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From DP to ADP

» Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(-|x, a)
» reward function r(x, a)
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human-computer-interaction).

-
brzia—
. A. LAZARIC — Reinforcement Learning Algorithms Dec 2nd, 2014 - 3/82



From DP to ADP

» Dynamic programming algorithms require an explicit
definition of
> transition probabilities p(-|x, a)
» reward function r(x, a)

» This knowledge is often unavailable (i.e., wind intensity,
human-computer-interaction).

» Can we rely on samples?
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» Dynamic programming algorithms require an exact
representation of value functions and policies
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» Dynamic programming algorithms require an exact
representation of value functions and policies

» This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).
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From DP to ADP

» Dynamic programming algorithms require an exact
representation of value functions and policies

» This is often impossible since their shape is too “complicated”
(e.g., large or continuous state space).

» Can we use approximations?
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The Objective

Find a policy 7 such that

the performance loss ||V* — V|| is as small as possible
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error
error = ||V — V7|
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function

V* with an error
error = ||V — V7|

how does it translate to the (loss of ) performance of the greedy
policy

m(x) € argmax > p(y|x, a)[r(x, 2,y) + 7V (y)]
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From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error

error = ||V — V7|
how does it translate to the (loss of ) performance of the greedy
policy
€ ,a, v
m(x) € arg max Zy: p(ylx, a)[r(x. a,y) +9V(y)]
i.e.

performance loss = ||V* — V7|
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From Approximation Error to Performance Loss

Let V € RN be an approximation of V* and 7 its corresponding
greedy policy, then

2
IV = Voo < —— [V* = V]| .
I e 1—’}/%,_/

performance loss approx. error

Furthermore, there exists € > 0 such that if ||V — V*||« <€, then
7 is optimal.
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From Approximation Error to Performance Loss

Proof.

V¥ = VT < ITV* =TV +[|[TTV = T" V7"l
STV =TV +AV = VT
< VHV* — Voo +([[V = Voo + [[V* = VT||)
< —Hv* Voo-
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Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Value lteration
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From Approximation Error to Performance Loss

Question: how do we compute a good V7
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From Approximation Error to Performance Loss

Question: how do we compute a good V7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*.

. Cbreia—
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From Approximation Error to Performance Loss

Question: how do we compute a good V7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*.

Solution: value iteration tends to learn functions which are close
to the optimal value function V*.
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Value lteration: the ldea

1. Let Qg be any action-value function
2. At each iteration k=1,2,... K

» Compute

Qur1(x, ) = TQu(x, a) = r(x,a)+)_ p(ylx, a)y max Qi(y, b)

3. Return the greedy policy 4

mK(x) € argmax Qx(x, a).
acA
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Value lteration: the ldea

[y

Let Qo be any action-value function

N

. At each iteration k=1,2,... K

» Compute

Qur1(x, ) = TQu(x, a) = r(x,a)+)_ p(ylx, a)y max Qi(y, b)

y

@

Return the greedy policy

mK(x) € argmax Qx(x, a).
acA

v

Problem: how can we approximate T Qx?

v

Problem: if Qxy1 # T Qx, does (approx.) value iteration still work?
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Linear Fitted Q-iteration: the Approximation Space

Linear space (used to approximate action—value functions)

f'

{f(x, a) = Zd:ajcpj(x, a), a€ ]Rd}

j=1

. brezia~
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Linear Fitted Q-iteration: the Approximation Space

Linear space (used to approximate action—value functions)

f'

{f(x, a) = Zd:ajcpj(x, a), a€ ]Rd}

j=1

with features

wj: X x A= [0, L] o(x,a) = [p1(x, a) ... pq4(x, a)]T
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Linear Fitted Q-iteration: the Samples

Assumption: access to a generative model, that is a black-box
simulator sim() of the environment is available.
Given (x, a),

Sim(Xva):{y7r}v withywp(-|x,a),r:r(x,a)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
Fork=1,...,K
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)

3. Compute y; = r; +ymax, ak—1(X,-/, a)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
3. Compute y; = r; + ymax, ak_l(x,f, a)
4. Build training set {((X,-, a;),y;)};’:l
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

. Sample x! ~ p(-|x;, a;) and r; = r(x;, a;)

. Build training set {((X,-, a;),y;)};’:l

2
3. Compute y; = r; + ymax, CA?k_l(x,’, a)
4
5. Solve the least squares problem

n

1

fa = arg min_— > (falxia) — vi)’
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n

Initial function CA,?O e F
For k=1,...,K N
1. Draw n samples (x;,2;) % p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)
3. Compute y; = r; + ymax, ak_l(x,f, a)

4. Build training set {((X,-, a;),y;)};’:l
5

. Solve the least squares problem
n

1

fa = arg min_— > (falxia) — vi)’

i=1

6. Return Qx = fs, (truncation may be needed)
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Linear Fitted Q-iteration

Input: space F, iterations K, sampling distribution p, num of samples n
Initial function CA,?O eF
Fork=1,...,K N

1. Draw n samples (x;, a;) £S p

2. Sample x/ ~ p(-|x;, a;) and r; = r(x;, a;)

3. Compute y; = r; + ymax, CA?k_l(x,’, a)

4. Build training set {((X,-, a;),y;)};’:l

5. Solve the least squares problem

L 2
fa, = arg min — Z (fa(x,-, a;) —y,-)

fa€F N

i=

6. Return Qx = fs, (truncation may be needed)

Return 7 (-) = arg max, CAQK(~, a) (greedy policy)
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Linear Fitted Q-iteration: Sampling

1. Draw n samples (x;, a;) i p

2. Sample x! ~ p(:|x;, a;) and r; = r(x;, a;)

. lrezia~
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Linear Fitted Q-iteration: Sampling

1. Draw n samples (x;, a;) i p

2. Sample x! ~ p(:|x;, a;) and r; = r(x;, a;)

» In practice it can be done once before running the algorithm

» The sampling distribution p should cover the state-action space in
all relevant regions

» If not possible to choose p, a database of samples can be used
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Linear Fitted Q-iteration: The Training Set

4. Compute y; = r; + v max, (A{)k,l(x,’, a)
5. Build training set {((x;, a,-),y,-)};;l
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Linear Fitted Q-iteration: The Training Set

4. Compute y; = r; + v max, (A{)k,l(x,’, a)
5. Build training set {((x;, a,-),y,-)};’:1

» Each sample y; is an unbiased sample, since
E[yl"Xiv ai] = E[ri + mfx ak—l(xila a)] = I’(X,', ai) + ’YE[maaX ak—l(xi/v a)]
= r(x;, ai) + 7/ m;?X CA?H(X’, a)p(dy|x,a) = Tf?kfl(x,-, a;)
X

» The problem “reduces” to standard regression
> It should be recomputed at each iteration

. Crzia—~
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Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

I
fa, = arg min_— > (falxir @) —y)?

7. Return Qx = fs, (truncation may be needed)
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Linear Fitted Q-iteration: The Regression Problem

6. Solve the least squares problem

I
fa, = arg min_— > (falxir @) —y)?

7. Return Qx = fs, (truncation may be needed)

» Thanks to the linear space we can solve it as

> Build matrix ® = [¢(xq, a1)" ... ¢(xn, an) "]

» Compute &% = (T )1 Ty (least-squares solution)

> Truncation to [— Vinax; Vinax] (With Vinax = Rmax/(1 — 7))
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Sketch of the Analysis

final error
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Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution p

Q" = Q7 ||, < 777
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Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution p

Q" = Q7 ||, < 777

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution p

T Qk—1— Qll, < 777
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Theoretical Objectives

Objective: derive a bound on the performance (quadratic) loss
w.r.t. a testing distribution p

Q" = Q7 ||, < 777

Sub-Objective 1: derive an intermediate bound on the prediction
error at any iteration k w.r.t. to the sampling distribution p

T Qk—1— Qll, < 777

Sub-Objective 2: analyze how the error at each iteration is
propagated through iterations

1Q* — Q7%||,, < propagation(||T Qk_1 — Qxl|,)

. Cbreia—
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The Sources of Error

» Desired solution

Qe =T Qi1
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The Sources of Error

» Desired solution

Qu =T Q1
» Best solution (wrt sampling distribution p)

fug = arg inf_[Ifu ~ Qull

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Dec 2nd, 2014 - 20/82



The Sources of Error

» Desired solution

Qu =T Q1
» Best solution (wrt sampling distribution p)

fug = arg inf_[Ifu ~ Qull

= Error from the approximation space F

. Cbreia—
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The Sources of Error

» Desired solution

Qu =T Q1
» Best solution (wrt sampling distribution p)

fug = arg inf_[Ifu ~ Qull

= Error from the approximation space F
» Returned solution

1 n
f@k = arg fmem]—'g Z (fa(Xiv 3!') - )/i)2

=
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The Sources of Error

» Desired solution

Qu =T Q1
» Best solution (wrt sampling distribution p)

fug = arg inf_[Ifu ~ Qull

= Error from the approximation space F

» Returned solution

n

1
f@k = arg fmem]—'g Z (fa(Xiv 3!') - )/i)2

=

= Error from the (random) samples
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Per-lteration Error

At each iteration k, Linear-FQI returns an approximation ak such
that (Sub-Objective 1)

1@k — Qllo < 411 Qu — £zl

+ o((vmax+ Llleg)

N O(Vma /dlogn/5>
n )

Tools: concentration of measure inequalities, covering space, linear algebra, union

log 1 /5)

n

with probability 1 — §.

bounds, special tricks for linear spaces, ...

. brezia~
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Per-lteration Error

1@k — Qull, < 4/1Qk — ful,

. log1/d
+0( (Viac + L)y 2212
+O<Vmax' /dIogn/O)
n

A. LAZARIC — Reinforcement Learning Algorithms Dec 2nd, 2014 - 22/82



Per-lteration Error

1@k — Qully < 4/|Qk — fu ],

n

+0( (Vo + Ll
n O<Vmax /dloin/é)

> No algorithm can do better

log 1 /5)

Remarks

» Constant 4
» Depends on the space F
» Changes with the iteration k

. Crzia—~

A. LAZARIC — Reinforcement Learning Algorithms Dec 2nd, 2014 - 23/82



Per-lteration Error

1@k — Qull, < 4/|Qk — fu ],

0 (Vi + il 222
+O(Vmax\/(“ogn/5)

> Vanishing to zero as O(n~'/?)

Remarks

» Depends on the features (L) and on the best solution (||c||)

. brezia~
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Per-lteration Error

1Qk = Qullp < 4IQk — farll,

+o((vmax+uram)\/@>
+ O(Vmax\/@>

» Vanishing to zero as O(n~1/?)

Remarks

» Depends on the dimensionality of the space (d) and the
number of samples (n)
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Error Propagation

Objective

Q" = Q7 [,
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Error Propagation

Objective

Q" = Q7 [,

» Problem 1: the test norm p is different from the sampling
norm p

. Clreia—
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Error Propagation

Objective
Q" — Q™l,

» Problem 1: the test norm p is different from the sampling

norm p
» Problem 2: we have bounds for /C\)k not for the performance
of the corresponding 7y

-
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Error Propagation

Objective
Q" — Q™l,

» Problem 1: the test norm p is different from the sampling
norm p

» Problem 2: we have bounds for /C\)k not for the performance
of the corresponding 7y

» Problem 3: we have bounds for one single iteration

-
bezia—
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Error Propagation

Transition kernel for a fixed policy P™.
> m-step (worst-case) concentration of future state distribution

d(uP™ ... P™)
c(m) = sup —_— < 0
( ) T1...Tm dp

o0
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Error Propagation

Transition kernel for a fixed policy P™.
> m-step (worst-case) concentration of future state distribution

d(uP™ ... P™)
c(m) = sup —_— < 0
( ) T1...Tm dp

o0

> Average (discounted) concentration

Cup = (1 =7)? Z my™ te(m) < +oo

m>1
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Error Propagation

Remark: relationship to top-Lyapunov exponent

1
L™ = suplim sup p log™ (|[pP™ P™ - P™||)

T m—0o0

If Lt < 0 (stable system), then c(m) has a growth rate which is
polynomial and C, , < oo is finite

. Cbreia—
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Error Propagation

Let ¢, = Qx — @k be the propagation error at each iteration, then
after K iteration the performance loss of the greedy policy mk is

2y 1? K
*_ OmK|12 < Y 2 2 2
10" = @I < | 7205 | Gupmaxllad s + O gz Voo )

. Cbreia—
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The Final Bound

Bringing everything together...

2y 2 'YK
* K []2 < | 2 o 2
Q" — Q™[5 < [(1_7)2] c#,pmfxlek|,,+o<(1_7)3vmax

. bezia~
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The Final Bound
Bringing everything together...

2y 2 'YK
* K []2 < | 2 o 2
Q" — Q™[5 < [(1_7)2] c#,pmfxlek|,,+o<(1_7)3vmax

llekllp = 11 Qk — Qillp < 41Qk — faz |l

N o((vmax + LMI)W)
+ O(Vmax\/@>
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The Final Bound

Theorem (see e.g., Munos,’'03)

LinearFQI with a space F of d features, with n samples at each iteration
returns a policy wx after K iterations such that

2

. - v L | /dlogn/s
Q" -@Q |uS(l_7)2\/m<4d(f,T.7:)+O<Vmax(1+\/a)\/in>>

’YK 2
+ o(ivmax )
(1-9)3
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

* K 2y L dlogn/é
Q" — Q™ || Swm<4d(f,Tf) + o(vmax(1+ W)\/ﬂ))

’YK 2
O ————— Vimax
o ((1—7)3 m )

The propagation (and different norms) makes the problem more complex
= how do we choose the sampling distribution?

. brezia~
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

gl <2 Ly, [dlogn/s
Q" - @ |;LS(17)2\/m(4d(]:,7-]:)+0<Vmax(l+ﬁ)ﬁ)>

The approximation error is worse than in regression

. lrezia~
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The Final Bound

The inherent Bellman error

HQk - f()/;

p:flg;HQk*fIIp
inf [T Qx—1—fl],
feF
inf ([T oy — fllp
inf —fl|, = d(F,TF
gsggflgflng |lp =d(F, TF)

IN

IN

Question: how to design F to make it “compatible” with the Bellman
operator?

. Cbreia—
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

Q" — @"K]|, sm\ﬁcﬂ,p(ma TF) + O(Vmax(l + ;E)WD

’YK 2
+ O(ivmax )
(1-9)?

The dependency on « is worse than at each iteration
= is it possible to avoid it?

. brezia~
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

‘g <2 Ly [diogn/s
Q* - Q |#g(l_7)2\/Cu,p<4d(.7-',7']-')+O(Vmax(1+\/5) - >>

K
+ 0(777 vmaxz)

The error decreases exponentially in K
= K~ e/(1-7)

. brezia~
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

19" — Q7L s(lf”v)z\ﬁcﬂ,p(mf, TF) + o(vmax(l + ﬁ)\/mw

’YK 2
+ O(ivmax )
(1-9)?

The smallest eigenvalue of the Gram matrix
= design the features so as to be orthogonal w.r.t. p

. brezia~
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The Final Bound

LinearFQI with a space F of d features, with n samples at each iteration returns a
policy wi after K iterations such that

19" — Q7L s(lf”v)z\ﬁcﬂ,p(mf, TF) + o(vmax(l 4 ;E)WD

’YK 2
+ O(ivmax )
(1-9)?

The asymptotic rate O(d/n) is the same as for regression

. brezia~
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Summary
Qi — Qi

Propagation

Approximation i .
algorithm Dynamic programming
algorithm
Samples Performance
(sampling strategy, number) Markov decision
process
number n, sampling dist. p

Concentrability C), ,
Range Viax

Approximation
space

d(F, TF)
size d, features w

Algorithms



Other implementations

Replace the regression step with

» K-nearest neighbour

v

Regularized linear regression with L; or L, regularisation

Neural network

v

v

Support vector regression
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

» ¢c(x,R)=C

» c(x, K) = c(x) maintenance plus extra costs.
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
» ¢c(x,R)=C
» c(x, K) = c(x) maintenance plus extra costs.
Dynamics:
» p(-|x, R) = exp(3) with density d(y) = Bexp~? I{y > 0},
» p(-|x, K) = x + exp(B) with density d(y — x).
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Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
» ¢c(x,R)=C
» c(x, K) = c(x) maintenance plus extra costs.
Dynamics:
» p(-|x, R) = exp(3) with density d(y) = Bexp~? I{y > 0},
» p(-|x, K) = x + exp(B) with density d(y — x).
Problem: Minimize the discounted expected cost over an infinite
horizon.
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Example: the Optimal Replacement Problem

Optimal value function

oo

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()
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Example: the Optimal Replacement Problem

Optimal value function

oo

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum
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Example: the Optimal Replacement Problem

Optimal value function

oo

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum

Value function

Management cost

wear K R, K RK R
T W T A
s w
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Example: the Optimal Replacement Problem

Optimal value function

oo

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum

Value function

Management cost

wear K R, K RK R
T 0 T A
s w

Linear approximation space F := {V,,(x) = 2,2(0:1 ok cog(kﬂ%)}.

. brezia~
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Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.
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Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.

Figure: Left: the target values computed as {7 Vo(x»)}}1<n<n. Right:
the approximation Vi € F of the target function T V.
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Example: the Optimal Replacement Problem

Figure: Left: the target values computed as {7 Vi(x,)}1<n<n. Center:
the approximation V, € F of T V4. Right: the approximation V, € F
after n iterations.
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Example: the Optimal Replacement Problem

Simulation
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Approximate Dynamic
Programming

(a.k.a. Batch Reinforcement Learning)

Approximate Policy lteration
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Policy lteration: the Idea

1. Let my be any stationary policy
2. At each iteration k=1,2,... K
» Policy evaluation given m, compute V, = V™,

» Policy improvement: compute the greedy policy

Tr+1(x) € arg maxaea [r(x, a)+~y Z p(y|x,a)V7x (y)] .
y
3. Return the last policy g

. Cbreia—
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Policy lteration: the Idea

1. Let my be any stationary policy
2. At each iteration k=1,2,... K
» Policy evaluation given m, compute V, = V™,

» Policy improvement: compute the greedy policy

Tr+1(x) € arg maxaea [r(x, a)+~y Z p(y|x,a)V7x (y)] .
y
3. Return the last policy g

» Problem: how can we approximate V7?7

> Problem: if V| # V™, does (approx.) policy iteration still work?

. Cbreia—
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Approximate Policy lteration: performance loss

Problem: the algorithm is no longer guaranteed to converge.
Vv
} Asymptotic Error

‘ k

The asymptotic performance of the policies 7w, generated by the API
algorithm is related to the approximation error as:

2
limsup [V* = V¥l < ——— limsup || Vi — V™|oo
k00 e " (1 =) ko0 ———

performance loss approximation error

. lrezia~
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Least-Squares Policy Iteration (LSPI)

LSPI uses

» Linear space to approximate value functions*

F = {f(x) = i%‘%‘(X% e Rd}

. brezia~
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Least-Squares Policy Iteration (LSPI)

LSPI uses

» Linear space to approximate value functions*

F = {f(x) = i%‘%‘(X% e Rd}

» Least-Squares Temporal Difference (LSTD) algorithm for
policy evaluation.

*In practice we use approximations of action-value functions.

. Cbreia—
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Least-Squares Temporal-Difference Learning (LSTD)

» V™ may not belong to F VT ¢ F

> Best approximation of V7 in F is

nv"™ =arg jr(ni]n:||V7T —f (M is the projection onto F)
€
Ty
VT

|
i

Iy

ia IV
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Least-Squares Temporal-Difference Learning (LSTD)
» V7 is the fixed-point of 7™
Vi =T V" =" 4~4PTV"
» LSTD searches for the fixed-point of Iy , 7™
Mz, g = argmin |lg — fll2,
> When the fixed-point of 1,77 exists, we call it the LSTD solution

Vip =1,7" Vrp

T T" VTD
™

. Cbreia—
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Least-Squares Temporal-Difference Learning (LSTD)

Vrp = 1N,7" Vrp
» The projection I, is orthogonal in expectation w.r.t. the space F spanned by
the features ¢1, ..., ¢4
Ex~p [(T7 Vrp(x) = VrD(x))9i(x)] =0, Vi € [1,d]
(T™V1p — VD, 0i)p =0
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Least-Squares Temporal-Difference Learning (LSTD)

Vrp = 1N,7" Vrp
» The projection I, is orthogonal in expectation w.r.t. the space F spanned by
the features ¢1, ..., ¢4
Ex~p [(T7 Vrp(x) = VrD(x))9i(x)] =0, Vi € [1,d]
(T™V1p — VD, 0i)p =0

» By definition of Bellman operator
(r" +~yP™Vrp — V1p,9i)p =0

(r", i = {(l =vP™)V1D, 0i)p = 0
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Least-Squares Temporal-Difference Learning (LSTD)

Vip = inﬂ Vb
» The projection I, is orthogonal in expectation w.r.t. the space F spanned by
the features ¢1, ..., ¢4
Ex~p [(T7 Vrp(x) — Vrp(x))wi(x)] =0, Vi€ [1,d]
(T™V1p — VD, 0i)p =0
» By definition of Bellman operator
(r" +vP"Vrp — VD, 0i)p =0

(r",ei)p — (I =YP™)V1D,0i)p =0
> Since Vrp € F, there exists aerp such that Vrp(x) = q&(x)TaTD

d

(" o — S (1 = AP gjarp i)y = O
=1
d

™ ¢idp — (= YP™)pj, pi)parp, = 0
j=1

A. LAZARIC — Reinforcement Learning Algorithms Dec 2nd, 2014 -



Least-Squares Temporal-Difference Learning (LSTD)

Vo = M,77 Vo

U
d
<r7r790i>p Z /_ ’Y'D 90J7§01>p05TD,J =0
—— =
b Ai,j
J
AO(TD =b
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Least-Squares Temporal-Difference Learning (LSTD)

> Problem: In general, 1,77 is not a contraction and does not
have a fixed-point.

> Solution: If p = p™ (stationary dist. of w) then I1,=7™ has a
unique fixed-point.

-
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Least-Squares Temporal-Difference Learning (LSTD)

> Problem: In general, 1,77 is not a contraction and does not
have a fixed-point.

> Solution: If p = p™ (stationary dist. of w) then I1,=7™ has a
unique fixed-point.

» Problem: In general, 1,7™ cannot be computed (because
unknown)

> Solution: Use samples coming from a “trajectory” of .

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

. brezia~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg

. brezia~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K

. brezia~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 rl)X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rnf].)Xn)

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 rl)X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk

. Crzia—~
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n
Initial policy mg

Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 r15X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk
4. Compute the greedy policy w41 w.r.t. Vi =1,

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

Input: space F, iterations K, sampling distribution p, num of samples n

Initial policy mg
Fork=1,....K
1. Generate a trajectory of length n from the stationary dist. p™*

(X]_77Tk(X1)7 r15X277Tk(X2)a r27 e ,anl, ﬂ-k(anl)a rn,]_,Xn)

2. Compute the empirical matrix Zk and the vector Bk

iy = - D (e30x0) s diiloee) = (1= 7P o)
t=1

~ 1<
[bi]i = - Z‘Pi(Xt)ft ~ <rﬂ790i>ﬁ"k
t=1

3. Solve the linear system «y = Z;lEk
4. Compute the greedy policy w41 w.r.t. Vi =1,

Return the last policy 7k

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

1. Generate a trajectory of length n from the stationary dist. p™*

(x1, mi(x1), 1y X0, Th(X2), 2y - oy Xn—1, Th(Xn—1) Fn—1, Xn)

> The first few samples may be discarded because not actually drawn
from the stationary distribution p™*

> Off-policy samples could be used with importance weighting

> In practice i.i.d. states drawn from an arbitrary distribution (but
with actions 7x) may be used

. Cbreia—
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Least-Squares Policy Iteration (LSPI)

4. Compute the greedy policy my41 w.r.t. Vk = fu,

» Computing the greedy policy from Vk is difficult, so move to
LSTD-Q and compute

T1(x) = arg mfxak(x, a)

. brezia~
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Least-Squares Policy Iteration (LSPI)

Fork=1,...,K
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Least-Squares Policy Iteration (LSPI)

Fork=1,...,K
1. Generate a trajectory of length n from the stationary dist. p™*

(x1, mk(x1), 1y X0, T (X2), 2y - oy Xn— 1, Th(Xn—1) Fn—1, Xn)

4. Compute the greedy policy my41 w.r.t. Vk = fu,

Problem: This process may be unstable because 7, does not cover the
state space properly

» Skip Theory

. brezia~
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
1/]_—/'}/2 VeF

. Clreia—
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
1/]_—/'}/2 VeF

Problem: we don’t have an infinite number of samples...
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LSTD Algorithm

When n — oo then A — A and b — b, and thus,
aTD — OTD and VTD — VTD

Proposition (LSTD Performance)

If LSTD is used to estimate the value of 7 with an infinite number
of samples drawn from the stationary distribution p™ then

IV™ — Vrol |- < inf_[|V™ — V]|

1
A /]_ — /')/2 VeF
Problem: we don’t have an infinite number of samples...

Problem 2: V4p is a fixed point solution and not a standard
machine learning problem...
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LSTD Error Bound

Assumption: The Markov chain induced by the policy 7, has a
stationary distribution p”™* and it is ergodic and [-mixing.

. Cbreia—
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LSTD Error Bound

Assumption: The Markov chain induced by the policy 7, has a
stationary distribution p”™* and it is ergodic and [-mixing.

Theorem (LSTD Error Bound)

At any iteration k, if LSTD uses n samples obtained from a single
trajectory of 7 and a d-dimensional space, then with probability 1 — ¢

d |og(d/6)>

nv

||Vﬂk - \A/ka"k <

Cc
i?

inf (V™ — +O<
feF

. brezia~
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LSTD Error Bound

VT Al + O [ 9108l
feF

V1—72

approximation error

VT V| <
I [lp < -

estimation error

> Approximation error: it depends on how well the function space F
can approximate the value function V™

» Estimation error: it depends on the number of samples n, the dim of
the function space d, the smallest eigenvalue of the Gram matrix v, the
mixing properties of the Markov chain (hidden in O)

. brezia~
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LSTD Error Bound

|
VAl + O )LL)
M feF n vy

approximation error

||Vwk - Vk”p”k <

estimation error

» n number of samples and d dimensionality

. Cbreia—
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LSTD Error Bound

|
inf [[V™ — Fllm + O [/ 418/0)

<
/1—72 feF n v

approximation error

||Vwk - Vk”p”k <

estimation error

> 1y = the smallest eigenvalue of the Gram matrix ([ i ¢; dp™);;
(Assumption: eigenvalues of the Gram matrix are strictly positive - existence of
the model-based LSTD solution)

> [B-mixing coefficients are hidden in the O(-) notation

. Crzia—~
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LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy 7k is

* 7 4y
[V = VK[l < — {\/CCu,p

T (1=

) o< dIog(dK/J))

nvp

aF ’YKRmax }

with probability 1 — 4.
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LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy 7k is

v = vl < s {\/ccu,p [CEO(]:) +0 ( "”g(dK/‘”)

-7)? nvp

aF ’YKRmax }

with probability 1 — 4.

> Approximation error:  Eo(F) = sup, g7 infrer |[[VT — fl[on

. Cbreia—
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LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy 7k is

4 'YKRmax }

IV = vl € sy {\/ccw [ch(f) e < ‘“gww))

nvp,

with probability 1 — d.

> Approximation error:  Eo(F) = sup, gz infrer |[[VT — fl[om

»> Estimation error: depends on n,d,v,, K

. Clreia—
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LSPI Error Bound

Theorem (LSPI Error Bound)

If LSPI is run over K iterations, then the performance loss policy 7k is

aF "/KRmax}

||V*—VWK|H§4’Y2{ /CCH‘p |:CEO(]:)+O< leg(dl‘(/(S))

(1—7) nvp
with probability 1 — 4.
> Approximation error: Eo(F) = SUP. cg(F) infrer [[VT — fl|pm
» Estimation error: depends on n,d,v,, K

> Initialization error: error due to the choice of the initial value function or
initial policy |V* — V70|

. brezia~
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LSPI Error Bound

LSPI Error Bound

Ve = v < 2 {\/ccw [ch(f) e ( ‘“g(dK/‘”>
Yp

K
Rmax
(1_7)2 + v ma}

Lower-Bounding Distribution

There exists a distribution p such that for any policy 7 € G(F), we have
p < Cp™, where C < oo is a constant and p” is the stationary distribution of
m. Furthermore, we can define the concentrability coefficient C,, , as before.

-
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LSPI Error Bound

LSPI Error Bound

Ve — v, < 2 { G, {ch(f)+0< ‘”g(dK/‘”)

4 'YK Rmax }

(1—7)2 nvp

Lower-Bounding Distribution

There exists a distribution p such that for any policy 7 € g(f) we have
p < Cp™, where C < oo is a constant and p” is the stationary distribution of
m. Furthermore, we can define the concentrability coefficient C,, , as before.

> 1, = the smallest eigenvalue of the Gram matrix ([ ¢; ; dp)i,;

-
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Bellman Residual Minimization (BRM): the idea

T

arg min |[|[V™ -V
& iy [V - V]

Vg =arg min |77V -V
BR =2 “VefH I

Let i be a distribution over X, Vgg is the minimum Bellman

residual w.r.t. T™

Ver = arg min | T™V — V]2,

Dec 2nd, 2014 - 70/82
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Bellman Residual Minimization (BRM): the idea

The mapping a — T™V,, — V, is affine

The function a — || T™ Vo, — V4|2 is quadratic

= The minimum is obtained by computing the gradient and
setting it to zero

d
(r" + (yP" = 1)>_ djaj, (YP™ = D)y = 0,
j=1

which can be rewritten as Ao = b, with

{ Ai,j = <¢I _/Y'Dﬂ—(bivgbj _/ypﬂgbjhh
bi = (¢i =P i, ™)y,
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Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features ¢; are
linearly independent w.r.t.

. brezia~
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Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features ¢; are
linearly independent w.r.t.

Remark: let {¢; = ¢; — yP™¢;}i=1..4, then the previous system
can be interpreted as a linear regression problem

”Oé'w—ﬂr“u

-
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BRM: the approximation error

We have

IV™ = Vel < [[(1 = PT) (1 +A11PT(I) inf [V = VII.
eF

If p1r is the stationary policy of m, then ||P™||,. =1 and
(1 =~+P™) Hlur = 125, thus

1+ .
||V7T - VBRH)U/TF S 1 — \}gg__nvw - VHHﬂ"
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BRM: the implementation

Assumption. A generative model is available.

> Drawn n states X; ~ p

» Call generative model on (X;, A;) (with Ay = 7(X;)) and
obtain Ry = r(X¢, At), Ye ~ p(:| X, At)

» Compute

n

Bv)= =3 [V(X) — (Re+V(Y) |2
=t TV(X:)
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BRM: the implementation

Problem: this estimator is biased and not consistent! In fact,
E[l’;’(V)] = E[[V(Xt) —T"V(Xe) +TTV(X:) — 7A'V(Xt)}2}
= |77V = VIZ+E[[T"V(X) - Tv(X))’]

= minimizing B(V) does not correspond to minimizing B(V)
(even when n — o0).
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BRM: the implementation

Solution. In each state X;, generate two independent samples Y
et Y{ ~ p(:|Xe, Ar)
Define

n

BV) == [V(X) = (Re+7 V(YD) ] [V(Xe) — (Re+7V(YD)].

t=1

= B — B for n — .
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BRM: the implementation

The function v — B(V,) is quadratic and we obtain the linear
system

Aij = *Z $i(Xe) = 16i(Ye)| [65(Xe) —v¢5(YD)],

D N CICARRULORAL VY
=1
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BRM: the approximation error

Proof. We relate the Bellman residual to the approximation error as

Vi—V = VT V4+TV-V=AP (VT -V)+T"V —
(I=yP™)(V"=V) = TV -V,

taking the norm both sides we obtain
VT — Vgl < [I(1 =vP™) I T™ Ver — Vsl
and

"Vgr — Vgr|| = inf TV-V|[|<(1 PT|) inf ||V™ = V|.
7" Var = Vgl = jnf |77V = V]| < (L+4P7]) jnf_ |V - V|

. Crzia—~
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BRM: the approximation error

Proof. If we consider the stationary distribution ri., then ||P7|, = 1.
The matrix (I —yP™) can be written as the power series »_ ~v(P™)".

Applying the norm we obtain

- x 1
(=P Hluw < DA NPT, < R

>0

-
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LSTD vs BRM

» Different assumptions: BRM requires a generative model,
LSTD requires a single trajectory.

» The performance is evaluated differently: BRM any
distribution, LSTD stationary distribution u™.

-
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