
EC-RL Course

Approximate Dynamic Programming

A. LAZARIC (SequeL Team @INRIA-Lille)
Ecole Centrale - Option DAD

SequeL – INRIA Lille

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 2/52

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K

I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 2/52

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 2/52

Value Iteration: the Idea

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = T Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 2/52

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1 − V ∗||∞ ≤ γk+1||V0 − V ∗||∞ → 0

Problem: what if Vk+1 6= T Vk??

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 3/52

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1 − V ∗||∞ ≤ γk+1||V0 − V ∗||∞ → 0

Problem: what if Vk+1 6= T Vk??

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 3/52

Value Iteration: the Guarantees

I From the fixed point property of T :

lim
k→∞

Vk = V ∗

I From the contraction property of T

||Vk+1 − V ∗||∞ ≤ γk+1||V0 − V ∗||∞ → 0

Problem: what if Vk+1 6= T Vk??

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 3/52

Policy Iteration: the Idea

1. Let π0 be any stationary policy

2. At each iteration k = 1, 2, . . . ,K
I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 4/52

Policy Iteration: the Idea

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 4/52

Policy Iteration: the Idea

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Vk = V πk .

I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 4/52

Policy Iteration: the Idea

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 4/52

Policy Iteration: the Idea

1. Let π0 be any stationary policy
2. At each iteration k = 1, 2, . . . ,K

I Policy evaluation given πk , compute Vk = V πk .
I Policy improvement: compute the greedy policy

πk+1(x) ∈ arg maxa∈A
[
r(x , a) + γ

∑
y

p(y |x , a)V πk (y)
]
.

3. Return the last policy πK

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 4/52

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V πk+1≥V πk ,

and it converges to π∗ in a finite number of iterations.

Problem: what if Vk 6= V πk ??

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 5/52

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V πk+1≥V πk ,

and it converges to π∗ in a finite number of iterations.

Problem: what if Vk 6= V πk ??

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 5/52

Sources of Error

I Approximation error. If X is large or continuous, value
functions V cannot be represented correctly
⇒ use an approximation space F

I Estimation error. If the reward r and dynamics p are
unknown, the Bellman operators T and T π cannot be
computed exactly
⇒ estimate the Bellman operators from samples

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 6/52

Sources of Error

I Approximation error. If X is large or continuous, value
functions V cannot be represented correctly
⇒ use an approximation space F

I Estimation error. If the reward r and dynamics p are
unknown, the Bellman operators T and T π cannot be
computed exactly
⇒ estimate the Bellman operators from samples

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 6/52

Performance Loss

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 7/52

Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖

how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑
y

p(y |x , a)
[
r(x , a, y) + γV (y)

]
i.e.

performance loss = ‖V ∗ − V π‖
???

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 8/52

Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖
how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑
y

p(y |x , a)
[
r(x , a, y) + γV (y)

]

i.e.
performance loss = ‖V ∗ − V π‖

???

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 8/52

Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V ∗ with an error

error = ‖V − V ∗‖
how does it translate to the (loss of) performance of the greedy
policy

π(x) ∈ arg max
a∈A

∑
y

p(y |x , a)
[
r(x , a, y) + γV (y)

]
i.e.

performance loss = ‖V ∗ − V π‖
???

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 8/52

Performance Loss

From Approximation Error to Performance Loss

Proposition

Let V ∈ RN be an approximation of V ∗ and π its corresponding
greedy policy, then

‖V ∗ − V π‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
1− γ ‖V

∗ − V ‖∞︸ ︷︷ ︸
approx. error

.

Furthermore, there exists ε > 0 such that if ‖V − V ∗‖∞ ≤ ε, then
π is optimal .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 9/52

Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗

Objective: given an approximation space F , compute an
approximation V which is as close as possible to the best
approximation of V ∗ in F , i.e.

V ≈ arg inf
f ∈F
||V ∗ − f ||

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 10/52

Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗

Objective: given an approximation space F , compute an
approximation V which is as close as possible to the best
approximation of V ∗ in F , i.e.

V ≈ arg inf
f ∈F
||V ∗ − f ||

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 10/52

Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V ?

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V ∗

Objective: given an approximation space F , compute an
approximation V which is as close as possible to the best
approximation of V ∗ in F , i.e.

V ≈ arg inf
f ∈F
||V ∗ − f ||

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 10/52

Approximate Value Iteration

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 11/52

Approximate Value Iteration

Approximate Value Iteration: the Idea

Let A be an approximation operator .

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = AT Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 12/52

Approximate Value Iteration

Approximate Value Iteration: the Idea

Let A be an approximation operator .

1. Let V0 be any vector in RN

2. At each iteration k = 1, 2, . . . ,K
I Compute Vk+1 = AT Vk

3. Return the greedy policy

πK (x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)VK (y)
]
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 12/52

Approximate Value Iteration

Approximate Value Iteration: the Idea

Let A = Π∞ be a projection operator in L∞-norm, which
corresponds to

Vk+1 = Π∞T Vk = arg inf
V∈F
‖T Vk − V ‖∞

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 13/52

Approximate Value Iteration

Approximate Value Iteration: convergence

Proposition
The projection Π∞ is a non-expansion and the joint operator Π∞T
is a contraction.
Then there exists a unique fixed point Ṽ = Π∞T Ṽ which
guarantees the convergence of AVI.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 14/52

Approximate Value Iteration

Approximate Value Iteration: performance loss

Proposition (Bertsekas & Tsitsiklis, 1996)

Let V K be the function returned by AVI after K iterations and πK its
corresponding greedy policy. Then

‖V ∗−V πK ‖∞ ≤
2γ

(1− γ)2 max
0≤k<K

‖T Vk −AT Vk‖∞︸ ︷︷ ︸
worst approx. error

+
2γK+1

1− γ ‖V
∗ − V0‖∞︸ ︷︷ ︸

initial error

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 15/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

Idea: work with Q-functions and linear spaces.
I Q∗ is the unique fixed point of T defined over X × A as:

T Q(x , a) =
∑

y
p(y |x , a)[r(x , a, y) + γmax

b
Q(y , b)].

I F is a space defined by d features φ1, . . . , φd : X × A→ R as:

F =
{

Qα(x , a) =
d∑

j=1
αjφj(x , a), α ∈ Rd

}
.

⇒ At each iteration compute Qk+1 = Π∞T Qk

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

Idea: work with Q-functions and linear spaces.

I Q∗ is the unique fixed point of T defined over X × A as:
T Q(x , a) =

∑
y

p(y |x , a)[r(x , a, y) + γmax
b

Q(y , b)].

I F is a space defined by d features φ1, . . . , φd : X × A→ R as:

F =
{

Qα(x , a) =
d∑

j=1
αjφj(x , a), α ∈ Rd

}
.

⇒ At each iteration compute Qk+1 = Π∞T Qk

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

Idea: work with Q-functions and linear spaces.
I Q∗ is the unique fixed point of T defined over X × A as:

T Q(x , a) =
∑

y
p(y |x , a)[r(x , a, y) + γmax

b
Q(y , b)].

I F is a space defined by d features φ1, . . . , φd : X × A→ R as:

F =
{

Qα(x , a) =
d∑

j=1
αjφj(x , a), α ∈ Rd

}
.

⇒ At each iteration compute Qk+1 = Π∞T Qk

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

Idea: work with Q-functions and linear spaces.
I Q∗ is the unique fixed point of T defined over X × A as:

T Q(x , a) =
∑

y
p(y |x , a)[r(x , a, y) + γmax

b
Q(y , b)].

I F is a space defined by d features φ1, . . . , φd : X × A→ R as:

F =
{

Qα(x , a) =
d∑

j=1
αjφj(x , a), α ∈ Rd

}
.

⇒ At each iteration compute Qk+1 = Π∞T Qk

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

Generative modelAction a

State

Next state

Reward r(x, a)

y ∼ p(·|x, a)
x

Idea: work with Q-functions and linear spaces.
I Q∗ is the unique fixed point of T defined over X × A as:

T Q(x , a) =
∑

y
p(y |x , a)[r(x , a, y) + γmax

b
Q(y , b)].

I F is a space defined by d features φ1, . . . , φd : X × A→ R as:

F =
{

Qα(x , a) =
d∑

j=1
αjφj(x , a), α ∈ Rd

}
.

⇒ At each iteration compute Qk+1 = Π∞T Qk

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 16/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

⇒ At each iteration compute Qk+1 = Π∞T Qk

Problems:
I the Π∞ operator cannot be computed efficiently
I the Bellman operator T is often unknown

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 17/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Π∞ operator cannot be computed efficiently .

Let µ a distribution over X . We use a projection in L2,µ-norm onto
the space F :

Qk+1 = arg min
Q∈F
‖Q − T Qk‖2

µ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 18/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Π∞ operator cannot be computed efficiently .

Let µ a distribution over X . We use a projection in L2,µ-norm onto
the space F :

Qk+1 = arg min
Q∈F
‖Q − T Qk‖2

µ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 18/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often unknown.

1. Sample n state actions (Xi ,Ai) with Xi ∼ µ and Ai random,
2. Simulate Yi ∼ p(·|Xi ,Ai) and Ri = r(Xi ,Ai ,Yi) with the

generative model,
3. Estimate T Qk(Xi ,Ai) with

Zi = Ri + γmax
a∈A

Qk(Yi , a)

(unbiased E[Zi |Xi ,Ai] = T Qk(Xi ,Ai)),

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 19/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often unknown.

1. Sample n state actions (Xi ,Ai) with Xi ∼ µ and Ai random,

2. Simulate Yi ∼ p(·|Xi ,Ai) and Ri = r(Xi ,Ai ,Yi) with the
generative model,

3. Estimate T Qk(Xi ,Ai) with

Zi = Ri + γmax
a∈A

Qk(Yi , a)

(unbiased E[Zi |Xi ,Ai] = T Qk(Xi ,Ai)),

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 19/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often unknown.

1. Sample n state actions (Xi ,Ai) with Xi ∼ µ and Ai random,
2. Simulate Yi ∼ p(·|Xi ,Ai) and Ri = r(Xi ,Ai ,Yi) with the

generative model,

3. Estimate T Qk(Xi ,Ai) with

Zi = Ri + γmax
a∈A

Qk(Yi , a)

(unbiased E[Zi |Xi ,Ai] = T Qk(Xi ,Ai)),

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 19/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often unknown.

1. Sample n state actions (Xi ,Ai) with Xi ∼ µ and Ai random,
2. Simulate Yi ∼ p(·|Xi ,Ai) and Ri = r(Xi ,Ai ,Yi) with the

generative model,
3. Estimate T Qk(Xi ,Ai) with

Zi = Ri + γmax
a∈A

Qk(Yi , a)

(unbiased E[Zi |Xi ,Ai] = T Qk(Xi ,Ai)),

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 19/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator T is often unknown.

1. Sample n state actions (Xi ,Ai) with Xi ∼ µ and Ai random,
2. Simulate Yi ∼ p(·|Xi ,Ai) and Ri = r(Xi ,Ai ,Yi) with the

generative model,
3. Estimate T Qk(Xi ,Ai) with

Zi = Ri + γmax
a∈A

Qk(Yi , a)

(unbiased E[Zi |Xi ,Ai] = T Qk(Xi ,Ai)),

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 19/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

At each iteration k compute Qk+1 as

Qk+1 = arg min
Qα∈F

1
n

n∑
i=1

[
Qα(Xi ,Ai)− Zi

]2

⇒ Since Qα is a linear function in α, the problem is a simple
quadratic minimization problem with closed form solution.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 20/52

Approximate Value Iteration

Fitted Q-iteration with linear approximation

At each iteration k compute Qk+1 as

Qk+1 = arg min
Qα∈F

1
n

n∑
i=1

[
Qα(Xi ,Ai)− Zi

]2
⇒ Since Qα is a linear function in α, the problem is a simple
quadratic minimization problem with closed form solution.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 20/52

Approximate Value Iteration

Other implementations

I K -nearest neighbour
I Regularized linear regression with L1 or L2 regularisation
I Neural network
I Support vector machine

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 21/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).

Action: {(R)eplace, (K)eep}.
Cost:

I c(x ,R) = C
I c(x ,K) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 22/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.

Cost:
I c(x ,R) = C
I c(x ,K) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 22/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

I c(x ,R) = C
I c(x ,K) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 22/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

I c(x ,R) = C
I c(x ,K) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 22/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

I c(x ,R) = C
I c(x ,K) = c(x) maintenance plus extra costs.

Dynamics:
I p(·|x ,R) = exp(β) with density d(y) = β exp−βy I{y ≥ 0},
I p(·|x ,K) = x + exp(β) with density d(y − x).

Problem: Minimize the discounted expected cost over an infinite
horizon.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 22/52

Approximate Value Iteration

Example: the Optimal Replacement Problem
Optimal value function

V ∗(x) = min
{

c(x) +γ

∫ ∞
0

d(y−x)V ∗(y)dy , C +γ

∫ ∞
0

d(y)V ∗(y)dy
}

Optimal policy : action that attains the minimum

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Linear approximation space F :=
{

Vn(x) =
∑20

k=1 αk cos(kπ x
xmax

)
}

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 23/52

Approximate Value Iteration

Example: the Optimal Replacement Problem
Optimal value function

V ∗(x) = min
{

c(x) +γ

∫ ∞
0

d(y−x)V ∗(y)dy , C +γ

∫ ∞
0

d(y)V ∗(y)dy
}

Optimal policy : action that attains the minimum

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Linear approximation space F :=
{

Vn(x) =
∑20

k=1 αk cos(kπ x
xmax

)
}

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 23/52

Approximate Value Iteration

Example: the Optimal Replacement Problem
Optimal value function

V ∗(x) = min
{

c(x) +γ

∫ ∞
0

d(y−x)V ∗(y)dy , C +γ

∫ ∞
0

d(y)V ∗(y)dy
}

Optimal policy : action that attains the minimum

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Linear approximation space F :=
{

Vn(x) =
∑20

k=1 αk cos(kπ x
xmax

)
}

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 23/52

Approximate Value Iteration

Example: the Optimal Replacement Problem
Optimal value function

V ∗(x) = min
{

c(x) +γ

∫ ∞
0

d(y−x)V ∗(y)dy , C +γ

∫ ∞
0

d(y)V ∗(y)dy
}

Optimal policy : action that attains the minimum

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

Linear approximation space F :=
{

Vn(x) =
∑20

k=1 αk cos(kπ x
xmax

)
}

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 23/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Figure: Left: the target values computed as {T V0(xn)}1≤n≤N . Right:
the approximation V1 ∈ F of the target function T V0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 24/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Figure: Left: the target values computed as {T V0(xn)}1≤n≤N . Right:
the approximation V1 ∈ F of the target function T V0.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 24/52

Approximate Value Iteration

Example: the Optimal Replacement Problem

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+++++++++++++++++++++++++

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Figure: Left: the target values computed as {T V1(xn)}1≤n≤N . Center:
the approximation V2 ∈ F of T V1. Right: the approximation Vn ∈ F
after n iterations.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 25/52

Approximate Policy Iteration

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 26/52

Approximate Policy Iteration

Approximate Policy Iteration: the Idea
Let A be an approximation operator .

I Policy evaluation: given the current policy πk , compute Vk = AV πk

I Policy improvement: given the approximated value of the current
policy, compute the greedy policy w.r.t. Vk as

πk+1(x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)Vk(y)
]
.

Problem: the algorithm is no longer guaranteed to converge.

V *−V
π

k

k

Asymptotic Error

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 27/52

Approximate Policy Iteration

Approximate Policy Iteration: the Idea
Let A be an approximation operator .

I Policy evaluation: given the current policy πk , compute Vk = AV πk

I Policy improvement: given the approximated value of the current
policy, compute the greedy policy w.r.t. Vk as

πk+1(x) ∈ arg max
a∈A

[
r(x , a) + γ

∑
y∈X

p(y |x , a)Vk(y)
]
.

Problem: the algorithm is no longer guaranteed to converge.

V *−V
π

k

k

Asymptotic Error

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 27/52

Approximate Policy Iteration

Approximate Policy Iteration: performance loss

Proposition

The asymptotic performance of the policies πk generated by the
API algorithm is related to the approximation error as:

lim sup
k→∞

‖V ∗ − V πk‖∞︸ ︷︷ ︸
performance loss

≤ 2γ
(1− γ)2 lim sup

k→∞
‖Vk − V πk‖∞︸ ︷︷ ︸

approximation error

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 28/52

Approximate Policy Iteration Linear Temporal-Difference

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 29/52

Approximate Policy Iteration Linear Temporal-Difference

Linear TD(λ): the algorithm

Algorithm Definition

Given a linear space F = {Vα(x) =
∑d

i=1 αiφi (x), α ∈ Rd}.
Trace vector z ∈ Rd and parameter vector α ∈ Rd initialized to zero.
Generate a sequence of states (x0, x1, x2, . . .) according to π.
At each step t, the temporal difference is

dt = r(xt , π(xt)) + γVαt (xt+1)− Vαt (xt)

and the parameters are updated as

αt+1 = αt + ηtdtzt ,

zt+1 = λγzt + φ(xt+1),

where ηt is learning step.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 30/52

Approximate Policy Iteration Linear Temporal-Difference

Linear TD(λ): approximation error

Proposition (Tsitsiklis et Van Roy, 1996)

Let the learning rate ηt satisfy∑
t≥0

ηt =∞, and
∑
t≥0

η2
t <∞.

We assume that π admits a stationary distribution µπ and that the
features (φi)1≤k≤K are linearly independent. There exists a fixed α∗ such
that

lim
t→∞

αt = α∗.

Furthermore we obtain

‖Vα∗ − V π‖2,µπ︸ ︷︷ ︸
approximation error

≤ 1− λγ
1− γ inf

α
‖Vα − V π‖2,µπ︸ ︷︷ ︸

smallest approximation error

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 31/52

Approximate Policy Iteration Linear Temporal-Difference

Linear TD(λ): approximation error

Remark: for λ = 1, we recover Monte-Carlo (or TD(1)) and the
bound is the smallest!

Problem: the bound does not consider the variance (i.e., samples
needed for αt to converge to α∗).

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 32/52

Approximate Policy Iteration Linear Temporal-Difference

Linear TD(λ): approximation error

Remark: for λ = 1, we recover Monte-Carlo (or TD(1)) and the
bound is the smallest!

Problem: the bound does not consider the variance (i.e., samples
needed for αt to converge to α∗).

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 32/52

Approximate Policy Iteration Linear Temporal-Difference

Linear TD(λ): implementation

I Pros: simple to implement, computational cost linear in d .
I Cons: very sample inefficient, many samples are needed to

converge.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 33/52

Approximate Policy Iteration Least-Squares Temporal Difference

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 34/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm
Recall: V π = T πV π.
Intuition: compute V = AT πV .

VTD = ΠµT πVTD

ΠµV
π

V π

T π

T πVTD

T π

F

Focus on the L2,µ-weighted norm and projection Πµ

Πµg = arg min
f ∈F
‖f − g‖µ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 35/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

By construction, the Bellman residual of VTD is orthogonal to F ,
thus for any 1 ≤ i ≤ d

〈T πVTD − VTD, φi〉µ = 0,

and

〈rπ + γPπVTD − VTD, φi〉µ = 0

〈rπ, φi〉µ +
d∑

j=1
〈γPπφj − φj , φi〉µαTD,j = 0,

⇒ αTD is the solution of a linear system of order d .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 36/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

By construction, the Bellman residual of VTD is orthogonal to F ,
thus for any 1 ≤ i ≤ d

〈T πVTD − VTD, φi〉µ = 0,

and

〈rπ + γPπVTD − VTD, φi〉µ = 0

〈rπ, φi〉µ +
d∑

j=1
〈γPπφj − φj , φi〉µαTD,j = 0,

⇒ αTD is the solution of a linear system of order d .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 36/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

By construction, the Bellman residual of VTD is orthogonal to F ,
thus for any 1 ≤ i ≤ d

〈T πVTD − VTD, φi〉µ = 0,

and

〈rπ + γPπVTD − VTD, φi〉µ = 0

〈rπ, φi〉µ +
d∑

j=1
〈γPπφj − φj , φi〉µαTD,j = 0,

⇒ αTD is the solution of a linear system of order d .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 36/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

Algorithm Definition
The LSTD solution αTD can be computed by computing the
matrix A and vector b defined as

Ai ,j = 〈φi , φj − γPπφj〉µ
bi = 〈φi , rπ〉µ ,

and then solving the system Aα = b.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 37/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Problem: in general ΠµT π does not admit a fixed point (i.e.,
matrix A is not invertible).

Solution: use the stationary distribution µπ of policy π, that is

µπPπ = µπ, and µπ(y) =
∑

x
p(y |x , π(x))µπ(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 38/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Problem: in general ΠµT π does not admit a fixed point (i.e.,
matrix A is not invertible).

Solution: use the stationary distribution µπ of policy π, that is

µπPπ = µπ, and µπ(y) =
∑

x
p(y |x , π(x))µπ(x)

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 38/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Proposition
The Bellman operator T π is a contraction in the weighted
L2,µπ -norm. Thus the joint operator ΠµπT π is a contraction and it
admits a unique fixed point VTD. Then

‖V π − VTD‖µπ︸ ︷︷ ︸
approximation error

≤ 1√
1− γ2

inf
V∈F
‖V π − V ‖µπ︸ ︷︷ ︸

smallest approximation error

.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 39/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

I Generate (X0,X1, . . .) from direct execution of π and observes
Rt = r(Xt , π(Xt))

I Compute estimates

Âij =
1
n

n∑
t=1

φi (Xt)[φj(Xt)− γφj(Xt+1)],

b̂i =
1
n

n∑
t=1

φi (Xt)Rt .

I Solve Âα = b̂

Remark:
I No need for a generative model.
I If the chain is ergodic, Â→ A et b̂ → b when n→∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 40/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

I Generate (X0,X1, . . .) from direct execution of π and observes
Rt = r(Xt , π(Xt))

I Compute estimates

Âij =
1
n

n∑
t=1

φi (Xt)[φj(Xt)− γφj(Xt+1)],

b̂i =
1
n

n∑
t=1

φi (Xt)Rt .

I Solve Âα = b̂

Remark:
I No need for a generative model.
I If the chain is ergodic, Â→ A et b̂ → b when n→∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 40/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

I Generate (X0,X1, . . .) from direct execution of π and observes
Rt = r(Xt , π(Xt))

I Compute estimates

Âij =
1
n

n∑
t=1

φi (Xt)[φj(Xt)− γφj(Xt+1)],

b̂i =
1
n

n∑
t=1

φi (Xt)Rt .

I Solve Âα = b̂

Remark:
I No need for a generative model.
I If the chain is ergodic, Â→ A et b̂ → b when n→∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 40/52

Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

I Generate (X0,X1, . . .) from direct execution of π and observes
Rt = r(Xt , π(Xt))

I Compute estimates

Âij =
1
n

n∑
t=1

φi (Xt)[φj(Xt)− γφj(Xt+1)],

b̂i =
1
n

n∑
t=1

φi (Xt)Rt .

I Solve Âα = b̂

Remark:
I No need for a generative model.
I If the chain is ergodic, Â→ A et b̂ → b when n→∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 40/52

Approximate Policy Iteration Bellman Residual Minimization

Outline

Performance Loss

Approximate Value Iteration

Approximate Policy Iteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 41/52

Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

V π

T π

F

T π

T πVBR arg min
V ∈F

‖V π − V ‖

VBR = arg min
V ∈F

‖T πV − V ‖

Let µ be a distribution over X , VBR is the minimum Bellman
residual w.r.t. T π

VBR = arg min
V∈F
‖T πV − V ‖2,µ

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 42/52

Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

The mapping α→ T πVα − Vα is affine
The function α→ ‖T πVα − Vα‖2

µ is quadratic
⇒ The minimum is obtained by computing the gradient and
setting it to zero

〈rπ + (γPπ − I)
d∑

j=1
φjαj , (γPπ − I)φi〉µ = 0,

which can be rewritten as Aα = b, with{
Ai ,j = 〈φi − γPπφi , φj − γPπφj〉µ,

bi = 〈φi − γPπφi , rπ〉µ,

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 43/52

Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features φi are
linearly independent w.r.t. µ

Remark: let {ψi = φi − γPπφi}i=1...d , then the previous system
can be interpreted as a linear regression problem

‖α · ψ − rπ‖µ

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 44/52

Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features φi are
linearly independent w.r.t. µ

Remark: let {ψi = φi − γPπφi}i=1...d , then the previous system
can be interpreted as a linear regression problem

‖α · ψ − rπ‖µ

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 44/52

Approximate Policy Iteration Bellman Residual Minimization

BRM: the approximation error

Proposition
We have

‖V π − VBR‖ ≤ ‖(I − γPπ)−1‖(1 + γ‖Pπ‖) inf
V∈F
‖V π − V ‖.

If µπ is the stationary policy of π, then ‖Pπ‖µπ = 1 and
‖(I − γPπ)−1‖µπ = 1

1−γ , thus

‖V π − VBR‖µπ ≤
1 + γ

1− γ inf
V∈F
‖V π − V ‖µπ .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 45/52

Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Assumption. A generative model is available.
I Drawn n states Xt ∼ µ
I Call generative model on (Xt ,At) (with At = π(Xt)) and

obtain Rt = r(Xt ,At), Yt ∼ p(·|Xt ,At)

I Compute

B̂(V) =
1
n

n∑
t=1

[
V (Xt)−

(
Rt + γV (Yt)

)︸ ︷︷ ︸
T̂ V (Xt)

]2
.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 46/52

Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Problem: this estimator is biased and not consistent! In fact,

E[B̂(V)] = E
[[

V (Xt)− T πV (Xt) + T πV (Xt)− T̂ V (Xt)
]2]

= ‖T πV − V ‖2
µ + E

[[
T πV (Xt)− T̂ V (Xt)

]2]
⇒ minimizing B̂(V) does not correspond to minimizing B(V)
(even when n→∞).

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 47/52

Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Solution. In each state Xt , generate two independent samples Yt
et Y ′t ∼ p(·|Xt ,At)
Define

B̂(V) =
1
n

n∑
t=1

[
V (Xt)−

(
Rt +γV (Yt)

)][
V (Xt)−

(
Rt +γV (Y ′t)

)]
.

⇒ B̂ → B for n→∞.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 48/52

Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

The function α→ B̂(Vα) is quadratic and we obtain the linear
system

Âi ,j =
1
n

n∑
t=1

[
φi (Xt)− γφi (Yt)

][
φj(Xt)− γφj(Y ′t)

]
,

b̂i =
1
n

n∑
t=1

[
φi (Xt)− γφi (Yt) + φi (Y ′t)

2
]

Rt .

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 49/52

Approximate Policy Iteration Bellman Residual Minimization

LSTD vs BRM

I Different assumptions: BRM requires a generative model ,
LSTD requires a single trajectory .

I The performance is evaluated differently: BRM any
distribution, LSTD stationary distribution µπ.

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 50/52

Approximate Policy Iteration Bellman Residual Minimization

Bibliography I

A. LAZARIC – Reinforcement Learning Algorithms Oct 29th, 2013 - 51/52

Approximate Policy Iteration Bellman Residual Minimization

Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr

	Performance Loss
	Approximate Value Iteration
	Approximate Policy Iteration
	Linear Temporal-Difference
	Least-Squares Temporal Difference
	Bellman Residual Minimization

