose the unique continuous action At (xt ) that will be actu-
ally executed in xt at time t. The overall inference of the FIS is computed as the usual output of a Takagi–Sugeno
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Fig. 2. All the possible combinations of the discrete actions of the rules for every xt determine all the possible continuous actions. They are said
continuous because they vary smoothly with xt , but for a given value of xt , there is a finite set of possible values of At (xt ).

FIS (see Section 3.2), by doing a sum of the winning actions of each rule ǎtr weighted by corresponding activation
degrees 	r (x

t ):

At (xt ) =
∑nR

r=1 	r (x
t ) ǎtr∑nR

r=1 	r (xt )
(14)

where only the terms corresponding to the active rules are significant. In order to simplify the notation, we define the
normalized activation degree as


r (xt ) = 	r (x
t )∑nR

r=1 	r (xt )
(15)

Thus, Eq. (14) can be rewritten as

At (xt ) =
nR∑
r=1


r (xt )ǎtr (16)

Actually At (xt ) does not depend only on xt , as explicitly stated, but it depends also on the set of the winning actions
ǎtr for each active rule, ǎt , so by At (xt ) we actually mean A(xt , ǎt ).

It is worth noting that At (xt ) is a continuous action in the sense that, given the winning discrete actions, a continuous
variation of xt implies a continuous and smooth variation of At (xt ). On the other hand, this does not mean that in a
generic point xt all the values of a continuous action are available; indeed, all the possible combinations of consequents
of rules result only in a discrete set of possible actions, even if much richer than the sets of each rule (see Fig. 2). This
leads to the consideration that an adequate distribution of the discrete actions in each rule is fundamental in order to
have an adequate distribution of actions in all the points in the space.

4.4. Action value computation

While the computation of the continuous action is straightforward, the computation of its corresponding action
value is more complicated, since it is not obvious the best way to interpret it. The more simple approach in the
computation of the action values is to use a linear combination of the action values associated to the chosen ac-
tions. This is the approach followed by Jouffe in [25]. We call Q the continuous action value obtained with this
technique.



A. Bonarini et al. / Fuzzy Sets and Systems 160 (2009) 1420–1443 1429

On the other hand, we can observe that the value of the continuous action At (xt ) can be obtained by combinations
of different discrete winning actions. According to the definition ofQ, the action At (xt ) inherits its action value by the
particular set of discrete winning actions ǎtr at time t. If we choose all the discrete winning action sets that are able to
interpolate one of the intersection points cited above, then the resulting action At (xt ) is the same, but inferred action
value Q(xt , At (xt )) is different depending on the choice of the winning action set. Thus we can associate as many
Q-values to At (xt ) as the number of combinations of discrete actions that can interpolate At (xt ). By drawing a parallel
with traditional tabular Q-learning, this condition resembles the situation in which the Q-table has the same actions
repeated several times.

To avoid this replication of information that may lead to longer learning times, we propose a different strategy that
associates a unique action value to At (xt ). A way to achieve this result is binding every possible At (xt ) to a linear
combination of a uniquely identifiable set of discrete actions and consequently computing the associated action value. A
criterion for identifying uniquely a combination of discrete actions is choosing among the active rules the one proposing
nearest action to At (xt ). In other words, as explained in Section 5.2, we identify the features as the counterpart of the
executed action. We call Q the continuous action value obtained with this technique.

5. Different action-value estimation criteria

In the previous section, we provided a preliminary interpretation for the inference of the action values followed by
Jouffe, and then we introduced a different way to interpret the action value function Q(xt , At (xt )). In the following,
we describe both methods in deeper detail, and we provide a comparison between them under a number of different
points of view.

5.1. Definition of Q-values

The Q-function is defined on the basis of the values associated to the actions ǎtr chosen at time t in the active rules.
At each time instant t, given the current state of the environment xt , the FIS evaluates which rules are active, that is,
which fuzzy sets cover the point xt , and then, for each active rule Rr , a winning action is determined on the basis of
the �-greedy strategy. If ǎtr is the winning action determined by rule Rr , we use q̌ tr to refer to its associated Q-value.
The continuous action At (xt ) is obtained by a cooperation of all the active rules; it is computed as the sum of their
winning actions weighted by the activation values of the respective rules, as shown in Eq. (14). TheQ-value associated
to At (xt ) in the state xt at time t, namely Qt (xt , At (xt )), is computed in the same way

Qt (xt , At (xt )) =
nR∑
r=1


r (xt )q̌ tr (17)

The continuous action At (xt ) might be very different from the discrete actions ǎtr that it has been generated from.
Despite of this situation, At (xt ) inherits its Q-value from the action values q̌ tr associated to the winning actions
ǎtr . Furthermore, a generic point (xt , At (xt )) belongs to the state–action space, but not all the points in the state–
action space can be expressed by (xt , At (xt )). Indeed, At (xt ) is a restriction of the action space to a discrete set
of actions in correspondence of xt . Therefore, the value of Q is defined only on a subspace of the state–action
space. Nevertheless, Q(xt , At (xt )) is an explicit function of xt and At (xt ) (and, implicitly, of the structure of the
FIS), but above all it is an implicit function of the values associated to the winning discrete actions ǎtr , so Q ac-
tually should be written as Q(xt , q̌t ), where q̌t is the set of action values associated to the winning action at time
t. Thus, the point (xt , At (xt )) in the state-action space is not associated to any Q-value per se, as in the clas-
sic definition of the action-value function. A graphical description of the way Q values are computed is shown in
Fig. 3.

The way Q values are computed is similar to connectionist approaches, such as neural networks, in which the
information about a function is distributed throughout a set of simple, individually meaningless, parameters. The action
value associated to each action of each rule (qtr,i ) does not have a meaning per se, it provides a piece of information
that is complete only relatively to the combination with the other winning actions. Thus, its corresponding action value
gives a measure of the goodness of such a combination. As a result, the meaning of the individual qtr,i is not the same
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Fig. 3. The computation of Q-values. Once the winning actions (and the corresponding Q-values) are chosen, the continuous action At (xt ) and its
Q-value are computed by means of the same linear combination: At (xt ) = 
1(x

t )a1,1+
2(x
t )a2,5 andQ(xt , At (xt )) = 
1(x

t )q1,1+
2(x
t )q2,5.

of the classic action value. In fact, as discussed in Section 5.3, they give a measure of the goodness of choosing the
corresponding actions as winners in the local competition.

5.2. Definition of the Q function

The Q function in the point (xt , At (xt )) is computed on the basis of the values associated to the actions that belong
to the sets of consequents of the active rules nearest to At (xt ). When a continuous action At (xt ) is computed, we
want to univocally associate to it a Q value. Since the information about the action values resides in the Q values
of the discrete actions, we must find a way to associate At (xt ) univocally to a set of ar,i and then use their values to
derive Q(xt , At (xt )). To do this, we need to generalize the FIS in order to deal with continuous input of the state–
action space. We strongly fuzzify the action dimension in each ruleRr by one fuzzy set Ar,i centered in each discrete
action ar,i . The fuzzification of the action dimension is specific for each rule, but it is still strong, so a general action
at is covered by only and always two fuzzy sets. Thus, for each rule Rr , we can find a unique pair of actions that
can express At (xt ) (or a generic action at ), and from which it can inherit its Q-value by means of the following
simple FIS:

R̃r,1 : IF a is Ar,1 THEN Q = qr,1
...

R̃r,nr : IF a is Ar,nr THEN Q = qr,nr

where nr is the cardinality of the discrete action set associated to the rule Rr . Note that since the action dimension is
strongly fuzzified there is no need to normalize the expression above. The maintenance of this is very simple, since
the vector of centers of each fuzzy set is already available in the set of the discrete actions, and all we should do is
interpolating Q̃r (at ) (theQ-value of at in ruleRr ), with the two appropriate qr,i weighted on corresponding activation
degrees �Ar,i

(at ):

Q̃r (a
t ) =

nr∑
i=1

�Ar,i
(at ) qtr,i (18)

The finalQ-value of the point (xt , At (xt )), or a generic pair (xt , at ), is computed as in Eq. (17) using Q̃r (at ) instead
of qtr,i . Let a

t be the winning action of each rule, and Q̃r (at ) its value for ruleRr , the Q-value is defined as
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Fig. 4. The computation of Q-values. Once determined At (xt ), each rule Rr creates a Q̃r (At (xt )) with the secondary FIS: Q̃1(A
t (xt )) =

�A1,3
(xt )q1,3 + �A1,4

(xt )q1,4 and Q̃2(A
t (xt )) = �A2,2

(xt )q2,2 + �A2,3
(xt )q2,3. Then these values are used to compute theQ-value of At (xt )

through their linear combination with parameters 
r (x
t ): Q(xt , At (xt )) = 
1(x

t )Q̃1(A
t (xt )) + 
2(x

t )Q̃2(A
t (xt )) = 
1(x

t )�A1,3
(xt )q1,3 +


1(x
t )�A1,4

(xt )q1,4 + 
2(x
t )�A2,2

(xt )q2,2 + 
2(x
t )�A2,3

(xt )q2,3.

Qt (xt , at ) =
nR∑
r=1


r (xt )Q̃r (a
t ) (19)

A graphical description of the computation of Q values is shown in Fig. 4.
A clear advantage of the Q-function with respect to the Q-function is the ability of finding a univocal Q-value for

any possible input (xt , at ). Furthermore, the definition of theQ-function respects the principle of locality between the
effectively executed action at and the origin of its Q-value, since it is created by the Q-values of the actions in the
discrete sets available in each active rule that are the nearest to at .

5.3. Q updates

As described in Section 2.1, the update of the parameter in algorithms with function approximators is often imple-
mented as a gradient descent method with respect to the mean square error (MSE). The parameters are updated in order
to produce the steepest reduction of the MSE evaluated in the last real-valued state xt and this leads to the Eq. (5) for
the value function. A similar equation can be obtained for the action-value function, by the following operations:

• substitute Q to V,
• since the features are represented by the fuzzy antecedents of the rules instantiated with their winning action ǎtr , the
parameters �t are the Q-values qtr,i associated to atr,i , given that atr,i is the winning action ǎ

t
r :

ht ←→ qtr,i

the sample of Q at time t is replaced by its estimate given the values at time t + 1:

qt (xt , At (xt ))←→ r txt ,At (xt ) + �max
a

Q(xt+1, a)

so, the resulting equation is (Fig. 5):

qt+1r,i = qtr,i − ��tQGqtr,i
Qt (xt , At (xt )) (20)

where �tQ is defined as

�tQ = r txt ,At (xt ) + �max
a

Q(xt+1, a)−Qt (xt , At (xt )) (21)
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Fig. 5. The update of the features corresponding to Q-values. The reinforcement is redistributed to the parameters corresponding to the chosen
actions, weighted by the activation degree of the corresponding rule 
r (x

t ).

In order to solve the gradient of Q with respect to qtr,i , it is enough to look at Eq. (17) and we immediately see that

Gqtr,i
Qt (xt , At (xt )) = Gqtr,i

[ nR∑
r=1


r (xt )qtr,i

]
=

{

r (xt ) if atr,i = ǎtr
0 otherwise

(22)

so the update rule becomes the following:

qt+1r,i = qtr,i − ��tQ
r (xt ) (23)

where we remind that qtr,i are the Q-values associated to the chosen actions.

It is worth noting that Q(xt+1, a) is the Q-value achievable in the next state xt+1 associated to an action in the set
of all the possible combinations of the discrete actions available in any active rule (see Fig. 2). The greatest Q-value
among them is the combination of all the greatest qtr,i in each active ruleRr :

max
a

Q(xt+1, a) =
nR∑
r=1


r (xt+1)max
i
{qtr,i } (24)

and it is used as estimation of the highest expected sum of rewards from state xt+1 following the greedy policy.

5.4. Q updates

This section describes the update mechanism for the Q-values, that is defined according to the actions ǎtr chosen at
time t in the active rules. The general considerations of the previous section are still valid, so we refer to Section 2.1
and to Eq. (5), and we obtain the following operations:

• substitute Q to V,
• since the features are represented by the fuzzy antecedent of the rules instantiated in the discrete actions that are
the nearest to the action actually executed, the parameters �t are the Q-values qtr,i associated to atr,i , given that atr,i
contributes to generate Q̃r (at ) (see Section 5.2):

ht ←→ qtr,i
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Fig. 6. The update of the features corresponding to Q-values. The reinforcement is redistributed to the parameters corresponding to those actions
whose membership functions are activated by At (xt ). The reinforcement assigned to the parameter qr,i is weighted by the activation degrees of rule
Rr and by the activation degrees of Ar,i : 
r (x

t )�Ar,i
(xt ).

• the sample of Q at time t is replaced by its estimate given the values at time t + 1:

qt (xt , At (xt ))←→ r txt ,At (xt ) + �max
a
Q(xt+1, a)

although it makes the update rule not a real gradient it is useful to look at it as a gradient anyway [5],

so, the resulting equation is (Fig. 6):

qt+1r,i = qtr,i − ��tQGqtr,i
Qt (xt , At (xt )) (25)

where �t
Q
is defined like in Eq. (21) as

�tQ = r txt ,At (xt ) + �max
a
Q(xt+1, a)−Qt (xt , At (xt )) (26)

In order to compute the gradient of Qt (xt , At (xt )), we consider Eq. (19):

Gqtr,i
Qt (xt , At (xt )) = Gqtr,i

nR∑
r=1

nr∑
i=1


r (xt )�Ar,i
(At (xt ))qtr,i = 
r (xt )�Ar,i

(At (xt )) (27)

so the update rule becomes the following:

qt+1r,i = qtr,i − ��tQ
r (xt )�Ar,i
(At (xt )) (28)

where qtr,i are the Q-values associated to the actions closest to the executed one.

It is worth noting thatQ(xt+1, a) is theQ-value achievable in the next state xt+1 and lies along the restriction of the
Q function over the straight line (xt+1, a), where a is variable, so that the greatest Q value is

max
a
Q(xt+1, a) = max

a

{ nR∑
r=1

nr∑
i=1


r (xt+1)�Ar,i
(a)qtr,i

}
(29)

If the fuzzification along the action dimension is achieved though triangular fuzzy sets, it can be shown that the greatest
Q-value lies in correspondence of one of the discrete action sets Ar of the active rules Rr :

max
a
Q(xt+1, a) = max

a∈⋃nR
i=1 Ai

{ nR∑
r=1

nr∑
i=1


r (xt+1)�Ar,i
(a)qtr,i

}
=

nR∑
r=1


r (xt+1)max
i
{qtr,i }, (30)

that is the same result obtained for the Q-values (see Eq. (24)).
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Fig. 7. The continuous actions in red and all the q1,i and q3,i influence the updates of the discrete action a2,3.

6. Comparison between Q andQ values

In the previous section we have described two different approaches to the computation of the action values in the
framework of fuzzy Q-learning. The major distinction between these two approaches is due to the particular semantic
of the action-values used for the linear approximation of the action-value function: the former focuses the computation
and the update on the action to choose, the latter focuses on the actions that are actually performed by the FIS.

The main advantages and disadvantages of both can be summarized as follows:

Q puts in evidence only the value of the discrete actions available by the FIS without dispersing the reward
information, so that the policy can be more easily identified. However, its definition is restricted to optimal
policy function and it does not reveal the action value of the other actions. Furthermore, the value associated
to the actions of each rule does not represent how good is to execute that action when the rule is active, but it
is strictly dependent from the goodness of combining that action with those selected by all the other rules.

Q gives a more natural view of the classic action-value function. Its values are stable, coherent, and defined over
the whole domain. It gives an idea of distribution throughout the space of the values of the actions so we can
make comparisons between optimal and suboptimal actions, and it allows to understand if the fuzzification is
inadequate.

6.1. Coherence of updates

The qtr,i are updated in a very different way in the two FISs. Let us focus on the i th discrete action of the r th rule
Rr at time t, atr,i . Using a FIS based on Q-values, the action atr,i is updated every time it is chosen as the winning
action of its rule ǎtr , and the value of its update strongly depends on the other winning actions it is combined with, as
shown in Fig. 5. The Q-value qtr,i associated to each action expresses the goodness of choosing atr,i as the winning
action in rule Rr , given the winning actions of all the other active rules. Thus, the value depends on the quality of
the action generated by atr,i in the overall cooperation with all the discrete actions available in the neighboring rules;
this is an extremely variable measure. Fig. 7 shows an example that puts in evidence all the continuous actions and all
the discrete actions that influence the update of the action a2,3: the continuous actions lie throughout the whole action
space, so their quality may differ a lot from each other, consequently, action a2,3 is susceptible to be affected in its
updates by this big mass of heterogeneous information characterized by a high variance. As a result, the variations on
the values qtr,i give origin to oscillation around a certain value that is a mean of the heterogeneous amount of updating
information weighted by the activation degrees of the proposing rules.
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Fig. 8. All the continuous actions in the gray area are responsible for the updates of at2,v since they make its fuzzy set active. All these actions are
similar and provoke the data set used for the updates to be more homogeneous.

On the other hand, in case of a FIS that computes theQ-values, the action atr,i is updated every time that an executed
action At (xt ) lies in the region covered by the intersection of the fuzzy set in the antecedent of Rr and the fuzzy set
�Ar,i

associated to ar,i , by construction (see Section 5.2 and Fig. 6). In Fig. 8 the attention is focused on the update of
the discrete action a2,3: we can see the region mentioned above, all the continuous actions that may be generated, and
those lying in such region. The latter actions are characterized by being similar to each other.

Note that this similarity does not depend on the winning actions at all, since many combinations of them produce
similar or equal continuous actions At (xt ). This is expressed by the principle of locality that introduced in Section
5.2. The locality refers to the proximity of the executed action At (xt ) to each other, and, above all, to the proximity of
At (xt ) to the discrete actions in each active rule from which it inherits its Q-value. Thanks to the principle of locality,
the data set originated by the qtr,i at the vertexes of the region and from the target received due to the executions of
At (xt ), is, in general, more homogeneous, coherent and with smaller variance than in the case ofQ-values. It is worth
noting that the update strength is not homogeneous throughout the region. In fact, the involvement of qtr,i decreases the
farther At (xt ) is from atr,i , thus strengthening the principle of locality. This allows the updates to have less oscillations
and, consequently, the reached values are more robust during the learning process under any policy (even random), and
are more close to the optimal Q-value throughout the whole region.

6.2. Influence of the structure of the FIS

Let us investigate the influence of the structure of the FIS on the performance of the two reward distribution
approaches. In the former, the Q-values are not bound spatially to the executed actions At (xt ), but they are inherited
by the discrete actions that contributed to the interpolation of At (xt ). Thus, the optimal action function A∗(xt ) is
approximated by the set of discrete actions atr,i associated to the greatest qtr,i in each rule Rr , and inherits from them
its optimal value. The main limitation is due to the fact that all the action-value functions that the FIS can interpolate
are a finite discrete set, i.e., all the possible choices of the set of all the winning actions ǎt . Furthermore, given ǎt ,
the shapes of these functions over the regions where a rule fades into the other depend on the shape of the fuzzy set
employed in the FIS (see, for instance, the difference between the continuous actions in Fig. 2 and Fig. 7). The choice
of the shapes of the fuzzy sets and the sets of discrete actions is therefore fundamental. On the other hand, there are not
further limitations on the action-value function Q. It is just defined over the restriction (xt , At (xt )) of the state–action
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space, so its value is derived from the values associated to ǎt interpolated throughout the action function. It follows
that the dependence of Q from the action dimension is not fixed a priori, rather it is determined only once the set ǎt is
defined.

Conversely, the Q values are computed according to the principle of locality, and the executed action is considered
as an input value of the action dimension. The advantages of this approach are exposed in Section 5.2, while the
disadvantages are very similar to those exposed above. Indeed, we discussed about the problems of fitting adequately
the optimal action function A∗(xt ) with an interpolated one, due to the particular choices of the shapes of the fuzzy sets
and the discrete actions sets employed in every rule: similar problems are still present in this case. Let us assume that
a set of winning actions is able to interpolate perfectly the optimal action function A∗(xt ); it is reasonable to think that
its action value is large along this continuous action region and decreases the more we get farther from it. When the FIS
evolves, it distributes the Q value of each point of A∗(xt ) to the action immediately greater and the one immediately
less than A∗(xt ) in the discrete set of each rule (see Fig. 6). Thus, the updates are spread throughout the projection
of A∗(xt ) 3 to the action dimension of each rule Rr . Such a dispersion makes the difference of the quality of actions
in each state less sharp, and, as a consequence, makes this approach less reliable for the identification of the optimal
policy. Fig. 9 shows an example of this condition.

In case of Q approach, the action values qtr,i of discrete actions are simply not affected by what happens outside to
the action-value function defined by the current winning action set. In particular, under the greedy policy, only optimal
actions get optimal rewards, in a sharp distinction with respect to suboptimal actions. The limits of Q distribution are
that the value of the estimated optimal action-value function depends on how accurately it fits the real optimal action
function, and this fitness depends on the distribution of discrete actions of each rule and on the shapes of fuzzy sets.

In the case of a FIS that computes theQ-values, the action values qtr,i of the discrete actions are influenced by what
happens throughout a well defined region around ar,i and generalize over all the targets received in such region. As a
result, if such region gets heterogeneous targets, an optimal action may have a Q-value qtr,i less than the Q-value of
a suboptimal action which lies on a more homogeneous region. Since the Q distribution does not give such a broad
generalization over an a priori fixed region, it does not suffer of this problem at all.

7. Experiments

Themain objective of the experiments presented in this section is to analyze pros and cons of the different approaches
for reinforcement distribution, in order to determine the situations in which the use of the first system, or the latter, is
preferable.

The shape of the fuzzy sets used for the input is triangular and the fuzzification is strong. The type of fuzzification
is defined as {xmin : step : xmax }, meaning that the interval [xmin, xmax ] is divided in sub-intervals wide step. All the
experiments use a discount factor � = 0.8.

As testbed we considered an abstraction of a golf game, in which the agent should give an optimal velocity v0 to the
ball in order to put it in the hole, given the initial distance from the hole x0. Any other information such as the direction
of the shot, the wind and so on, are assumed to be irrelevant for this testbed. For each distance x0, the ball falls in the
hole if the initial velocity of the ball v0 is in the range of values [v0min(x

0), v0max (x
0)], where v0max (x

0) =
√
x02gk and

v0min(x
0) =

√
x02gk + vmax

2, where g is the universal constant of gravity, k is the coefficient of friction between the
ball and the ground, and vmax is the maximum velocity allowed at the border of the hole in order to make the ball to
enter the hole and not to overcome it. When the ball enters the hole the episode ends. If v0 > v0max (x

0), the ball is
assumed to be lost and the episode ends. Finally, if v0 < v0min(x

0) the episode goes on and the agent can try another
hit. At each time instant t, the ball is at position xt and after the shot the agent senses the relative reward r t and next
state xt+1 as

• if v0min(x
0) < v0 < v0max (x

0), then{
r t = 10
xt+1 random position in X

3With xt limited to the region covered by the ruleRr taken in consideration.
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Fig. 9. The red lines in the pictures delimit a region of optimal actions. During the evolution of the FISs, the distribution ofQ focuses on the discrete
action to choose, and the value of the optimal action function is not represented explicitly, it is the interpolation of the peaks. The distribution ofQ
disperses the values along the action dimension: it is less clear which is the optimal action in each rule, on the other hand we have an approximation
of all the action value function: (a)Q values and (b)Q values. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

• if v0min(x
0) > v0, then 4⎧⎨⎩

r t = −2
xt+1 = − (v0)2

2gk
+ xt

• if v0 > v0max (x
0), then{

r t = −5
xt+1 random position in X

4 The expression of xt+1 is the simplification of the deceleration formula due to the friction xt+1 = v0T f + (gk/2)T f
2+ x0, where T f = v0/gk

is the instant in which the ball stops.
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suboptimal
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Fig. 10. The golf game.

Fig. 11. The figure on the left shows a top view of the problem zones. From top left to bottom right we can see the dead, the optimal and the
suboptimal zones. On the right, the figure shows the optimal action value function, where on x-axis we have the state (the distance to the hole), on
y-axis the actions and z-axis is the corresponding action value.

The state–action space X × A can be divided into an optimal zone, a suboptimal zone, and a dead zone (Fig. 10).
This problem is as simple as interesting, mainly due to the fact that the optimal function is on the edge of the dead
zone, so the agent must try to get as near as possible to the optimal action without falling into the dead zone, and this
requires it to be very accurate. Fig. 11 shows the theoretically optimal action-value function.

In the following we compare Q values with Q values, analyzing the characteristics of the learned action-value
functions in different situations. For each situation we show the graphs of the two action-value functions: the x-axis
(the horizontal axis on the right) represents the state space, that is, the distance from the hole, while the y-axis (the
horizontal axis on the left) represents the action space. The lines departing from the abscissae correspond to the vertexes
of the fuzzy sets, while the lines departing from the ordinates correspond to the discrete actions available in each rule,
ar,i . At the intersection of these lines, on the z-axis the Q and Q values are, respectively, represented. The red lines
plotted above the surfaces represent, for each state, the range of optimal values (i.e., the minimum and maximum
velocities to make the ball fall into the hole in one shot), while the blue line represents the learned policy.

7.1. Granularity of the fuzzification

A crucial aspect of fuzzy Q-learning is represented by the initial choice of the fuzzification of the state space and
the choice of the discrete actions available in each fuzzy rule, since all the policies that the system is able to propose
as estimates of the optimal action function strictly depend on these factors. The finer the representation, the more
expensive the required exploration, and the better the approximation of the action function. Vice versa, the rougher the
representation, the faster the convergence and the smaller the required computing effort.

In the first experiment we adopt a coarse representation (in particular for the fuzzification of the state variable):
{0 : 5 : 20} × {0 : 0.5 : 17.5}. The two action-value functions learned after 15,000 episodes are shown in Fig. 12.
Looking at the policy learned using the Q-values, it can be noticed that, when the Q-values have an influence zone
where both high and low action values may be achieved, their updates become unstable, so the estimated action function
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Fig. 12. Action-value functions obtained with a coarse representation: (a) Q value function and (b)Q value function.

becomes cautious in the sense that a suboptimal action whose zone of influence gathers more coherent and constantly
good targets may be estimated better than an optimal action whose zone of influence gathers both optimal and very
bad targets. This is intrinsic in the nature of Q-values: they give generalization throughout their zone of influence, so
the generalization over a zone will be influenced in average by all the values gathered in such zone, and a zone with
optimal and very bad values may in average be worse than a zone with sub-optimal values.

The Q-values do not suffer from this problem, even if a too coarse fuzzification of the state and action spaces
may induce a piecewise linear policy that in some regions may bring away from the optimal policy function (see the
difference between the red lines and the blue line in Fig. 12).

Nevertheless over-description of the problem is not always a good solution. First of all we may lose the advantage of
generalization introduced by the concept of fuzziness. Furthermore, the advantages are not sure to come, especially in
the case ofQ values. As we discussed in Section 6.1, the values to update theQ-values are structurally heterogeneous,
and this heterogeneity grows with the number of active rules and with the cardinality of the corresponding discrete
action sets, and in the meanwhile the frequency of the updates decreases. So the FIS working with Q-values needs
much more training in order to converge. Conversely, the Q-values exploit each update that they receive toward the
final result: even if aQ-value has a little update rate, the targets it receives are more coherent since its zone of influence
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Fig. 13. Action-value functions obtained with a fine representation: (a) Q value function and (b)Q value function.

is smaller and “more specialized”, thus, each Q-value needs less training with respect to a coarser representation. In
the next experiment shown in Fig. 13, we fuzzified the domain as {0 : 0.25 : 20} × {0 : 0.25 : 17.5}. We can see that
theQ-values work very well, interpolate the optimal action function with high accuracy, and are very stable, since their
updates are more coherent even if less frequent in such fine representation. Conversely, the Q-values do not work as
well: they are not able to find a good approximation and they vary over time for much longer. Actually, the problem is
that in a big space we need a lot of experience, and, at the same time, we need to exploit such experience as much as
possible.

7.2. Equivalent actions

To study how theQ-values and theQ-values behave when more than one optimal action is available in some states,
we change the problem as follows: the ball can either fall in the hole or fall in a basket placed further in the dead zone.
The agent can hit the ball within two ranges of optimal actions for every state, but it will have a second chance for hitting
only if the ball remains in the suboptimal zone. This is an interesting problem, that cannot be solved so easily: indeed,
since the optimal action is interpolated by many rules, the winning actions can belong to the two different optimal
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Fig. 14. Action value functions for the golf game with multiple optimal actions: (a) Q value function and (b)Q value function.

ranges (being therefore optimal actions themselves), but they are still much bound to produce a very bad action. A
possible solution consists of implementing a mechanism of conformation before the cooperation, i.e., let the active
rule choose all the actions from either the former or the latter range of optimal values. This can be achieved in several
ways, for example by letting the rule with the greatest activation degree choose first, and forcing the others to conform
to this choice, or, for example, by proposing all the equivalent actions for each rule and then choosing the most voted
first, or by combining these two criteria together. Future investigations will focus on this topic. The Q-values and the
Q-values learned in this situation are shown in Fig. 14.

Note that in the example the existence of equivalent actions is much more evident in the case of Q-values, since
the quality of the single, executed, optimal actions is not affected by the existence of other equivalently optimal
actions, so there are two evident optimal zones in the estimated optimal action function. The agent can easily recognize
such a configuration and adopt strategies for choosing actions under the hypotheses of equivalent optimal actions.
Q-values instead have more chances to be confused by this situation, since the optimal discrete actions are bound
to produce a bad executed action (if they belong to different optimal zones) and may receive, consequently, bad
targets.
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On the other hand, when the optimal zones are too close to each other, the zones of influence ofQ-values may cover
both of them, averaging the different quality of optimal, then dead, and then again optimal actions. As a result the
agent may have a representation that merges these zones into only one (problem of the influence of the FIS structure,
see Section 6.2). Conversely, theQ-values are able to keep distinct the individual values of the discrete actions, so that
there are more chances of identifying distinct actions belonging to the first optimal, the dead and the second optimal
zone.

8. Conclusions and future work

The definition of fuzzy Q-learning involves many different concepts and many different ways of implementing
the Q-learning taking advantage of the idea of fuzziness. We have considered the most promising algorithm
found in literature [25], an evolution of the system proposed by Glorennec [24], and at the basis of many
versions of Fuzzy Q-learning. We conducted an analysis on the nature of the particular reinforcement
distribution of this algorithm, in comparison with a novel strategy of reinforcement distribution that we propose
in this paper.

The experimental analysis and comparison of these two techniques has put in evidence the following results: when
the fuzzification is coarse the Q-values may have difficulties to well approximate the optimal policy, especially when
a fuzzy set covers a region characterized by heterogeneous rewards. On the other hand, when the domain is over-
describedQ-values may have difficulties to converge, whileQ-values correspond to a more efficient learning process.
Furthermore, we have experimented how the combined use of both Q-values and Q-values may turn very useful in
those problems that present equivalently optimal actions.

The understanding of the behavior, limits, pros and cons of both the distribution strategies may help in the naturally
following step, that is the addition of fuzzification adaptive strategies to the system. As we have underlined in Section
5.1, the value associated to the ith action of the rth rule, when the Q values are considered, is strictly dependent on
the values associated to the winning actions selected by all the other rules. This implies that adding, modifying, and
deleting a rule may affect the action values stored in any other rule, potentially wasting what has been previously
learned. On the other side, using the Q values each rule contains action values that have a meaning per se, thus being
more suitable for being used in an adaptive system. A combined use ofQ values andQ values that exploit the benefits
of both the approaches to build a fuzzy RL algorithm with adaptive rules will be considered by future research activity.
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