Homework: Dynamic Programming and Reinforcement Learning

Lecturer: Alessandro Lazaric
http://researchers.lille.inria.fr/~lazaric/Webpage/Teaching.html

Deadline: February 21 at 23:59

1 The One-Site Tree Cutting Problem

We would like to formalize the tree cutting problem and compute the strategy which maximizes the revenue. A tree keeps growing over time with a rate which may depend on the weather and it stops when it reaches a certain maximum height. At the same time the tree may get a disease, in which case it dies and looses all its value. When the company decides to cut a tree, it gains an amount of money which is proportional to the height of the tree. Whenever a tree is cut (or it is dead), a new tree has to planted with a fixed cost. Knowing that the one unit of money looses value over time, find the optimal cutting strategy.

1.1 A Bit More Formal Definition of the Environment

- State space: the (discrete!) height of the tree (constrained to a maximum height)
- Initial state: the height of the tree is set to zero
- Action space either cut or not the tree
- Dynamics:
- If no cut: the tree grows up to a maximum height by a number of units which depend on the (random!) weather. It may also (randomly!) get a disease.
- If cut: a new tree is planted with an initial height of one unit.
- Reward:
- If no cut: a fixed amount of maintenance cost
- If cut: the value of each unit of wood times the height of the tree minus the cost of planting a new tree.
- Discount factor: we assume a bank interest rate $r=0.05$, and so discount factor is set of $\gamma=1 /(1+r)$.

1.2 Work to do

1. Formalize the problem more precisely (some decisions are of course arbitrary, such as the influence of the weather on the growth) and implement two functions:
(a) tree_sim which receives as input a state and an action and it returns the next state and the reward.
(b) tree_MDP which returns the dynamics and the reward function (in suitable structures).
2. Policy evaluation: define an arbitrary policy and evaluate it in the initial state using one RL method (Monte-Carlo or $\mathrm{TD}(0)$) and one dynamic programming method (matrix inversion or Bellman operator).

- For both of them chart $V_{n}\left(x_{0}\right)-V^{\pi}\left(x_{0}\right)$ where $x_{0}=I, V^{\pi}$ is computed with $\mathrm{DP}, V_{n}\left(x_{0}\right)$ is the value function estimated by the algorithm after n trajectories.
- Notice: at each repetition you will obtain different estimates since the transitions are random, so multiple runs of the same experiments are needed. Plot the average result.

3. Optimal policy: compute the optimal policy with Q-learning and one dynamic programming method (value iteration or policy iteration).

Notes on the implementation of Q-learning

- Start from I
- Select an action as $a^{+}=\arg \max Q(s, a)$ with probability $1-\epsilon$ and randomise with probability ϵ

Measure of performance for Q-learning, at the end of each episode

- Performance in the initial state $\left|V^{*}(I)-V^{\pi_{n}}(I)\right|$, where π_{n} is the greedy policy w.r.t. Q_{n}
- Performance over all the other state $\left\|V^{*}-V^{\pi_{n}}\right\|_{\infty}$
- Reward cumulated over the episode

2 Extras

1. Study how the obtained results change when changing some of the parameters of the problem (initial height, cost of planting a new tree, gain in selling a tree, and so on).
2. Consider the case where we have two sites where we can grow trees. At each point in time, the decision is whether to cut a tree and which one and the state should consider both sites. Implement the extension or discuss how it could be implemented.
3. Propose a model (and test Q-learning on it) to solve the problem sketched herehttp://stackoverflow. com/questions/8337417/markov-decision-process-value-iteration-how-does-it-work
