

A Quick Look at the "Reinforcement Learning" course

A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA

MVA-RL Course

Why

Ínría_

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 2/24

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 3/24

- Elder care
- Exploration of unknown/dangerous environments
- Robotics for entertainment

Inría

- Autonomous robotics
- Financial applications

- Trading execution algorithms
- Portfolio management
- Option pricing

nría

- Autonomous robotics
- Financial applications
- Energy management

- Energy grid integration
- Maintenance scheduling
- Energy market regulation
- Energy production management

- Autonomous robotics
- Financial applications
- Energy management
- Recommender systems

- Web advertising
- Product recommendation
- Date matching

- Autonomous robotics
- Financial applications
- Energy management
- Recommender systems
- Social applications

- Bike sharing optimization
- Election campaign
- ER service optimization
- Resource distribution optimization

- Autonomous robotics
- Financial applications
- Energy management
- Recommender systems
- Social applications
- And many more...

What

Ínría_

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 10/24

What: Decision-Making under Uncertainty

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 11/24

How: Reinforcement Learning

Reinforcement learning is learning what to do – how to map situations to actions – so as to maximize a numerical reward signal. The learner is not told which actions to take, as in most forms of machine learning, but instead must discover which actions yield the most reward by trying them (trial-and-error). In the most interesting and challenging cases, actions may affect not only the immediate reward but also the next situation and, through that, all subsequent rewards (delayed reward).

> "An introduction to reinforcement learning", Sutton and Barto (1998).

How: the Course

Formal and *rigorous* approach to the RL's way to decision-making under uncertainty

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 13/24

How do we formalize the agent-environment interaction?

Markov Decision Process and Policy

A Markov decision process (MDP) is represented by the tuple $M = \langle X, A, r, p \rangle$ where X is the state space, A is the action space, $r : X \times A \rightarrow [0, B]$ is the reward function, p is the dynamics. At time $t \in \mathbb{N}$ a decision rule $\pi_t : X \rightarrow A$ is a mapping from states to actions and a *policy* (strategy, plan) is a sequence of decision rules $\pi = (\pi_0, \pi_1, \pi_2, ...).$

The Bellman equations

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} p(y|x, \pi(x)) V^{\pi}(y),$$
$$V^{*}(x) = \max_{a \in A} \left[r(x, a) + \gamma \sum_{y} p(y|x, a) V^{*}(y) \right].$$

How do we solve an MDP?

Dynamic Programming

Value Iteration

$$V_{k+1} = \mathcal{T}V_k$$

Policy Iteration

- Evaluate: given π_k compute V^{π_k} .
- Improve: given V^{π_k} compute $\pi_{k+1} = \text{greedy}(V^{\pi_k})$

How do we solve an MDP "online"?

Q-learning

Given a observed transition x, a, x', r update

$$Q_{k+1}(x,a) = (1-\alpha)Q_k(x,a) + \alpha \big(r + \max_{a'} Q_k(x',a')\big).$$

A. LAZARIC - Introduction to Reinforcement Learning

How do we effectively trade-off exploration and exploitation?

Multi-arm Bandit

Given K arms we define the regret over n rounds of a bandit strategy as

$$R_n = \sum_{t=1}^n X_{i^*,t} - \sum_{t=1}^n X_{I_t,t}.$$

For the UCB strategy we can prove

$$R_n \leq \sum_{i \neq i^*} \frac{b^2}{\Delta_i} \log(n).$$

A. LAZARIC - Introduction to Reinforcement Learning

How do we solve a "huge" MDP?

Approximate Dynamic Programming

Approximate Value Iteration

$$\hat{V}_{k+1} = \widehat{\mathcal{T}}\hat{V}_k$$

Approximate Policy Iteration

- Evaluate: given π_k compute \hat{V}^{π_k} .
- Improve: given \hat{V}^{π_k} compute $\hat{\pi}_{k+1} \approx \mathsf{greedy}(\hat{V}^{\pi_k})$

How "sample-efficient" are these algorithms?

Sample Complexity of LSPI

$$||V^{\pi_{\mathcal{K}}}-V^*||_{2,\rho}\leq \inf_{f\in\mathcal{F}}||V^*-f||_{2,\rho}+\frac{\mathsf{C}_{\rho}}{1-\gamma}\sqrt{\frac{\mathsf{log}(1/\delta)}{n}}.$$

A. LAZARIC - Introduction to Reinforcement Learning

See you on Tue at 11h in C103!

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 20/24

Who

Lectures

Alessandro LAZARIC

SequeL Team INRIA-Lille Nord Europe

alessandro.lazaric@inria.fr researchers.lille.inria.fr/~lazaric/ Practical Sessions Emilie KAUFMANN Telecom ParisTech emilie.kaufmann@telecom-paristech.fr

perso.telecom-paristech.fr/~kaufmann/

Ínría_

A. LAZARIC - Introduction to Reinforcement Learning

Sept 27, 2013 - 21/24

When/What/Where

Date	Торіс	Classroom
01/10	Intro/MDP	C103
08/10	Dynamic Programming	C103
15/10	RL Algorithms	C103
22/10	TP on DP and RL	C109
29/10	Multi-arm Bandit (1)	C103
05/11	<i>TP</i> on Bandit	C109
12/11	Multi-arm Bandit (2)	C103
19/11	<i>TP</i> on Bandit	C109
26/11	Approximate DP	C103
03/12	Sample Complexity of ADP	C103
10/12	TP on ADP	C109
17/12	Guest lectures + Internships	C103 (TBC)
14/01	Evaluation	C103 (TBC)

Lectures are from 11am to 1pm, TP should be from 11am to 1:15pm.

Inría

Evaluation

- Papers review + oral presentation
- Projects
- Stages
- PhD

Reinforcement Learning

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr