
Master MVA: Reinforcement Learning Lecture: 4

Multi-arm Bandit Framework

Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/∼lazaric/Webpage/Teaching.html

Objectives of the lecture

1. Understand: The multi-armed bandit problem and its extensions.

2. Use: UCB, Exp3, and improvements.

1 The Stochastic Multi-arm Bandit Problem

We consider K arms (i.e., actions, options) characterized by K unknown distributions (νk)1≤k≤K bounded
in [0, 1]. At each step t, the learner selects an arm It ∈ {1, . . . ,K} and observes a reward xt ∼ νIt , which is
an independent sample drawn from the distribution corresponding to the chosen arm, i.e., νIt . The objective
of the learner is to maximize the expected sum of rewards over time.

Let µk = EX∼νk [X] be the expectation of each arm and µ∗ = maxk µk the expected value of the optimal
arm (in expectation). If the learner knew the distribution, it would select the best arm k∗ = arg maxk µk
at each time step, thus obtaining an average reward of µ∗. Since the distributions are unknown, the learner
needs to explore all the different arms to collect information (exploration) which can later be used to act
optimally (exploitation). This leads to the so-called exploration-exploitation dilemma.

In order to evaluate the performance of a given strategy, we define at which speed the average reward
obtained by the strategy converges to the average optimal reward. We introduce the notion of regret as
follows.

Definition 1. Given a time horizon of n steps, a given strategy which observes the sequence of rewards xtt
suffers from a cumulative regret:

Rn = nµ∗ −
n∑
t=1

xt,

where xt is an i.i.d. realization from the distribution νIt of the arm It chosen by the strategy at time t.

The regret measures the difference between the (expected) cumulative reward that would be obtained by
repeatedly pulling the optimal arm and the reward accumulated by the strategy.

In particular, we study the regret in expectation, i.e., ERn, which can be written as

ERn = nµ∗ − E
n∑
t=1

µIt = E
K∑
k=1

Tk(n)(µ∗ − µk) = E
K∑
k=1

Tk(n)∆k,
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where ∆k = µ∗ − µk is the gap between the optimal arm and arm k and Tk(n) =
∑n
t=1 I{It = k} is the

number of times arm k has been pulled until step n. Then a good leaner should pull the sub-optimal arms
as rarely as possible depending on their gaps.

1.1 The Upper-Confidence Bound (UCB) Algorithm

Algorithm Definition 1. At each time instant t, the UCB [Auer et. al, 2002] strategy pulls the arm

It = arg max
k

Bt,Tk(t−1)(k), with Bt,s(k) = µ̂k,s +

√
3 log t

2s
,

where µ̂k,s = 1
s

∑s
i=1 xk,i is the empirical mean of the rewards observed by pulling arm k (i.e., xk,i is

the i-th reward received from arm k).

The UCB strategy follows the celebrated optimism in face of uncertainty principle. In fact, the
Bt,Tk(t−1)(k) value is a high-probability upper bound on the expected value µk. Thus, UCB selects the
arm which has the best value if all the arms had the best possible value compatible with the observations
obtained so far.

In fact, from Chernoff-Hoeffding inequality we have that for any sequence of s i.i.d. random variables
Xi ∈ [0, 1] with common mean µ = EXi we have that

P
(1

s

s∑
i=1

Xi − µ ≥ ε
)
≤ e−2sε2 , and P

(1

s

s∑
i=1

Xi − µ ≤ −ε
)
≤ e−2sε2 . (1)

Thus for any fixed 1 ≤ s ≤ t

P
(
µ̂k,s +

√
3 log t

2s
≤ µk

)
≤ e−3 log(t) = t−3. (2)

And

P
(
µ̂k,s −

√
3 log t

2s
≥ µk

)
≤ e−3 log(t) = t−3. (3)

Proposition 1. Any sub-optimal arm k 6= k∗ is pulled by UCB at most

ETk(n) ≤ 6
log n

∆2
k

+
π2

3
+ 1

times. Thus, the corresponding regret is bounded as

ERn =
∑
k

∆kETk(n) ≤ 6
∑

k:∆k>0

log n

∆k
+K

(π2

3
+ 1
)
.

This result implies that UCB has a cumulative regret which grows as log(n).

Proof. Let’s start with an intuitive argument. Let suppose that at time t the empirical averages of all the
arms are indeed contained in their confidence intervals, that is

µk −
√

3 log t

2s

(a)

≤ µ̂k,s
(b)

≤ µk +

√
3 log t

2s
. (4)
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where s = Tk(t− 1). Let k be any suboptimal arm and k∗ an optimal arm. If arm k is pulled at time t, then
by definition of the algorithm it means that Bt,Tk(t−1)(k) ≥ Bt,Tk∗ (t−1)(k

∗), which corresponds to

µ̂k,s +

√
3 log t

2s
≥ µ̂k∗,s∗ +

√
3 log t

2s∗
, (5)

where s = Tk(t− 1) and s∗ = Tk∗(t− 1). Thus according to(4) we obtain

µk + 2

√
3 log t

2s
≥ µ∗,

which corresponds to an upper bound on the number of pulls

s ≤ 6 log t

∆2
k

.

More in detail, for any positive integer u we have that

Tk(n) ≤ u+

n∑
t=u+1

I{It = k;Tk(t) > u}

≤ u+

n∑
t=u+1

I{∃s : u < s ≤ t, ∃s∗ : 1 ≤ s∗ ≤ t, Bt,s(k) ≥ Bt,s∗(k∗)} (6)

Following the previous reasoning, the event {Bt,s(k) ≥ Bt,s∗(k∗)} (i.e, (5)) implies that s ≤ 6 log t
∆2
k

or that

either one of the two inequalities (a) or (b) in (4) are not true. If we choose u = 8 log(n)
∆2
k

+ 1, then either (a)

or (b) is not satisfied. Nonetheless, from (2), inequality (a) is not true with a probability ≤ t−3, while from
(3) inequality (b) is not true with a probability ≤ t−3.

Thus, taking the expectation on both sides of (6),

E[Tk(n)] ≤ 6 log(n)

∆2
k

+ 1 +

n∑
t=u+1

[ t∑
s=u+1

t−3 +

t∑
s=1

t−3
]

≤ 6 log(n)

∆2
k

+
π2

3
+ 1

Beside the previous regret bound, we can also derive the following distribution independent bound.

Proposition 2. The UCB algorithm has a (uniform) regret of

ERn ≤
√
Kn(6 log n+

π2

3
+ 1)

Proof. From Cauchy-Schwarz,

ERn =
∑
k

∆k

√
ETk(n)

√
ETk(n)

≤
√∑

k

∆2
kETk(n)

∑
k

ETk(n)

≤
√
Kn(6 log n+

π2

3
+ 1).
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1.2 Lower Bounds

We also have an asymptotic distribution-dependent lower-bound (for a rather large set of distributions) [Lai
et Robbins, 1985]:

lim sup
n

ETk(n)

log n
≥ 1

KL(νk||ν∗)
,

where the Kullback-Leibler distance is KL(ν||ν′) =
∫
dν log(dν/dν′). Then ERn = Ω(log n).

We also have a non-asymptotic distribution-independent lower-bound (see e.g., [Cesa-Bianchi et Lugosi,
Prediction, Learning, and Games, 2006]):

inf
alg

sup
prob

Rn = Ω(
√
nK).

1.3 Improvements

• We can use the empirical variance to refine the precision of the confidence intervals. See [Audibert,
Munos, Szepesvari, Use of variance estimation in the multi-armed bandit problem, 2008].

• We can use the whole empirical distribution instead of only the empirical average, obtaining KL-
UCB algorithms ([Garivier, Capp, The KL-UCB Algorithm for Bounded Stochastic Bandits and Be-
yond, 2011] and [Maillard, Munos, Stoltz, Finite-time analysis of multi-armed bandits problems with
Kullback-Leibler divergences, 2011]).

• Improved minimax bounds [Audibert, Bubeck, Minimax Policies for Adversarial and Stochastic Ban-
dits, 2009] matching the lower bound

√
Kn.

1.4 Extensions

There are a large number of extensions to the problem of stochastic bandit with K arms

• Bandit in MDP [Jaksch, Ortner, Auer. Near-optimal regret bounds for reinforcement learning, 2010].
A UCB-based exploration-exploitation strategy in an MDP.

• Contextual bandits. A each step t, the learner observes a context xt ∈ X and take a decision at ∈ A.
The reward is a function of at and xt. The regret is measured w.r.t. a class of strategies π : X → A.

• Bandit with a countable set of arms. [Wang, Audibert, Munos, Algorithms for inifinitely many-
armed bandits, 2008]. Each new arm has a probability εβ of being ε-optimal. Then the learner has to
trade-off exploration - exploitation - discovery.

• Linear bandit [Dani, Hayes, Kakade, Stochastic Linear Optimization under Bandit Feedback, 2008]
The learner selects an arm xt ∈ X ⊂ Rd and the reward is a linear combination rt = xt · α, where
α ∈ Rd is an unknown parameter vector. The regret is measure w.r.t. maxx∈X x · α.

• Bandits in a metric space [Kleinberg, Slivkins, Upfal, Multi-armed bandits in metric spaces, 2008],
[Bubeck, Munos, Stoltz, Szepesvari, Online optimization in X-armed bandits, 2008]. The learner
chooses an arm xt ∈ X in a metric space. The expected reward f(xt) is assumed to be Lipschitz. The
regret is measured w.r.t. supx∈X f(x). This is an online optimization problem.
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• Hierarchical bandits Algorithms UCT [Kocsis et Szepesvari. Bandit based monte-carlo planning.,
2006], BAST [Coquelin et Munos, Bandit algorithms for tree search, 2007], HOO [Bubeck, Munos,
Stoltz, Szepesvari, Online optimization in X-armed bandits, 2008]. Application to the game of Go
(MoGo) [Gelly, Wang, Munos, Teytaud. Modification of UCT with patterns in monte-carlo go, 2006].
Use of the bandit algorithms in a hierarchical structure in order to search in tree structures.

• Optimistic planning Use of the optimism in face of uncertainty principle for planning. See [Hren et
Munos, Optimistic planning for deterministic systems, 2008], [Bubeck et Munos, Open Loop Optimistic
Planning, 2010], [Busoniu, Munos, De Schutter, Babuska, Optimistic planning for sparsely stochastic
systems, 2011].
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A Concentration Inequalities

Proposition 3 (Chernoff-Hoeffding Inequality). Let Xi ∈ [ai, bi] be n independent random variables with
mean µi = EXi. Then

P
(∣∣ n∑
i=1

Xi − µi
∣∣ ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
. (7)

Proof. We have

P(

n∑
i=1

Xi − µi ≥ ε) = P(es
∑n
i=1Xi−µi ≥ esε)

≤ e−sεE[es
∑n
i=1Xi−µi ], Markov inequality

= e−sε
n∏
i=1

E[es(Xi−µi)], independent random variables

≤ e−sε
n∏
i=1

es
2(bi−ai)2/8, Hoeffding inequality

= e−sε+s
2 ∑n

i=1(bi−ai)2/8

If we choose s = 4ε/
∑n
i=1(bi − ai)2, then P

(∑n
i=1Xi − µi ≥ ε

)
≤ e
− 2ε2∑n

i=1
(bi−ai)2 . Similar computation for

P
(∑n

i=1Xi − µi ≤ −ε
)

leads to the result in eq. (7).
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