

Approximate Dynamic Programming

A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA

MVA-RL Course

Value Iteration: the Idea

- 1. Let V_0 be any vector in \mathbb{R}^N
- 2. At each iteration $k = 1, 2, \ldots, K$
 - Compute $V_{k+1} = \mathcal{T}V_k$
- 3. Return the greedy policy

$$\pi_{\mathcal{K}}(x) \in \arg \max_{a \in \mathcal{A}} \Big[r(x, a) + \gamma \sum_{y} p(y|x, a) V_{\mathcal{K}}(y) \Big].$$

Value Iteration: the Guarantees

From the *fixed point* property of \mathcal{T} :

$$\lim_{k\to\infty}V_k=V^*$$

• From the *contraction* property of \mathcal{T}

$$||V_{k+1} - V^*||_{\infty} \le \gamma^{k+1} ||V_0 - V^*||_{\infty} \to 0$$

Problem: what if $V_{k+1} \neq TV_k$??

Policy Iteration: the Idea

- 1. Let π_0 be *any* stationary policy
- 2. At each iteration $k = 1, 2, \ldots, K$
 - Policy evaluation given π_k , compute $V_k = V^{\pi_k}$.
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(x) \in \operatorname{arg\,max}_{a \in \mathcal{A}} \big[r(x, a) + \gamma \sum_{y} p(y|x, a) V^{\pi_k}(y) \big].$$

3. Return the last policy π_K

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies with *non-decreasing* performance

 $V^{\pi_{k+1}} \geq V^{\pi_k},$

and it converges to π^* in a *finite* number of iterations.

Problem: what if $V_k \neq V^{\pi_k}$??

Sources of Error

- ▶ Approximation error. If X is large or continuous, value functions V cannot be represented correctly
 ⇒ use an approximation space F
- Estimation error. If the reward r and dynamics p are unknown, the Bellman operators T and T^π cannot be computed exactly
 - \Rightarrow *estimate* the Bellman operators from *samples*

In This Lecture

- \blacktriangleright Infinite horizon setting with discount γ
- Study the impact of approximation error
- Study the impact of estimation error in the next lecture

nía

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC - Reinforcement Learning Algorithms

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function V^* with an error

$$\mathsf{error} = \|V - V^*\|$$

how does it translate to the (loss of) performance of the *greedy policy*

$$\pi(x) \in \arg\max_{a \in A} \sum_{y} p(y|x, a) \big[r(x, a, y) + \gamma V(y) \big]$$

i.e.

performance loss =
$$\|V^* - V^{\pi}\|$$

???

From Approximation Error to Performance Loss

Proposition

Let $V \in \mathbb{R}^N$ be an approximation of V^* and π its corresponding greedy policy, then

$$\underbrace{\|V^* - V^{\pi}\|_{\infty}}_{\text{performance loss}} \leq \frac{2\gamma}{1 - \gamma} \underbrace{\|V^* - V\|_{\infty}}_{\text{approx. error}}.$$

Furthermore, there exists $\epsilon > 0$ such that if $||V - V^*||_{\infty} \le \epsilon$, then π is *optimal*.

From Approximation Error to Performance Loss

Proof.

$$\begin{split} \|V^* - V^{\pi}\|_{\infty} &\leq \|\mathcal{T}V^* - \mathcal{T}^{\pi}V\|_{\infty} + \|\mathcal{T}^{\pi}V - \mathcal{T}^{\pi}V^{\pi}\|_{\infty} \\ &\leq \|\mathcal{T}V^* - \mathcal{T}V\|_{\infty} + \gamma\|V - V^{\pi}\|_{\infty} \\ &\leq \gamma\|V^* - V\|_{\infty} + \gamma(\|V - V^*\|_{\infty} + \|V^* - V^{\pi}\|_{\infty}) \\ &\leq \frac{2\gamma}{1 - \gamma}\|V^* - V\|_{\infty}. \end{split}$$

From Approximation Error to Performance Loss

Question: how do we compute V?

Problem: unlike in standard approximation scenarios (see supervised learning), we have a *limited access* to the target function, i.e. V^*

Objective: given an *approximation space* \mathcal{F} , compute an approximation V which is as close as possible to the *best approximation* of V^* in \mathcal{F} , i.e.

$$V \approx \arg \inf_{f \in \mathcal{F}} ||V^* - f||$$

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC - Reinforcement Learning Algorithms

Oct 29th, 2013 - 13/63

Approximate Value Iteration: the Idea

Let \mathcal{A} be an *approximation operator*.

- 1. Let V_0 be any vector in \mathbb{R}^N
- 2. At each iteration $k = 1, 2, \ldots, K$
 - Compute $V_{k+1} = \mathcal{AT}V_k$
- 3. Return the greedy policy

$$\pi_{\mathcal{K}}(x) \in \arg \max_{a \in \mathcal{A}} \Big[r(x, a) + \gamma \sum_{y} p(y|x, a) V_{\mathcal{K}}(y) \Big].$$

Approximate Value Iteration: the Idea

Let $\mathcal{A} = \Pi_{\infty}$ be a projection operator in L_{∞} -norm, which corresponds to

$$V_{k+1} = \Pi_{\infty} \mathcal{T} V_k = \arg \inf_{V \in \mathcal{F}} \| \mathcal{T} V_k - V \|_{\infty}$$

A. LAZARIC - Reinforcement Learning Algorithms

Oct 29th, 2013 - 15/63

Approximate Value Iteration: convergence

Proposition

The projection Π_{∞} is a *non-expansion* and the joint operator $\Pi_{\infty}\mathcal{T}$ is a *contraction*. Then there exists a unique fixed point $\tilde{V} = \Pi_{\infty}\mathcal{T}\tilde{V}$ which guarantees the *convergence* of AVI.

Approximate Value Iteration: performance loss

Proposition (Bertsekas & Tsitsiklis, 1996)

Let V^K be the function returned by AVI after K iterations and π_K its corresponding greedy policy. Then

$$\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{\substack{0 \leq k < K}} \|\mathcal{T}V_k - \mathcal{A}\mathcal{T}V_k\|_{\infty}} + \frac{2\gamma^{K+1}}{1-\gamma} \underbrace{\|V^* - V_0\|_{\infty}}_{initial \ error}.$$

A. LAZARIC - Reinforcement Learning Algorithms

Approximate Value Iteration: performance loss

Proof. Let $\varepsilon = \max_{0 \le k < K} \|\mathcal{T}V_k - \mathcal{AT}V_k\|_{\infty}$. For any $0 \le k < K$ we have

$$\begin{split} \|V^* - V_{k+1}\|_{\infty} &\leq \|\mathcal{T}V^* - \mathcal{T}V_k\|_{\infty} + \|\mathcal{T}V_k - V_{k+1}\|_{\infty} \\ &\leq \gamma \|V^* - V_k\|_{\infty} + \varepsilon, \end{split}$$

then

$$\begin{split} \|V^* - V_K\|_{\infty} &\leq (1 + \gamma + \dots + \gamma^{K-1})\varepsilon + \gamma^K \|V^* - V_0\|_{\infty} \\ &\leq \frac{1}{1 - \gamma}\varepsilon + \gamma^K \|V^* - V_0\|_{\infty} \end{split}$$

Since from Proposition 1 we have that $\|V^* - V^{\pi_K}\|_{\infty} \leq \frac{2\gamma}{1-\gamma} \|V^* - V_K\|_{\infty}$, then we obtain

$$\|V^* - V^{\pi_{\kappa}}\|_{\infty} \leq rac{2\gamma}{(1-\gamma)^2} arepsilon + rac{2\gamma^{\kappa+1}}{1-\gamma} \|V^* - V_0\|_{\infty}.$$

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Idea: work with Q-functions and linear spaces.

• Q^* is the unique fixed point of \mathcal{T} defined over $X \times A$ as: $\mathcal{T}Q(x,a) = \sum_{y} p(y|x,a)[r(x,a,y) + \gamma \max_{b} Q(y,b)].$

• \mathcal{F} is a space defined by d features $\phi_1, \ldots, \phi_d : X \times A \to \mathbb{R}$ as:

$$\mathcal{F} = \Big\{ Q_{\alpha}(x, a) = \sum_{j=1}^{d} \alpha_{j} \phi_{j}(x, a), \alpha \in \mathbb{R}^{d} \Big\}.$$

 \Rightarrow At each iteration compute $Q_{k+1} = \Pi_{\infty} \mathcal{T} Q_k$

Fitted Q-iteration with linear approximation

 \Rightarrow At each iteration compute $Q_{k+1} = \Pi_{\infty} \mathcal{T} Q_k$

Problems:

- the Π_{∞} operator cannot be computed *efficiently*
- the Bellman operator \mathcal{T} is often *unknown*

Fitted Q-iteration with linear approximation

Problem: the Π_∞ operator cannot be computed efficiently.

Let μ a distribution over X. We use a projection in $L_{2,\mu}$ -norm onto the space \mathcal{F} :

$$Q_{k+1} = rg\min_{Q\in\mathcal{F}} \|Q-\mathcal{T}Q_k\|_{\mu}^2.$$

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often *unknown*.

- 1. Sample *n* state actions (X_i, A_i) with $X_i \sim \mu$ and A_i random,
- 2. Simulate $Y_i \sim p(\cdot|X_i, A_i)$ and $R_i = r(X_i, A_i, Y_i)$ with the generative model,
- 3. Estimate $\mathcal{T}Q_k(X_i, A_i)$ with

$$Z_i = R_i + \gamma \max_{a \in A} Q_k(Y_i, a)$$

(unbiased $\mathbb{E}[Z_i|X_i, A_i] = \mathcal{T}Q_k(X_i, A_i))$,

Fitted Q-iteration with linear approximation

At each iteration k compute Q_{k+1} as

$$Q_{k+1} = \arg\min_{Q_{\alpha}\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\left[Q_{\alpha}(X_{i},A_{i})-Z_{i}\right]^{2}$$

 \Rightarrow Since Q_{α} is a linear function in α , the problem is a simple *quadratic minimization* problem with *closed form* solution.

Other implementations

- K-nearest neighbour
- Regularized linear regression with L_1 or L_2 regularisation
- Neural network
- Support vector machine

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

- c(x, R) = C
- c(x, K) = c(x) maintenance plus extra costs.

Dynamics:

- $p(\cdot|x, R) = \exp(\beta)$ with density $d(y) = \beta \exp^{-\beta y} \mathbb{I}\{y \ge 0\}$,
- $p(\cdot|x, K) = x + \exp(\beta)$ with density d(y x).

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

Optimal value function

$$V^*(x) = \min\left\{c(x) + \gamma \int_0^\infty d(y-x)V^*(y)dy, \ C + \gamma \int_0^\infty d(y)V^*(y)dy\right\}$$

Optimal policy: action that attains the minimum

Linear approximation space $\mathcal{F} := \left\{ V_n(x) = \sum_{k=1}^{20} \alpha_k \cos(k\pi \frac{x}{x_{\max}}) \right\}.$

Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.

Figure: Left: the *target* values computed as $\{\mathcal{T}V_0(x_n)\}_{1 \le n \le N}$. Right: the approximation $V_1 \in \mathcal{F}$ of the target function $\mathcal{T}V_0$.

Example: the Optimal Replacement Problem

Figure: Left: the *target* values computed as $\{\mathcal{T}V_1(x_n)\}_{1 \le n \le N}$. Center: the approximation $V_2 \in \mathcal{F}$ of $\mathcal{T}V_1$. Right: the approximation $V_n \in \mathcal{F}$ after *n* iterations.

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Approximate Policy Iteration: the Idea

Let \mathcal{A} be an *approximation operator*.

- Policy evaluation: given the current policy π_k , compute $V_k = \mathcal{A}V^{\pi_k}$
- Policy improvement: given the approximated value of the current policy, compute the greedy policy w.r.t. V_k as

$$\pi_{k+1}(x) \in \arg \max_{a \in A} \big[r(x, a) + \gamma \sum_{y \in X} p(y|x, a) V_k(y) \big].$$

Problem: the algorithm is no longer guaranteed to converge.

Approximate Policy Iteration: performance loss

Proposition

The asymptotic performance of the policies π_k generated by the API algorithm is related to the approximation error as:

$$\limsup_{k \to \infty} \underbrace{\|V^* - V^{\pi_k}\|_{\infty}}_{\text{performance loss}} \leq \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \underbrace{\|V_k - V^{\pi_k}\|_{\infty}}_{\text{approximation error}}$$

A. LAZARIC - Reinforcement Learning Algorithms

Approximate Policy Iteration: performance loss

Proof. We introduce

- Approximation error: $e_k = V_k V^{\pi_k}$,
- Performance gain: $g_k = V^{\pi_{k+1}} V^{\pi_k}$,
- Performance loss: $I_k = V^* V^{\pi_k}$.

Approximate Policy Iteration: performance loss

Proof (cont'd).

Since π_{k+1} is greedy w.r.t. V_k we have that $T^{\pi_{k+1}}V_k \ge T^{\pi_k}V_k$.

$$g_{k} = T^{\pi_{k+1}} V^{\pi_{k+1}} - T^{\pi_{k+1}} V^{\pi_{k}} + T^{\pi_{k+1}} V^{\pi_{k}} - T^{\pi_{k+1}} V_{k} + T^{\pi_{k+1}} V_{k} - T^{\pi_{k}} V_{k} + T^{\pi_{k}} V_{k} - T^{\pi_{k}} V_{k}^{*}$$

$$\stackrel{(a)}{\geq} \gamma P^{\pi_{k+1}} g_{k} - \gamma (P^{\pi_{k+1}} - P^{\pi_{k}}) e_{k}$$

$$\stackrel{(b)}{\geq} -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_{k}}) e_{k}$$

Which leads to

$$g_k \ge -\gamma (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) e_k, \qquad (1)$$

Approximate Policy Iteration: performance loss

Proof (cont'd).

Relationship between the performance at subsequent iterations. Since $T^{\pi^*}V_k \leq T^{\pi_{k+1}}V_k$ we have

$$I_{k+1} = T^{\pi^*} V^* - T^{\pi^*} V^{\pi_k} + T^{\pi^*} V^{\pi_k} - T^{\pi^*} V_k$$

+ $T^{\pi^*} V_k - T^{\pi_{k+1}} V_k + T^{\pi_{k+1}} V_k - T^{\pi_{k+1}} V^{\pi_k}$
+ $T^{\pi_{k+1}} V^{\pi_k} - T^{\pi_{k+1}} V^{\pi_{k+1}}$
 $\leq \gamma [P^{\pi^*} I_k - P^{\pi_{k+1}} g_k + (P^{\pi_{k+1}} - P^{\pi^*}) e_k].$

If we now plug-in equation (1),

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (P^{\pi_{k+1}} - P^{\pi_k}) + P^{\pi_{k+1}} - P^{\pi^*}] e_k$$

$$\leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k.$$

Thus we obtain the fact that the performance loss changes through iterations as

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + \gamma [P^{\pi_{k+1}} (I - \gamma P^{\pi_{k+1}})^{-1} (I - \gamma P^{\pi_k}) - P^{\pi^*}] e_k.$$

Approximate Policy Iteration: performance loss

Proof (cont'd). Move to asymptotic regime. Let $f_k = \gamma [P^{\pi_{k+1}}(I - \gamma P^{\pi_{k+1}})^{-1}(I - \gamma P^{\pi_k}) - P^{\pi^*}]e_k$, we have

$$I_{k+1} \leq \gamma P^{\pi^*} I_k + f_k,$$

thus if we move to the lim sup we obtain,

$$(I - \gamma P^{\pi^*}) \limsup_{k \to \infty} I_k \leq \limsup_{k \to \infty} f_k$$
$$\limsup_{k \to \infty} I_k \leq (I - \gamma P^{\pi^*})^{-1} \limsup_{k \to \infty} f_k,$$

since $I - \gamma P^{\pi^*}$ is invertible. Finally, we only need to take the L_∞ -norm both sides and obtain,

$$\begin{split} \limsup_{k \to \infty} \|l_k\| &\leq \frac{\gamma}{1-\gamma} \limsup_{k \to \infty} \|P^{\pi_{k+1}}(I-\gamma P^{\pi_{k+1}})^{-1}(I+\gamma P^{\pi_k}) + P^{\pi^*}\| \|e_k\| \\ &\leq \frac{\gamma}{1-\gamma} (\frac{1+\gamma}{1-\gamma}+1) \limsup_{k \to \infty} \|e_k\| = \frac{2\gamma}{(1-\gamma)^2} \limsup_{k \to \infty} \|e_k\|. \end{split}$$

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Linear $TD(\lambda)$: the algorithm

Algorithm Definition

Given a *linear space* $\mathcal{F} = \{V_{\alpha}(x) = \sum_{i=1}^{d} \alpha_i \phi_i(x), \alpha \in \mathbb{R}^d\}$. *Trace* vector $z \in \mathbb{R}^d$ and *parameter* vector $\alpha \in \mathbb{R}^d$ initialized to zero. Generate a sequence of states $(x_0, x_1, x_2, ...)$ according to π . At each step t, the *temporal difference* is

$$d_t = r(x_t, \pi(x_t)) + \gamma V_{\alpha_t}(x_{t+1}) - V_{\alpha_t}(x_t)$$

and the parameters are updated as

$$\begin{aligned} \alpha_{t+1} &= \alpha_t + \eta_t \mathbf{d}_t z_t, \\ z_{t+1} &= \lambda \gamma z_t + \phi(x_{t+1}), \end{aligned}$$

where η_t is learning step.

Linear TD(λ): approximation error

Proposition (Tsitsiklis et Van Roy, 1996)

Let the learning rate η_t satisfy

$$\sum_{t\geq 0}\eta_t=\infty, \text{ and } \sum_{t\geq 0}\eta_t^2<\infty.$$

We assume that π admits a *stationary distribution* μ_{π} and that the features $(\phi_i)_{1 \le k \le K}$ are *linearly independent*. There exists a fixed α^* such that

$$\lim_{t\to\infty}\alpha_t=\alpha^*.$$

Furthermore we obtain

$$\underbrace{\|V_{\alpha^*} - V^{\pi}\|_{2,\mu^{\pi}}}_{\text{approximation error}} \leq \frac{1 - \lambda\gamma}{1 - \gamma} \underbrace{\inf_{\alpha} \|V_{\alpha} - V^{\pi}\|_{2,\mu^{\pi}}}_{\alpha}$$

smallest approximation error

Linear TD(λ): approximation error

Remark: for $\lambda = 1$, we recover Monte-Carlo (or TD(1)) and the bound is the smallest!

Problem: the bound does not consider the variance (i.e., samples needed for α_t to converge to α^*).

Linear TD(λ): implementation

- **Pros**: simple to implement, computational cost *linear* in *d*.
- Cons: very sample *inefficient*, many samples are needed to converge.

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Least-squares TD: the algorithm

Recall: $V^{\pi} = \mathcal{T}^{\pi} V^{\pi}$. Intuition: compute $V = \mathcal{A} \mathcal{T}^{\pi} V$.

Focus on the $L_{2,\mu}$ -weighted norm and projection Π_{μ}

$$\Pi_{\mu}g = \arg\min_{f\in\mathcal{F}} \|f-g\|_{\mu}.$$

Least-squares TD: the algorithm

By construction, the Bellman residual of V_{TD} is orthogonal to \mathcal{F} , thus for any $1 \leq i \leq d$

$$\langle \mathcal{T}^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0,$$

and

$$\langle r^{\pi} + \gamma P^{\pi} V_{TD} - V_{TD}, \phi_i \rangle_{\mu} = 0$$

$$\langle r^{\pi}, \phi_i \rangle_{\mu} + \sum_{j=1}^{d} \langle \gamma P^{\pi} \phi_j - \phi_j, \phi_i \rangle_{\mu} \alpha_{TD,j} = 0,$$

 $\Rightarrow \alpha_{TD}$ is the solution of a *linear system* of order *d*.

Least-squares TD: the algorithm

Algorithm Definition

The LSTD solution α_{TD} can be computed by computing the matrix A and vector b defined as

$$\begin{array}{lll} \mathcal{A}_{i,j} &=& \langle \phi_i, \phi_j - \gamma \mathcal{P}^{\pi} \phi_j \rangle_{\mu} \\ b_i &=& \langle \phi_i, r^{\pi} \rangle_{\mu} \end{array},$$

and then solving the system $A\alpha = b$.

Problem: in general $\Pi_{\mu} \mathcal{T}^{\pi}$ does not admit a fixed point (i.e., matrix A is not invertible).

Solution: use the stationary distribution μ_{π} of policy π , that is

$$\mu_{\pi} \mathcal{P}^{\pi} = \mu_{\pi}, ext{ and } \mu_{\pi}(y) = \sum_{x} \mathcal{p}(y|x,\pi(x)) \mu_{\pi}(x)$$

Proposition

The Bellman operator \mathcal{T}^{π} is a *contraction* in the weighted $L_{2,\mu\pi}$ -norm. Thus the joint operator $\Pi_{\mu\pi}\mathcal{T}^{\pi}$ is a contraction and it admits a unique *fixed point* V_{TD} . Then

$$\underbrace{\|V^{\pi} - V_{TD}\|_{\mu_{\pi}}}_{approximation \ error} \leq \frac{1}{\sqrt{1 - \gamma^2}} \underbrace{\inf_{V \in \mathcal{F}} \|V^{\pi} - V\|_{\mu_{\pi}}}_{smallest \ approximation \ error}$$

Proof.

We show that $\|P_{\pi}\|_{\mu_{\pi}} = 1$:

$$\begin{split} \|P^{\pi}V\|_{\mu_{\pi}}^{2} &= \sum_{x} \mu_{\pi}(x) \big(\sum_{y} p(y|x,\pi(x))V(y)\big)^{2} \\ &\leq \sum_{x} \sum_{y} \mu_{\pi}(x) p(y|x,\pi(x))V(y)^{2} \\ &= \sum_{y} \mu_{\pi}(y)V(y)^{2} = \|V\|_{\mu_{\pi}}^{2}. \end{split}$$

It follows that \mathcal{T}^{π} is a contraction in $L_{2,\mu_{\pi}}$, i.e.,

$$\|\mathcal{T}^{\pi}V_{1} - \mathcal{T}^{\pi}V_{2}\|_{\mu_{\pi}} = \gamma \|\mathcal{P}^{\pi}(V_{1} - V_{2})\|_{\mu_{\pi}} \leq \gamma \|V_{1} - V_{2}\|_{\mu_{\pi}}.$$

Thus $\Pi_{\mu\pi} \mathcal{T}^{\pi}$ is a composition of a non-expansion and a contraction in $L_{2,\mu\pi}$, thus $V_{TD} = \Pi_{\mu\pi} \mathcal{T}^{\pi} V_{TD}$.

Proof. By Pythagorean theorem we have

$$\|V^{\pi} - V_{\mathcal{TD}}\|^2_{\mu_{\pi}} = \|V^{\pi} - \Pi_{\mu_{\pi}}V^{\pi}\|^2_{\mu_{\pi}} + \|\Pi_{\mu_{\pi}}V^{\pi} - V_{\mathcal{TD}}\|^2_{\mu_{\pi}},$$

but

$$\|\Pi_{\mu_{\pi}} V^{\pi} - V_{TD}\|_{\mu_{\pi}}^{2} = \|\Pi_{\mu_{\pi}} V^{\pi} - \Pi_{\mu_{\pi}} \mathcal{T}^{\pi} V_{TD}\|_{\mu_{\pi}}^{2} \le \|\mathcal{T}^{\pi} V^{\pi} - \mathcal{T} V_{TD}\|_{\mu_{\pi}}^{2} \le \gamma^{2} \|V^{\pi} - \mathcal{T} V_{TD}\|_{\mu_{\pi}}^{2} \le \gamma^{2} \|V$$

$$\|V^{\pi} - V_{TD}\|_{\mu_{\pi}}^{2} \leq \|V^{\pi} - \Pi_{\mu_{\pi}}V^{\pi}\|_{\mu_{\pi}}^{2} + \gamma^{2}\|V^{\pi} - V_{TD}\|_{\mu_{\pi}}^{2},$$

which corresponds to eq.(??) after reordering.

Least-squares TD: the implementation

- Generate $(X_0, X_1, ...)$ from *direct execution* of π and observes $R_t = r(X_t, \pi(X_t))$
- Compute estimates

$$\hat{A}_{ij} = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) [\phi_j(X_t) - \gamma \phi_j(X_{t+1})],$$
$$\hat{b}_i = \frac{1}{n} \sum_{t=1}^{n} \phi_i(X_t) R_t.$$

• Solve $\hat{A}\alpha = \hat{b}$

Remark:

- No need for a generative model.
- If the chain is ergodic, $\hat{A} \to A$ et $\hat{b} \to b$ when $n \to \infty$.

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

Linear Temporal-Difference Least-Squares Temporal Difference Bellman Residual Minimization

Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

Let μ be a distribution over *X*, V_{BR} is the minimum *Bellman* residual w.r.t. \mathcal{T}^{π}

$$V_{BR} = rg\min_{V\in\mathcal{F}} \|T^{\pi}V - V\|_{2,\mu}$$

Bellman Residual Minimization (BRM): the idea

The mapping $\alpha \to \mathcal{T}^{\pi} V_{\alpha} - V_{\alpha}$ is affine The function $\alpha \to \|\mathcal{T}^{\pi} V_{\alpha} - V_{\alpha}\|_{\mu}^{2}$ is quadratic \Rightarrow The minimum is obtained by computing the *gradient and setting it to zero*

$$\langle r^{\pi} + (\gamma P^{\pi} - I) \sum_{j=1}^{d} \phi_{j} \alpha_{j}, (\gamma P^{\pi} - I) \phi_{i} \rangle_{\mu} = 0,$$

which can be rewritten as $A\alpha = b$, with

$$\begin{cases} A_{i,j} = \langle \phi_i - \gamma P^{\pi} \phi_i, \phi_j - \gamma P^{\pi} \phi_j \rangle_{\mu}, \\ b_i = \langle \phi_i - \gamma P^{\pi} \phi_i, r^{\pi} \rangle_{\mu}, \end{cases}$$

Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features ϕ_i are *linearly independent* w.r.t. μ

Remark: let $\{\psi_i = \phi_i - \gamma P^{\pi} \phi_i\}_{i=1...d}$, then the previous system can be interpreted as a linear regression problem

$$\|\alpha \cdot \psi - \mathbf{r}^{\pi}\|_{\mu}$$

BRM: the approximation error

Proposition

We have

$$\|V^{\pi} - V_{BR}\| \le \|(I - \gamma P^{\pi})^{-1}\|(1 + \gamma \|P^{\pi}\|) \inf_{V \in \mathcal{F}} \|V^{\pi} - V\|.$$

If μ_{π} is the *stationary policy* of π , then $\|P^{\pi}\|_{\mu_{\pi}} = 1$ and $\|(I - \gamma P^{\pi})^{-1}\|_{\mu_{\pi}} = \frac{1}{1-\gamma}$, thus

$$\|V^\pi-V_{BR}\|_{\mu_\pi}\leq rac{1+\gamma}{1-\gamma}\inf_{V\in\mathcal{F}}\|V^\pi-V\|_{\mu_\pi}.$$

BRM: the approximation error

Proof. We relate the Bellman residual to the approximation error as

$$V^{\pi} - V = V^{\pi} - T^{\pi}V + T^{\pi}V - V = \gamma P^{\pi}(V^{\pi} - V) + T^{\pi}V - (I - \gamma P^{\pi})(V^{\pi} - V) = T^{\pi}V - V,$$

taking the norm both sides we obtain

$$\|V^{\pi} - V_{BR}\| \le \|(I - \gamma P^{\pi})^{-1}\| \|\mathcal{T}^{\pi} V_{BR} - V_{BR}\|$$

and

$$\|\mathcal{T}^{\pi}V_{BR}-V_{BR}\|=\inf_{V\in\mathcal{F}}\|\mathcal{T}^{\pi}V-V\|\leq (1+\gamma\|P^{\pi}\|)\inf_{V\in\mathcal{F}}\|V^{\pi}-V\|.$$

BRM: the approximation error

Proof. If we consider the stationary distribution μ_{π} , then $\|P^{\pi}\|_{\mu_{\pi}} = 1$. The matrix $(I - \gamma P^{\pi})$ can be written as the power series $\sum_{t} \gamma (P^{\pi})^{t}$. Applying the norm we obtain

$$\|(I - \gamma P^{\pi})^{-1}\|_{\mu_{\pi}} \le \sum_{t \ge 0} \gamma^{t} \|P^{\pi}\|_{\mu_{\pi}}^{t} \le \frac{1}{1 - \gamma}$$

Assumption. A generative model is available.

- Drawn *n* states $X_t \sim \mu$
- ► Call generative model on (X_t, A_t) (with $A_t = \pi(X_t)$) and obtain $R_t = r(X_t, A_t)$, $Y_t \sim p(\cdot|X_t, A_t)$

Compute

$$\hat{\mathcal{B}}(V) = \frac{1}{n} \sum_{t=1}^{n} \left[V(X_t) - \underbrace{\left(R_t + \gamma V(Y_t) \right)}_{\hat{\mathcal{T}}V(X_t)} \right]^2$$

Problem: this estimator is biased and not consistent! In fact,

$$\begin{split} \mathbb{E}[\hat{\mathcal{B}}(V)] &= \mathbb{E}\Big[\big[V(X_t) - \mathcal{T}^{\pi}V(X_t) + \mathcal{T}^{\pi}V(X_t) - \hat{\mathcal{T}}V(X_t)\big]^2\Big] \\ &= \|\mathcal{T}^{\pi}V - V\|_{\mu}^2 + \mathbb{E}\Big[\big[\mathcal{T}^{\pi}V(X_t) - \hat{\mathcal{T}}V(X_t)\big]^2\Big] \end{split}$$

⇒ minimizing $\hat{\mathcal{B}}(V)$ *does not* correspond to minimizing $\mathcal{B}(V)$ (even when $n \to \infty$).

Solution. In each state X_t , generate two independent samples Y_t et $Y'_t \sim p(\cdot|X_t, A_t)$ Define

$$\hat{\mathcal{B}}(V) = \frac{1}{n} \sum_{t=1}^{n} \left[V(X_t) - \left(R_t + \gamma V(Y_t) \right) \right] \left[V(X_t) - \left(R_t + \gamma V(Y_t') \right) \right].$$

$$\Rightarrow \hat{\mathcal{B}} \to \mathcal{B} \text{ for } n \to \infty.$$

The function $\alpha \to \hat{\mathcal{B}}(V_{\alpha})$ is quadratic and we obtain the linear system

$$\begin{aligned} \widehat{A}_{i,j} &= \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t) - \gamma \phi_i(Y_t) \right] \left[\phi_j(X_t) - \gamma \phi_j(Y'_t) \right] \\ \widehat{b}_i &= \frac{1}{n} \sum_{t=1}^{n} \left[\phi_i(X_t) - \gamma \frac{\phi_i(Y_t) + \phi_i(Y'_t)}{2} \right] R_t. \end{aligned}$$

LSTD vs BRM

- Different assumptions: BRM requires a generative model, LSTD requires a single trajectory.
- ► The performance is evaluated differently: BRM any distribution, LSTD stationary distribution μ^{π} .

A. LAZARIC - Reinforcement Learning Algorithms

Bibliography I

Approximate Policy Iteration Bellman Residual Minimization

Reinforcement Learning

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr