
Master MVA: Reinforcement Learning Lecture: 5

Approximate Dynamic Programming

Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/∼lazaric/Webpage/Teaching.html

Objectives of the lecture

1. Understand: The role of approximation in dynamic programming algorithms.

2. Use: Approximate value iteration, approximate policy iteration.

1 Dynamic Programming with Approximation

The dynamic programming algorithms introduced in Lecture 2 allow to compute the optimal value function
V ∗ and the optimal policy π∗ using value or policy iteration schemes. In practice, this is often not possible
and the optimal solutions can only be approximated. In particular, the two main sources of approximation
are:

• Representation approximation. So far we considered the finite MDP case when |X| = N , which implies
that V ∈ RN . If N is large (or X is continuous), we need to store and update a large number of
parameters to represent the functions that we want to learn. In some applications, this is not possible
and we need to define an approximation space which can represent functions on X in a compact way.
This restricts the set of functions that we can actually learn and it introduces an approximation error
(or bias).

• Sampling approximation. Dynamic programming algorithms assume that the dynamics and reward
are perfectly known. In Lecture 3 we studied how this assumption can be relaxed using reinforcement
learning algorithms. Nonetheless, these algorithms are guaranteed to converge to the exact value
function only asymptotically. When only a finite number of samples is available, these methods have
an approximation due to the non exact estimation of the value function (or Q-function). This second
source of approximation is referred to as estimation error (or variance).

In this lecture we study how approximations influence the performance of value and policy iteration algo-
rithms and the guarantees that we can still provide.

Notice: in this lecture we only focus on the setting of infinite horizon with discount γ.

1

2 Approximate Dynamic Programming

2 Performance Loss and Value Function Approximation

We want to study the impact of an approximation of V ∗ in terms of the performance of the greedy policy.
Let V be an approximation of V ∗, the greedy policy w.r.t. V is defined as

π(x) ∈ arg max
a∈A

∑
y

p(y|x, a)
[
r(x, a, y) + γV (y)

]
.

We want to provide a relationship between the approximation of V and the performance of π (in terms of
its value function V π).

Proposition 1. We consider the discounted infinite horizon setting. Let V ∈ RN be any function on X
and π its corresponding greedy policy, then

‖V ∗ − V π‖∞ ≤
2γ

1− γ ‖V − V
∗‖∞.

Furthermore, there exists ε > 0 such that if ‖V − V ∗‖∞ ≤ ε, then π is optimal.

Proof. We have the following sequence of inequalities

‖V ∗ − V π‖∞
(a)

≤ ‖T V ∗ − T πV ‖∞ + ‖T πV − T πV π‖∞
(b)

≤ ‖T V ∗ − T V ‖∞ + γ‖V − V π‖∞
(c)

≤ γ‖V ∗ − V ‖∞ + γ(‖V − V ∗‖∞ + ‖V ∗ − V π‖∞)

(d)

≤ 2γ

1− γ ‖V
∗ − V ‖∞.

(a) By definition of Bellman operators, V ∗ and V are fixed points of T and Tπ, i.e., V ∗ = T V ∗ and
V π = T πV π. Then application of triangle inequality.

(b) By definition of greedy policy T V = T πV . Furthermore, T π is a contraction in L∞-norm.

(c) By contraction of T and triangle inequality.

(d) Reordering.

Let δ = minπ ‖V π − V ∗‖∞ be the minimum gap between the optimal value function and the value of any
other (non-optimal) policy. Since the number of state and actions is finite, δ > 0. Let ε > 0 be such that

2γ

1− γ ε < δ,

then if ‖V − V ∗‖∞ ≤ ε, it follows that ‖V ∗ − V π‖∞ < δ, which implies that π is optimal.

While in the this section we analyzed the quality of the greedy policy for any approximation V , in the next
sections we study what are the possible ways to actually compute an approximation.

Approximate Dynamic Programming 3

3 Bellman Residual Minimization

Let F be a function space equipped with a norm ‖ · ‖. In the case of |X| = N , F is a vector space in RN .
Let B(V) the (norm of the) Bellman residual of a function V , defined as B(V) = ||V − T V ||. We notice
that the optimal value function V ∗ is the fixed point of the Bellman operator T V = V and thus it is the
only function with zero Bellman residual B(V ∗) = 0. Thus, we deduce that a function with small Bellman
residual is likely to be a good approximation of V . In particular, we study the property of the function
V ∈ F which minimizes the Bellman residual, i.e.,

inf
V ∈F
‖T V − V ‖.

3.1 Approximation Error

We consider the L∞-norm and we want to relate the approximation error ‖V ∗ − V ‖∞ and the performance
error ‖V ∗ − V π‖∞ (with π the greedy policy w.r.t. V) as a function of the Bellman residual B(V) =
‖T V − V ‖∞.

Proposition 2. [Williams et Baird, 1993] Let V ∈ Rn be any function, then,

1. We have

‖V ∗ − V ‖∞ ≤
1

1− γ ‖T V − V ‖∞. (1)

2. Let π be the greedy policy w.r.t. V , then

‖V ∗ − V π‖∞ ≤
2

1− γ ‖T V − V ‖∞.

3. Let assume that there exists a minimizer of the Bellman residual in F , i.e., VBR = arg minV ∈F ‖T V−
V ‖∞. Then

‖T VBR − VBR‖∞ ≤ (1 + γ) inf
V ∈F
‖V ∗ − V ‖∞. (2)

Finally, combining 2 and 3, and defining πBR as the greedy policy w.r.t. VBR, we have

‖V ∗ − V πBR‖∞ ≤
2(1 + γ)

1− γ inf
V ∈F
‖V ∗ − V ‖∞.

Proof. Statement 1. We have the following sequence of inequalities

‖V ∗ − V ‖∞
(a)

≤ ‖V ∗ − T V ‖∞ + ‖T V − V ‖∞
(b)

≤ γ‖V ∗ − V ‖∞ + ‖T V − V ‖∞
(c)

≤ 1

1− γ ‖T V − V ‖∞

(a) Triangle inequality.

(b) Contraction of T .

(c) Reordering.

4 Approximate Dynamic Programming

Statement 2. By triangle inequality we have ‖V ∗ − V π‖∞ ≤ ‖V ∗ − V ‖∞ + ‖V − V π‖∞. Then we focus on
‖V − V π‖∞. We have

‖V − V π‖∞ ≤‖V − T V ‖∞ + ‖T V − V π‖∞
≤‖T V − V ‖∞ + γ‖V − V π‖∞
≤ 1

1− γ ‖T V − V ‖∞.

Then using statement 1, we obtain

‖V ∗ − V π‖∞ ≤
2

1− γ ‖T V − V ‖∞.

Statement 3. By the contraction property we have

‖T V − V ‖∞ ≤ ‖T V − V ∗‖∞ + ‖V ∗ − V ‖∞
≤ (1 + γ)‖V ∗ − V ‖∞.

Thus the minimizer of the Bellman residual satisfies

‖T VBR − VBR‖∞ = inf
V ∈F
‖T V − V ‖∞

≤ (1 + γ) inf
V ∈F
‖V ∗ − V ‖∞

3.2 Implementation

There are a number of issues in implementing the Bellman residual minimization. Let F = {fα} be a set of
functions parameterized by a parameter α, then

• Minimizing over an L∞-norm is computationally very hard, since it implies that the Bellman residual
should be minimal over all the states.

• Even if we move to a weighted L2,µ-norm, with µ an arbitrary distribution over X, the objective
function α 7→ B(α) = ‖T Vα − Vα‖22,µ is not convex.

Thus, we move to using a gradient descent method, which is guaranteed to converge to a local minimum. In
particular, we update the parameter α using

α← α− η∇B(α)

The problem is that the gradient might not have a known functional form. So it needs to be estimated as

1. We draw n states at random from the state distribution µ, Xi ∼ µ,

2. We define the empirical Bellman residual for the current vector α as

B̂(α) =
1

n

n∑
i=1

[
T Vα(Xi)− Vα(Xi)

]2

Approximate Dynamic Programming 5

and perform a gradient descent on the sub-gradient 1

∇αB̂(α) =
2

n

n∑
i=1

[T Vα − Vα](Xi)(γP
πα − I)∇Vα(Xi),

where πα is the greedy policy w.r.t. Vα.

Again, in the general case where the dynamics (P) is unknown, the computation of T Vα(Xi) and PπαVα(Xi)
might not be simple.

4 Approximate Value Iteration

We recall that the definition of the value iteration algorithm comes from the fact that the optimal value
function V ∗ is the only fixed point of the optimal Bellman operator T . Thus, V ∗ can be applied by repeatedly
applying the operator T to any initial function V0, obtaining the value iteration algorithm

Vk+1 = T Vk.

From the contraction property of T we have that ‖V ∗−Vk+1‖∞ ≤ γ‖V ∗−Vk‖∞, which implies that Vk → V ∗.

When some form of approximation is introduced, it means that we cannot compute or store correctly the
function T Vk and an approximation error is made.

Algorithm Definition 1. In general, the approximate value iteration (AVI) algorithm is defined as

Vk+1 = AT Vk,

where A is a generic approximation operator.

A standard case for A is that we constrain the functions to belong to a space F . Then, A is usually the
projection operator of the target function (in this case T Vk) onto the space F . More formally, we have that
if A is the projection operator in some norm ‖ · ‖, then

Vk+1 = arg inf
V ∈F
‖T Vk − V ‖. (3)

Proposition 3. Let A be a projection is L∞-norm, denoted by Π∞, then A is a non-expansion and
the joint operator AT is still a contraction, which guarantees the existence of a unique fixed point
Ṽ = AT Ṽ and thus the convergence of AVI.

Notice that for computational reasons, it may be preferable to consider the standard projection operator in
a L2,µ-norm, but then Π2,µT is not a contraction and AVI is not guaranteed to converge anymore.

4.1 Approximation Error

Proposition 4. [Bertsekas & Tsitsiklis, 1996] Let V K be the function returned by AVI after K iterations

1The expression of the gradient follows from the definition of T .

6 Approximate Dynamic Programming

and πK its corresponding greedy policy. Then the performance error is bounded as

‖V ∗ − V πK‖∞ ≤
2γ

(1− γ)2
max

0≤k<K
‖T Vk −AT Vk‖∞ +

2γK+1

1− γ ‖V
∗ − V0‖∞.

Proof. Let ε = max0≤k<K ‖T Vk−AT Vk‖∞. This is the largest approximation error done over the iterations.
For any 0 ≤ k < K we have

‖V ∗ − Vk+1‖∞ ≤ ‖T V ∗ − T Vk‖∞ + ‖T Vk − Vk+1‖∞
≤ γ‖V ∗ − Vk‖∞ + ε,

then

‖V ∗ − VK‖∞ ≤ (1 + γ + · · ·+ γK−1)ε+ γK‖V ∗ − V0‖∞
≤ 1

1− γ ε+ γK‖V ∗ − V0‖∞

Since from Proposition 1 we have that ‖V ∗ − V πK‖∞ ≤ 2γ
1−γ ‖V ∗ − VK‖∞, then we obtain

‖V ∗ − V πK‖∞ ≤
2γ

(1− γ)2
ε+

2γK+1

1− γ ‖V
∗ − V0‖∞.

4.2 Implementation of Fitted Q-iteration

We now describe how the approximate value iteration algorithm can be easily implemented in the case when
Q-functions are used (instead of value functions) and a generative model assumption is made.

We recall that a generative model is a simulator which receives as input a state and action (x, a) and it
returns the corresponding reward r(x, a) and a next state generated from p(·|x, a):

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

We recall that the optimal Q-function is defined by the Bellman equation

Q∗(x, a) =
∑
y

p(y|x, a)
[
r(x, a, y) + γV ∗(y)

]
.

and its the unique fixed point of the corresponding optimal Bellman operator T defined over X ×A as:

T Q(x, a) =
∑
y

p(y|x, a)[r(x, a, y) + γmax
b
Q(y, b)].

As for the general approximate value iteration, the fitted Q-iteration algorithm can be represented as

Qk+1 = AT Qk,
where A is an approximation operator over functions defined in X × A. Unlike AVI, in this case, each
iteration reduces exactly to the solution of a regression problem. We provide two examples, depending on
the approximation scheme.

Approximate Dynamic Programming 7

Linear approximation. Let F be a vector space over X × A defined by a set of d features φ1, . . . , φd :
X ×A→ R, such that all the Q-functions in F can be represented as a linear combination of d features and
weights α. In particular, we have

F =
{
Qα(x, a) =

d∑
j=1

αjφj(x, a), α ∈ Rd
}
.

Let µ a distribution over X. We define the AVI scheme using A as the projection in L2,µ-norm onto the
space F . Thus, at each iteration we should solve the problem:

Qk+1 = arg min
Q∈F
‖Q− T Qk‖2µ.

This introduces the first source of approximation due to the function space F . Nonetheless, in practice we
cannot compute exactly the operator T and we cannot take a minimization over the weighted norm in µ.
Thus we need to introduce another source of approximation coming from sampling a finite number of points
from µ and using the generative model to approximate T . In particular, we build as sequence of functions
Qk : X ×A→ R such that at each iteration k

1. We first sample n state actions (Xi, Ai) where Xi ∼ µ and Ai is chosen uniformly at random. Then
we apply the generative model to the (Xi, Ai) pair to obtains (Ri, Yi) as Yi ∼ p(·|Xi, Ai) and Ri =
r(Xi, Ai, Yi),

2. We compute an estimation of T Qk(Xi, Ai) as Zi = Ri + γmaxa∈AQk(Yi, a) (which is unbiased since
E[Zi|Xi, Ai] = T Qk(Xi, Ai)),

3. We compute Qk+1 solving

Qk+1 = arg min
Qα∈F

1

n

n∑
i=1

[
Qα(Xi, Ai)− Zi

]2
. (4)

Since Qα is a linear function of α, the problem is a simple quadratic minimization problem which can
be solved in closed form by solving a linear system of equations of order d (number of features).

k-nearest neighbor. Before starting the actual algorithm we first

1. Sample n states Xi ∼ µ,

2. For each action a, we use the generative model to generate the next state Yi,a and the reward Ri,a
from (Xi, a)

If we compute the Q-function on the n× |A| sampled points, we can generalize it to any other state-action
pair (x, a) using the value of the k closest points, that is

Q(x, a) =
1

k

k∑
i=1

Q(Xi(x), a), (5)

where i(x) is the index of the i-th closest state to x on the grid {Xi, 1 ≤ i ≤ n}.
Using this approximation scheme, we define the fitted Q-iteration procedure by first computing from Qk the
next iteration Qk+1 only on the points in the grid as

Qk+1(Xi, a) = Ri,a + γmax
b∈A

Qk(Yi,a, b),

8 Approximate Dynamic Programming

which then defines a function over X ×A using the generalization from eq.(5).

Remark: the number of points k is critical since a very small k leads to overfitting, while a very big k leads
to bias.

Remark: instead of using a fixed number of neighbours k, we can introduce a kernel K(·, ·) measuring the
distance between states and generalizing the function as

Q(x, a) =

n∑
i=1

k(x, xi)∑n
j=1 k(x, xj)

Q(Xi, a).

Other regression methods. Since fitted Q-iteration (unlike AVI) cast the iterative process as a sequence
of regression problems, a wide range of options is available. The most popular regression methods for
fitted Q-iteration are: regularized linear regression (with L2 or L1 regularization), non-linear regression with
wavelets, neural networks, support vector machines, kernel methods (RKHS).

Problem: what are the theoretical guarantees for these algorithms when only a finite number of samples is
available? See next lecture...

4.3 Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).

Action: {(R)eplace, (K)eep}.
Cost: c(x,R) = C, c(x,K) = c(x) corresponding to the maintenance cost plus extra costs.

Dynamics: p(·|x,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0}, p(·|x,K) = x+ exp(β) with density
d(y − x).

Problem: Minimize the discounted expected cost over an infinite horizon.

Recall that the optimal value function can be expressed using the optimal Bellman equation as

V ∗(x) = min
{
c(x) + γ

∫ ∞
0

d(y − x)V ∗(y)dy, C + γ

∫ ∞
0

d(y)V ∗(y)dy
}

where the optimal policy π∗(x) is just the action which attains the minimum in the previous equation.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Figure 1: The management cost and the optimal value function.

Approximate Dynamic Programming 9

We use the parameters γ = 0.6, β = 0.6 and C = 50, the cost function c(x) and the optimal value function
V ∗(x) are depicted in Figure 1.

Linear approximation. We define the approximation space as F :=
{
Vn(x) =

∑20
k=1 αk cos(kπ x

xmax
)
}

. We

collect the samples from a uniform grid of N points over the state space and we set the initial value function
as V0 = 0.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Figure 2: Left: the target values computed as {T V0(xn)}1≤n≤N . Right: the approximation V1 ∈ F of the
target function T V0.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+++++++++++++++++++++++++

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Figure 3: Left: the target values computed as {T V1(xn)}1≤n≤N . Center: the approximation V2 ∈ F of T V1.
Right: the approximation Vn ∈ F after n iterations.

The approximate value iteration algorithm computes T V0 at the sampled points, it approximate it using
functions in F , and it reiterates the process. In Figure 4.3 we see the first iteration of this process and in
Figure 4.3 the successive iterations.

10 Approximate Dynamic Programming

V *−V
π

k

k

Asymptotic Error

Figure 4: Illustration of the performance error over time for approximate policy iteration.

5 Approximate Policy Iteration

We recall that policy iteration is composed of two main steps. Let π0 be an arbitrary policy, at each iteration
k we have

• Policy evaluation: given the current policy πk, compute V πk

• Policy improvement: given the value of the current policy, compute the greedy policy w.r.t. V πk as

πk+1(x) ∈ arg max
a∈A

[
r(x, a) + γ

∑
y∈X

p(y|x, a)V πk(y)
]
.

We now focus on the case when this process cannot be done exactly but is only approximated. In particular,
we focus on the case when the policy evaluation step suffers from an approximation error, and we obtain the
approximate policy iteration algorithm.

Algorithm Definition 2. The approximate policy iteration (API) proceeds through iterations such
that given an initial policy π0, at each iteration k two steps are executed.

• Policy evaluation: given the current policy πk, approximate its value V πk with a function Vk

• Policy improvement: given the approximated value of the current policy, compute the greedy
policy w.r.t. Vk as

πk+1(x) ∈ arg max
a∈A

[
r(x, a) + γ

∑
y∈X

p(y|x, a)Vk(y)
]
.

Problem: this algorithm is no longer guaranteed to converge, since we are not guaranteed that the policy
improvement (run on the approximated Vk) does actually return a policy which is better than the previous
one). Thus we study the asymptotic performance of the policies generated over iterations as in Figure 4

5.1 Approximation Error

Intuitively speaking, we expect that if the approximation error ‖Vk − V πk‖ at each iteration is small, then
the performance error should also be small, as proved in the next Proposition.

Approximate Dynamic Programming 11

Proposition 5. The asymptotic performance of the policies πk generated by the API algorithm is related
to the approximation error as:

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
lim sup
k→∞

‖Vk − V πk‖∞

Proof. We introduce three different elements which are crucial to describe the performance of API:

• Approximation error : ek = Vk − V πk ,

• Performance gain: gk = V πk+1 − V πk ,

• Performance loss: lk = V ∗ − V πk .

Since πk+1 is greedy w.r.t. Vk we have that Tπk+1Vk ≥ TπkVk. Thus we derive the following sequence of
inequalities (component-wise)

gk = Tπk+1V πk+1 − Tπk+1V πk + Tπk+1V πk − Tπk+1Vk + Tπk+1Vk − TπkVk + TπkVk − TπkV πk
(a)

≥ γPπk+1gk − γ(Pπk+1 − Pπk) ek
(b)

≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk) ek

(a) Definition of ek, gk, and T πk .

(b) Reordering.

This leads to the guarantee that

gk ≥ −γ(I − γPπk+1)−1(Pπk+1 − Pπk) ek, (6)

which can be interpreted as the fact that the new policy cannot be much worse than the previous one.
Although this does not correspond to the monotonic improvement we have in the exact policy iteration, it
guarantees that the performance either improve or does not decrease much and that this is strictly related
to the approximation error ek.

Now we need to define a relationship between the performance at subsequent iterations. Since Tπ
∗
Vk ≤

Tπk+1Vk we have

lk+1 = Tπ
∗
V ∗ − Tπ∗

V πk + Tπ
∗
V πk − Tπ∗

Vk

+ Tπ
∗
Vk − Tπk+1Vk + Tπk+1Vk − Tπk+1V πk

+ Tπk+1V πk − Tπk+1V πk+1

≤ γ[Pπ
∗
lk − Pπk+1gk + (Pπk+1 − Pπ∗

)ek].

If we now plug-in equation (6),

lk+1 ≤ γPπ
∗
lk + γ[Pπk+1(I − γPπk+1)−1(Pπk+1 − Pπk) + Pπk+1 − Pπ∗

]ek

≤ γPπ∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk)− Pπ∗

]ek.

Thus we obtain the fact that the performance loss changes through iterations as

lk+1 ≤ γPπ
∗
lk + γ[Pπk+1(I − γPπk+1)−1(I − γPπk)− Pπ∗

]ek.

12 Approximate Dynamic Programming

Now we need to study the asymptotic regime. Let fk = γ[Pπk+1(I−γPπk+1)−1(I−γPπk)−Pπ∗
]ek, we have

lk+1 ≤ γPπ
∗
lk + fk,

thus if we move to the lim sup we obtain,

(I − γPπ∗
) lim sup

k→∞
lk ≤ lim sup

k→∞
fk

lim sup
k→∞

lk ≤ (I − γPπ∗
)−1 lim sup

k→∞
fk,

since I − γPπ∗
is invertible. Finally, we only need to take the L∞-norm both sides and obtain,

lim sup
k→∞

‖lk‖ ≤
γ

1− γ lim sup
k→∞

‖Pπk+1(I − γPπk+1)−1(I + γPπk) + Pπ
∗‖ ‖ek‖

≤ γ

1− γ (
1 + γ

1− γ + 1) lim sup
k→∞

‖ek‖ =
2γ

(1− γ)2
lim sup
k→∞

‖ek‖.

5.2 Policy Evaluation with Linear Approximation

We now consider a specific approximation scheme for the policy evaluation step using a linear approximation.
In particular, we approximate the value function V π using a vector space F defined by the features φ1, . . . , φd :
X → R:

F = {Vα(x) =

d∑
i=1

αiφi(x), α ∈ Rd}.

The objective is to obtain the parameter α ∈ Rd such that Vα is a good approximation of V π.

5.2.1 Extension of TD(λ) to Linear Approximation

The algorithm. The TD(λ) algorithm is the same that we defined in Lecture 3, adjusted for a linear
approximation, so that the parameter vector α is updated according to the (approximated) temporal differ-
ence.

Algorithm Definition 3. We define a trace vector z ∈ Rd (same size as α) initialized to zero. Starting
from an initial state x0 we generate a sequence of states (x0, x1, x2, . . .) choosing actions according to
the policy π under evaluation. At each step t, we compute the temporal difference according to the
current approximation Vα, that is:

dt = r(xt, π(xt)) + γVα(xt+1)− Vα(xt)

and we use it to update both the parameter vector and the trace vector as:

αt+1 = αt + ηtdtzt,

zt+1 = λγzt + φ(xt+1),

where ηt is learning step and φ : X → Rd is a vector function with elements φi.

Building on the results from stochastic approximation, we have that the sequence αt+1 actually converges
and a performance guarantee can be derived for the value function returned at convergence.

Approximate Dynamic Programming 13

Approximation error.

Proposition 6 (Tsitsiklis et Van Roy, 1996). Let the learning rate ηt satisfy∑
t≥0

ηt =∞, and
∑
t≥0

η2t <∞.

We assume that there exists a distribution µ over X such that ∀x, x′ ∈ X, limt→∞ P (xt = x′|x0 = x) =
µ(x′) and that the features (φi)1≤k≤K are linearly independent. Then there exists a fixed α∗ such that

lim
t→∞

αt = α∗.

Furthermore we obtain

‖Vα∗ − V π‖2,µ ≤
1− λγ
1− γ inf

α
‖Vα − V π‖2,µ. (7)

Remark: for λ = 1, we recover the Monte-Carlo (or TD(1)) algorithm and the approximation coincides with
the best possible approximation of V π in the space F (i.e., the project of V π onto F). As λ decreases, we
obtain worse and worse approximation (due to the bias of the approximation) but we have an estimator with
much smaller variance, which allows αt to converge to α∗ much faster.

Implementation. The implementation of TD(λ) is fully online, so that at each step t, the vector α is
updated using the temporal difference dt, but then this sample is forgotten and never used again. This makes
TD(λ) a not very sample efficient algorithm, since it requires a large number of steps before converging to
α∗. In particular, it requires the same state x to be visited many times before having a stable value of Vα(x).
This leads to the definition of the more data-efficient version of TD introduced in the next section.

5.2.2 Least Squares Temporal Difference

The algorithm. In the definition of the least squares temporal difference (LSTD) algorithm, we focus on
the fact that V π is the fixed point of the Bellman operator Tπ. The objective is to learns the function in F
which better approximate V π w.r.t. a given norm ‖ · ‖.
As commented before, we could try to use a projection Π∞ in norm L∞ and exploit the fact that the operator
Π∞T π is a contraction in the L∞-norm. Nonetheless, the Π∞ is not numerically feasible when the number
of states N increases. Thus we rely on different norms such as L2 (e.g., linear regression, neural networks),
or L1 (e.g., SVM, Lasso).

In the following we focus on the L2,µ weighted norm with µ a distribution over X and the corresponding
projection Πµ defined as:

Πµg = arg min
f∈F
‖f − g‖µ.

Thus the idea is to compute the fixed point of the joint operator ΠµT
π. If this operator admits a fixed

point, then we call it the LSTD solution and we denote it by VTD. Using the illustration in Figure 5 it is
clear that the Bellman residual corresponding to VTD must be orthogonal to the approximation space F . In
particular, we have that T πVTD − VTD ⊥ F . This implies that for any 1 ≤ i ≤ d

〈T πVTD − VTD, φi〉µ = 0,

where the scalar product is defined as 〈f, g〉µ =
∑
x∈X f(x)g(x)µ(x). Further elaborating on the previous

14 Approximate Dynamic Programming

VTD = ΠµT πVTD

ΠµV
π

V π

T π

T πVTD

T π

F

Figure 5: Illustration of the LSTD solutions and the projection of V π onto F .

condition, we have that for any 1 ≤ i ≤ d:

〈rπ + γPπVTD − VTD, φi〉µ = 0

〈rπ, φi〉µ +

d∑
j=1

〈γPπφj − φj , φi〉µαTD,j = 0,

which implies that αTD can be computed as the solution of a linear system of order d.

Algorithm Definition 4. The LSTD solution αTD can be computed by computing the matrix A and
vector b defined as

Ai,j = 〈φi, φj − γPπφj〉µ
bi = 〈φi, rπ〉µ , (8)

and then solving the system Aα = b.

Approximation error. The main problem with LSTD is that in general ΠµT π may not admit a fixed
point and even when it does, it is not trivial to provide a bound on its approximation error. In fact, depending
on the choice of µ, we might have that the matrix A is not invertible.

Thus, we only focus on the case (similar to TD) when the distribution µ coincides with the stationary
distribution µπ defined by the current policy π, that is

µπP
π = µπ, and µπ(y) =

∑
x

p(y|x, π(x))µπ(x)

for any y ∈ X. Notice that fact that µπ exists is itself an assumption on the Markov chain generated by
following π in the MDP at hand. Then we can indeed guarantee that the joint operator ΠµπT π has a unique
fixed point and derive the following guarantee.

Proposition 7. Let π admit a stationary distribution µπ. Then the Bellman operator T π is a contraction
in the weighted L2,µπ -norm. Thus the joint operator ΠµπT π is a contraction and it admits a unique
fixed point VTD. Then the following approximation error guarantee holds:

‖V π − VTD‖µπ ≤
1√

1− γ2
inf
V ∈F
‖V π − V ‖µπ . (9)

Proof. We first show that the transition matrix of the Markov chain induced by π is such that ‖Pπ‖µπ = 1.

Approximate Dynamic Programming 15

In fact, we have that

‖PπV ‖2µπ =
∑
x

µπ(x)
(∑

y

p(y|x, π(x))V (y)
)2

≤
∑
x

∑
y

µπ(x)p(y|x, π(x))V (y)2

=
∑
y

µπ(y)V (y)2 = ‖V ‖2µπ .

Then it immediately follows that T π is a contraction in L2,µπ , i.e.,

‖T πV1 − T πV2‖µπ = γ‖Pπ(V1 − V2)‖µπ ≤ γ‖V1 − V2‖µπ .

Furthermore, we can show that Πµπ is a non-expansion, thus the composition of a non-expansion and a
contraction leads to the joint operator ΠµπT π which is still a γ contraction in L2,µπ with unique fixed point
VTD = ΠµπT πVTD. By Pythagorean theorem we have

‖V π − VTD‖2µπ = ‖V π −ΠµπV
π‖2µπ + ‖ΠµπV

π − VTD‖2µπ ,

but

‖ΠµπV
π − VTD‖2µπ = ‖ΠµπV

π −ΠµπT πVTD‖2µπ ≤ ‖T πV π − T VTD‖2µπ ≤ γ2‖V π − VTD‖2µπ .

Thus

‖V π − VTD‖2µπ ≤ ‖V π −ΠµπV
π‖2µπ + γ2‖V π − VTD‖2µπ ,

which corresponds to eq.(9) after reordering.

Implementation. Similar to other algorithms, the previous analysis is done only on the approximation
error coming from using a restricted linear space F . Nonetheless, the computation of matrix A still requires
the computation of the application of the transition P to the features and vector b the full knowledge
of the reward function. In general, this model is not available, so we need to rely on samples directly
generated from the environment. Unlike fitted Q-iteration, here we do not need a generative model but we
only need a single trajectory (X0, X1, . . .) obtained by executing the policy π in the environment, so that
Xt+1 ∼ p(·|Xt, π(Xt))). Let Rt = r(Xt, π(Xt)) be the reward observed at each time step t, we can construct
estimates of the matrix A and vector b (see eq.(8)) as

Âij =
1

n

n∑
t=1

φi(Xt)[φj(Xt)− γφj(Xt+1)],

b̂i =
1

n

n∑
t=1

φi(Xt)Rt.

and we compute the (approximate) LSTD solution by solving Âα = b̂. If the Markov chain is ergodic then
the empirical distribution of the states in the trajectory (Xt) tends towards the stationary distribution. Thus
we have the guarantee that when the length of the trajectory tends to infinity (n→∞) we have that Â→ A

et b̂→ b when n→∞.

Problem: what happens when the number of samples in indeed finite? See Lecture 6.

16 Approximate Dynamic Programming

V π

T π

F

T π

T πVBR arg min
V ∈F

‖V π − V ‖

VBR = arg min
V ∈F

‖T πV − V ‖

Figure 6: Illustration of the Bellman residual minimization algorithm.

5.2.3 Bellman Residual Minimization (BRM)

The Algorithm. Similar to Section 3, we use the notion of Bellman residual to choose the best approx-
imation of V π in F . In particular, we study the Bellman residual no longer w.r.t. the optimal Bellman
operator but w.r.t. the Bellman operator defined by the current policy T π. The objective is to compute

VBR = arg min
V ∈F
‖TπV − V ‖, (10)

for a given norm ‖ · ‖, as illustrated in Figure 6.

Let µ be an arbitrary distribution over X, we denote by VBR the minimum of the Bellman residual in
eq.(10) with norm L2,µ. Unlike in the case of BRM for the optimal value function, we notice that the
mapping α → T πVα − Vα is affine and thus the function α → ‖T πVα − Vα‖2µ is quadratic. The minimum
of this function can be achieved by computing the gradient and setting it to zero, thus obtaining the linear
system

〈rπ + (γPπ − I)

d∑
j=1

φjαj , (γP
π − I)φi〉µ = 0, for any 1 ≤ i ≤ d,

which can be rewritten as
Aα = b,

with matrix A and vector b defined as{
Ai,j = 〈φi − γPπφi, φj − γPπφj〉µ, for 1 ≤ i, j ≤ d
bi = 〈φi − γPπφi, rπ〉µ, for 1 ≤ i ≤ d (11)

This system always admits a solution when the features φi are linearly independent w.r.t. the chosen
distribution µ. Unlike the LSTD linear system, this does not immediately coincide with the solution of
linear regression, but we can notice that if we introduce a new basis {ψi = φi − γPπφi}i=1...d, then the
previous system can be interpreted as the minimization of the linear regression problem ‖α ·ψ− rπ‖µ, which
suggests that standard supervised learning techniques could be employed.

Approximation error. We can derive an approximation error which relates the quality of VBR to the
best approximation of V π in F .

Proposition 8. we have that

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖(1 + γ‖Pπ‖) inf
V ∈F
‖V π − V ‖. (12)

Approximate Dynamic Programming 17

Furthermore if µπ is the stationary policy of π, then ‖Pπ‖µπ = 1 and ‖(I − γPπ)−1‖µπ = 1
1−γ , thus

‖V π − VBR‖µπ ≤
1 + γ

1− γ inf
V ∈F
‖V π − V ‖µπ .

Proof. For any function V we can relate the Bellman residual to the approximation error as

V π − V = V π − TπV + TπV − V = γPπ(V π − V) + TπV − V
(I − γPπ)(V π − V) = TπV − V,

taking the norm both sides we obtain

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖‖T πVBR − VBR‖

and

‖T πVBR − VBR‖ = inf
V ∈F
‖T πV − V ‖ ≤ (1 + γ‖Pπ‖) inf

V ∈F
‖V π − V ‖,

from which we deduce eq.(12).

If we consider the stationary distribution µπ, we have that ‖Pπ‖µπ = 1 and we can use the fact that Pπ is a
stochastic matrix and that the inverse of (I − γPπ) can be written as the power series

∑
t γ(Pπ)t. Applying

the norm we obtain that ‖(I − γPπ)−1‖µπ ≤
∑
t≥0 γ

t‖Pπ‖tµπ ≤ 1
1−γ .

Implementation. We first study the implementation of the Bellman residual minimization in the general
case of an arbitrary distribution µ. We assume access to a generative model is available. We need to compute
an estimator of the Bellman residual

B(V) = ‖T πV − V ‖2µ.

We first drawn n states from the distribution µ Xt ∼ µ and we call the generative model with input (Xt, At)
(with At = π(Xt)) and obtain the reward Rt = r(Xt, At) and the next state Yt ∼ p(·|Xt, At). Thus we define
the empirical estimator

B̂(V) =
1

n

n∑
t=1

[
V (Xt)−

(
Rt + γV (Yt)

)︸ ︷︷ ︸
T̂ V (Xt)

]2
.

Problem: this estimator is biased (and not consistent)! In fact,

E[B̂(V)] = E
[[
V (Xt)− T πV (Xt) + T πV (Xt)− T̂ V (Xt)

]2]
= ‖T πV − V ‖2µ + E

[[
T πV (Xt)− T̂ V (Xt)

]2]
As a result, minimizing B̂(V) does not correspond to minimizing B(V), even when n→∞.

We can solve this problem by generating multiple samples in each state Xt. In particular, in each state Xt,
we generate two independent samples Yt et Y ′t ∼ p(·|Xt, At) and define the estimator

B̂(V) =
1

n

n∑
t=1

[
V (Xt)−

(
Rt + γV (Yt)

)][
V (Xt)−

(
Rt + γV (Y ′t)

)]
.

18 Approximate Dynamic Programming

Although this estimator now requires 2n calls to the generative mode, it returns an unbiased estimator of
the Bellman residual, since EB̂(V) = B(V). As a result, when n → ∞, we have the guarantee that the
minimum of B̂ will coincide with the minimum of B.

Since the function α→ B̂(Vα) is still quadratic, we can still reformulate the previous problem as the solution
of a linear system with

Âi,j =
1

n

n∑
t=1

[
φi(Xt)− γφi(Yt)

][
φj(Xt)− γφj(Y ′t)

]
,

b̂i =
1

n

n∑
t=1

[
φi(Xt)− γ

φi(Yt) + φi(Y
′
t)

2

]
Rt.

5.2.4 Pros and cons of LSTD and BRM

• Different assumptions: BRM requires a generative model, while LSTD only requires a single tra-
jectory.

• The performance is evaluated differently: The approximation error ‖V π − V̂ ‖µ is measure w.r.t.
the sampling distribution µ used to collect the samples. While BRM allows to use any possible sampling
distribution, LSTD is strictly bound to use the stationary distribution µπ. As a result, V π might be
very poorly approximated by VTD in the regions of the states space which are not covered by the policy
and this might result in a very poor performance once moving to the policy improvement step.

5.3 Policy Improvement

If working with value functions, the policy improvement step, after computing the approximation Vk requires
to compute a policy πk+1 defined as

πk+1(x) ∈ arg max
a∈A

[r(x, a) + γ
∑
y

p(y|x, a)Vk(y)].

This is often impossible since the reward r and the dynamics p are not known. As a result, here an additional
approximation might be needed. Fortunately, we can find a workaround for this problem by using Q-functions
instead of value functions. In fact, if an approximation Qk is provided, then the policy improvement is simply

πk+1(x) ∈ arg max
a∈A

Qk(x, a).

Let first define a vector space F defined over X ×A using features φ1, . . . , φd : X ×A→ R:

F = {Qα(x, a) =

d∑
j=1

αjφj(x, a), α ∈ Rd}.

LSTD Algorithm: We generate a trajectory (X0, X1, . . .) following the policy πk (i.e., Xt+1 ∼ p(·|Xt, πk(Xt))).

Let Rt = r(Xt, πk(Xt), then the matrix Â and the vector b̂ can be computed as

Âij =
1

n

n∑
t=1

φi(Xt, At)[φj(Xt, At)− γφj(Xt+1, At+1)],

b̂i =
1

n

n∑
t=1

φi(Xt, At)Rt.

Approximate Dynamic Programming 19

Then we solve the system Âα = b̂ and we obtain α̂TD.

BRM Algorithm: We generate nstates Xt ∼ µ, At = πk(Xt) and we simulate using a generative model the
rewards Rt = r(Xt, At) and a pair of next states Yt from Y ′t ∼ p(·|Xt, At). Let Bt = πk(Yt) and B′t = πk(Y ′t),

then the matrix Â and the vector b̂ can be computed as

Âi,j =
1

n

n∑
t=1

[
φi(Xt, At)− γφi(Yt, Bt)

][
φj(Xt, At)− γφj(Y ′t , B′t)

]
,

b̂i =
1

n

n∑
t=1

[
φi(Xt, At)− γ

φi(Yt, Bt) + φi(Y
′
t , B

′
t)

2

]
Rt.

Then we solve the system Âα = b̂ and we obtain α̂BR.

	Dynamic Programming with Approximation
	Performance Loss and Value Function Approximation
	Bellman Residual Minimization
	Approximation Error
	Implementation

	Approximate Value Iteration
	Approximation Error
	Implementation of Fitted Q-iteration
	Example: the Optimal Replacement Problem

	Approximate Policy Iteration
	Approximation Error
	Policy Evaluation with Linear Approximation
	Extension of TD() to Linear Approximation
	Least Squares Temporal Difference
	Bellman Residual Minimization (BRM)
	Pros and cons of LSTD and BRM

	Policy Improvement

