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Value lteration: the ldea

1. Let Vy be any vector in RN
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Value lteration: the ldea

1. Let Vy be any vector in RN
2. At each iteration k =1,2,..., K
» Compute Vi1 =T Vi

3. Return the greedy policy

mk(x) € argmax [r(x, a)+7 Y plylx,a)Vk (y)] :
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Value lteration: the Guarantees

> From the fixed point property of T:

lim V=V~
k—o0
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Value lteration: the Guarantees

> From the fixed point property of T:

lim V=V~
k—o0

» From the contraction property of T

Vi1 = V¥loo <7 H[Vo = VF{|oo = 0

Problem: what if V)1 # T V7?7
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Policy lteration: the Idea

1. Let mg be any stationary policy
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Policy lteration: the Idea

1. Let mg be any stationary policy
2. At each iteration k=1,2,..., K

» Policy evaluation given m, compute V, = V™,
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Policy lteration: the Idea

1. Let mg be any stationary policy
2. At each iteration k=1,2,..., K

» Policy evaluation given m, compute V, = V™,
» Policy improvement: compute the greedy policy

Tiera(x) € arg maxaea[r(x.3) + 73 plylx, )V (y)].
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Policy lteration: the Idea

1. Let mg be any stationary policy

2. At each iteration k=1,2,..., K
» Policy evaluation given m, compute V, = V™,
» Policy improvement: compute the greedy policy

Tiera(x) € arg maxaea[r(x.3) + 73 plylx, )V (y)].

3. Return the last policy mk

-
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Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V71'k+1 2 Vﬂ'k ,

and it converges to 7* in a finite number of iterations.
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Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequences of policies
with non-decreasing performance

V71'k+1 2 Vﬂ'k ,

and it converges to 7* in a finite number of iterations.

Problem: what if V) # V™«77
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Sources of Error

» Approximation error. If X is large or continuous, value
functions V' cannot be represented correctly
= use an approximation space F
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Sources of Error

» Approximation error. If X is large or continuous, value
functions V' cannot be represented correctly
= use an approximation space F

» Estimation error. If the reward r and dynamics p are
unknown, the Bellman operators 7 and 7™ cannot be
computed exactly
= estimate the Bellman operators from samples
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Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error
error = ||V — V7|
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Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function

V* with an error
error = ||V — V7|

how does it translate to the (loss of ) performance of the greedy
policy

m(x) € argmax > p(y|x, a)[r(x, 2,y) + 7V (y)]
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Performance Loss

From Approximation Error to Performance Loss

Question: if V is an approximation of the optimal value function
V* with an error

error = ||V — V7|
how does it translate to the (loss of ) performance of the greedy
policy
€ . a, Vv
m(x) € arg max zy: p(ylx, a)[r(x a,y) +9V(y)]
i.e.
performance loss = ||V* — V7|

77
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Performance Loss

From Approximation Error to Performance Loss

Let V € RN be an approximation of V* and 7 its corresponding
greedy policy, then

2
IV = Voo < —— [V* = V]| .
I e 1—’}/%,_/

performance loss approx. error

Furthermore, there exists € > 0 such that if ||V — V*||« <€, then
7 is optimal.
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Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V7?7
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Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V7?7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*
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Performance Loss

From Approximation Error to Performance Loss

Question: how do we compute V7?7

Problem: unlike in standard approximation scenarios (see
supervised learning), we have a limited access to the target
function, i.e. V*

Objective: given an approximation space F, compute an
approximation V which is as close as possible to the best
approximation of V* in F, i.e.

V%argfiQ;HV*— fll
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Approximate Value lteration
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Approximate Value lteration

Approximate Value lteration: the ldea

Let A be an approximation operator.
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Approximate Value lteration: the ldea

Let A be an approximation operator.

1. Let V, be any vector in RN
2. At each iteration k=1,2,..., K
» Compute Vi1 = ATV

3. Return the greedy policy

mk(x) € arg max [r(X, a)+7 Y plylx,a)Vk (y)] -
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Approximate Value lteration

Approximate Value lteration: the ldea

Let A = ., be a projection operator in L,,-norm, which
corresponds to

Vir1 = NooT Vi = arg \}r%; I TVik — V]
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Approximate Value lteration

Approximate Value Iteration: convergence

Proposition
The projection [l is a non-expansion and the joint operator M7

is a contraction.
Then there exists a unique fixed point V = N7V which
guarantees the convergence of AVI.

-
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Approximate Value lteration

Approximate Value lteration: performance loss

Proposition (Bertsekas & Tsitsiklis, 1996)

Let VX be the function returned by AVI after K iterations and 7y its
corresponding greedy policy. Then

2,7K+1 .
O?ka<xK ||TVk = -ATVkHoo aF 1 || V* — VOHoo .

2y
ViV < -

initial error
worst approx. error
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Approximate Value lteration
Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

State x Reward  7(z,a)
i ” Generative model I
Action a Nextstate y ~ p(-|z,a)
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Approximate Value lteration
Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

State x Reward  7(z,a)
i ” Generative model I
Action a Nextstate y ~ p(-|z,a)

Idea: work with Q-functions and linear spaces.
> Q* is the unique fixed point of T defined over X x A as:

TQ(x,a) = > plylx, a)lr(x,a,y) +v max Q(y, b)]-

y
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Approximate Value lteration
Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

State x Reward  7(z,a)
i ” Generative model I
Action a Nextstate y ~ p(-|z,a)

Idea: work with Q-functions and linear spaces.
> Q* is the unique fixed point of T defined over X x A as:

TQ(x,a) = > plylx, a)lr(x,a,y) +v max Q(y, b)]-

y

» F is a space defined by d features d1,...,04 : X X A= R as:

{ana Zajquxa aeRd}

j=1
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Approximate Value lteration
Fitted Q-iteration with linear approximation

Assumption: access to a generative model.

State = Reward  r(z,a)
i ” Generative model I
Action a Next state y ~ p(-|z,a)

Idea: work with Q-functions and linear spaces.
> Q* is the unique fixed point of T defined over X x A as:

TQ(x,a) = > plylx, a)lr(x,a,y) +v max Q(y, b)]-

y

» F is a space defined by d features D1y ,0q: X X A= R as:

{ana Zajquxa aeRd}

j=1
= At each iteration compute Qxr1 = Moo T Qx
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Approximate Value lteration

Fitted Q-iteration with linear approximation

= At each iteration compute Qx+1 = Moo T Qk

Problems:
> the [, operator cannot be computed efficiently

» the Bellman operator 7T is often unknown
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the I, operator cannot be computed efficiently.
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the [N, operator cannot be computed efficiently.

Let u a distribution over X. We use a projection in L5 ,-norm onto
the space F:

= arg min — T Q%
Q1 nglfHQ Qxlly;
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator 7 is often unknown.
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator 7 is often unknown.

1. Sample n state actions (X, A;) with X; ~ p and A; random,
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator 7 is often unknown.

1. Sample n state actions (X, A;) with X; ~ p and A; random,
2. Simulate Y; ~ p(:|Xi, Aj) and R; = r(X;, Ai, Y;) with the
generative model,
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator 7 is often unknown.

1. Sample n state actions (X, A;) with X; ~ p and A; random,

2. Simulate Y; ~ p(:|Xi, Aj) and R; = r(X;, Ai, Y;) with the
generative model,

3. Estimate 7 Qx(Xi, Aj) with

Z,' — R,‘ )/h
+ 7y max Qi(Yr, a)
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Approximate Value lteration

Fitted Q-iteration with linear approximation

Problem: the Bellman operator 7 is often unknown.

1. Sample n state actions (X, A;) with X; ~ p and A; random,

2. Simulate Y; ~ p(:|Xi, Aj) and R; = r(X;, Ai, Y;) with the
generative model,

3. Estimate 7 Qx(Xi, Aj) with

Z,' — R,‘ )/h
+ 7y max Qi(Yr, a)

(unbiased E[Z;|X;, A]] = T Q«(Xi, A})),
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Approximate Value lteration

Fitted Q-iteration with linear approximation

At each iteration k compute Qx11 as

1 2
Qi1 = arg Jnin_— Z [Qu(Xi, A)) — Zi]

1=
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Approximate Value lteration

Fitted Q-iteration with linear approximation

At each iteration k compute Qx11 as

1 2
Qi1 = arg Jnin_— Z [Qu(Xi, A)) — Zi]
=

= Since @, is a linear function in «, the problem is a simple
quadratic minimization problem with closed form solution.
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Approximate Value lteration

Other implementations

v

K-nearest neighbour

v

Regularized linear regression with Ly or Ly regularisation

v

Neural network

v

Support vector machine
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Approximate Value lteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
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Approximate Value lteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
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Approximate Value lteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

» ¢c(x,R)=C

» c(x, K) = c(x) maintenance plus extra costs.

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Oct 29th, 2013 -



Approximate Value lteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
» ¢c(x,R)=C
» c(x, K) = c(x) maintenance plus extra costs.
Dynamics:
» p(-|x, R) = exp(3) with density d(y) = Bexp~? I{y > 0},
» p(-|x, K) = x + exp(B) with density d(y — x).
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Approximate Value lteration

Example: the Optimal Replacement Problem

State: level of wear of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
» ¢c(x,R)=C
» c(x, K) = c(x) maintenance plus extra costs.
Dynamics:
» p(-|x, R) = exp(3) with density d(y) = Bexp~? I{y > 0},
» p(-|x, K) = x + exp(B) with density d(y — x).
Problem: Minimize the discounted expected cost over an infinite
horizon.
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Approximate Value lteration

Example: the Optimal Replacement Problem

Optimal value function

e}

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()
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Approximate Value lteration

Example: the Optimal Replacement Problem

Optimal value function

e}

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum
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Approximate Value lteration

Example: the Optimal Replacement Problem

Optimal value function

e}

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum

Value function

Management cost

wear K R, K RK R
T 0 T A
s w
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Approximate Value lteration

Example: the Optimal Replacement Problem

Optimal value function

oo

Vi) =min{c() 49 [ dly -0V ). Coy [T o)V ()

Optimal policy: action that attains the minimum

Value function

Management cost

wear K R, K RK R
T 0 T A
s w

Linear approximation space F := {V,,(x) = 2,2(0:1 ok cog(kﬂ%)}.
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Approximate Value lteration

Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.
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Approximate Value lteration

Example: the Optimal Replacement Problem

Collect N sample on a uniform grid.

Figure: Left: the target values computed as {7 Vo(x»)}}1<n<n. Right:
the approximation Vi € F of the target function T V.
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Approximate Value lteration

Example: the Optimal Replacement Problem

Figure: Left: the target values computed as {7 Vi(x,)}1<n<n. Center:
the approximation V, € F of T V4. Right: the approximation V, € F
after n iterations.
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Approximate Policy Iteration

Outline

Performance Loss
Approximate Value lteration

Approximate Policy lteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization
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Approximate Policy Iteration

Approximate Policy Iteration: the ldea
Let A be an approximation operator.

> Policy evaluation: given the current policy mx, compute Vi = AV ™

» Policy improvement: given the approximated value of the current
policy, compute the greedy policy w.r.t. Vj as

mr1(x) € argmax [r(x, a) + > plylx, a)Vi(y)]-
yeXx

. Clreia—
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Approximate Policy Iteration

Approximate Policy Iteration: the ldea
Let A be an approximation operator.

> Policy evaluation: given the current policy mx, compute Vi = AV ™

» Policy improvement: given the approximated value of the current
policy, compute the greedy policy w.r.t. Vj as

mr1(x) € argmax [r(x, a) + > plylx, a)Vi(y)]-
yeXx

Problem: the algorithm is no longer guaranteed to converge.

v v

} Asymptotic Error
k
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A. LAZARIC — Reinforcement Learning Algorithms Oct 29th, 2013 - 27/52



Approximate Policy Iteration

Approximate Policy lteration: performance loss

The asymptotic performance of the policies 7, generated by the
API algorithm is related to the approximation error as:

2
limsup ||[V* — V|| < —72 limsup ||V — V™|

performance loss approximation error

. Cbreia—
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Approximate Policy Iteration Linear Temporal-Difference

Outline

Performance Loss
Approximate Value lteration

Approximate Policy lteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization
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Approximate Policy Iteration Linear Temporal-Difference

Linear TD(\): the algorithm

Algorithm Definition

Given a linear space F = {V,(x) = 27:1 a;¢i(x),a € R}

Trace vector z € RY and parameter vector o € R? initialized to zero.
Generate a sequence of states (XO,X]_,XQ, oo ) according to .

At each step t, the temporal difference is

de = r(xe, m(xt)) + 7 Va, (Xe11) — Vo, (%)
and the parameters are updated as

Ory1 = O +1edizs,
Ziv1r = AyZe + O(Xeq1),

where 7); is learning step.

. brezia~

A. LAZARIC — Reinforcement Learning Algorithms Oct 29th, 2013




Approximate Policy Iteration Linear Temporal-Difference

Linear TD(\): approximation error

Proposition (Tsitsiklis et Van Roy, 1996)

Let the learning rate 7, satisfy

Zm:oc, and an < 00.

t>0 t>0

We assume that 7 admits a stationary distribution p, and that the
features (¢i)1§kgK are linearly independent. There exists a fixed * such

that

lim a; = a”.
t—oo

Furthermore we obtain

1—\y . .
[Var = Vllagr < 525 infl|Va = Ve
N———— - @

approximation error . 5
smallest approximation error

. brezia~
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Approximate Policy Iteration Linear Temporal-Difference

Linear TD(\): approximation error

Remark: for A\ = 1, we recover Monte-Carlo (or TD(1)) and the
bound is the smallest!
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Approximate Policy Iteration Linear Temporal-Difference

Linear TD(\): approximation error

Remark: for A\ = 1, we recover Monte-Carlo (or TD(1)) and the
bound is the smallest!

Problem: the bound does not consider the variance (i.e., samples
needed for a; to converge to o).

. Cbreia—
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Approximate Policy Iteration Linear Temporal-Difference

Linear TD(\): implementation

» Pros: simple to implement, computational cost linear in d.

» Cons: very sample inefficient, many samples are needed to
converge.
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Approximate Policy Iteration Least-Squares Temporal Difference

Outline

Performance Loss
Approximate Value lteration

Approximate Policy lteration
Linear Temporal-Difference
Least-Squares Temporal Difference
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm
Recall: V™ =T™VT™.
Intuition: compute V = AT™V.

Focus on the L5 ,-weighted norm and projection I1,
M,g =argmin||f — .
ug = argmin [|f — g,

. brezia~
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

By construction, the Bellman residual of V7p is orthogonal to F,
thus forany 1 < i < d

(T™Vrp — V1D, $i) = 0,
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm
By construction, the Bellman residual of V7p is orthogonal to F,
thus forany 1 < i < d
(T"Vrp — V1D, 9i)p = 0,
and

(r"+vP"Vrp — V1p,0i)p = 0

d
(" o)+ Y (YWPToj — ¢j, diyuarnj = 0,
j=1
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm
By construction, the Bellman residual of V7p is orthogonal to F,
thus forany 1 < i < d
(T"Vrp — V1D, 9i)p = 0,
and

(r"+vP"Vrp — V1p,0i)p = 0

d
(" o)+ Y (YWPToj — ¢j, diyuarnj = 0,
j=1

= a7p is the solution of a linear system of order d.
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the algorithm

Algorithm Definition

The LSTD solution arp can be computed by computing the
matrix A and vector b defined as

Aij = (9, 0j —YP dj)u
bi = <¢i7rﬂ->,u ’

and then solving the system Aa = b.
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Problem: in general 1,77 does not admit a fixed point (i.e.,
matrix A is not invertible).
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Problem: in general 1,77 does not admit a fixed point (i.e.,
matrix A is not invertible).

Solution: use the stationary distribution u, of policy m, that is

prP™ = i, and pir(y) = Zp y X m(x)) e (x)

. Crzia—~
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the approximation error

Proposition

The Bellman operator 7™ is a contraction in the weighted

Ly, .-norm. Thus the joint operator 1, 77 is a contraction and it
admits a unique fixed point V1p. Then

1

S —
=i

VT — VTD”ALW \}gff VT — VHM

TV
smallest approximation error

approximation error

. bezia~
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

> Generate (Xp, Xi,...) from direct execution of m and observes
Rt = r(Xt, 7T(Xt))
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

> Generate (Xp, Xi,...) from direct execution of m and observes
Rt = r(Xt, W(Xt))

» Compute estimates

A= 230500 — 10Xl

o
I

1 n
- ;qbf(xt)Rt.

. brezia~
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

> Generate (Xp, Xi,...) from direct execution of m and observes
Rt = r(Xt, W(Xt))
» Compute estimates
- 1o
Ay = =D ailX)[0)(Xe) — 165 (Xera)],
t=1

n

o

1 n
= E ; (bi(Xt)Rt'

» Solve Aa = b

. brezia~
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Approximate Policy Iteration Least-Squares Temporal Difference

Least-squares TD: the implementation

> Generate (Xp, Xi,...) from direct execution of m and observes
Rt = r(Xt, W(Xt))

» Compute estimates

A= 230500 — 10Xl

o
I

1 n
=3 di(Xo)Re.
n
t=1
» Solve Aa = b

Remark:
» No need for a generative model.

» If the chain is ergodic, A Aet b— bwhen n— oo.

. Clreia—
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Approximate Policy Iteration Bellman Residual Minimization

Outline

Performance Loss
Approximate Value lteration

Approximate Policy lteration
Linear Temporal-Difference
Least-Squares Temporal Difference
Bellman Residual Minimization
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Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

T

arg min |[|[V™ -V
& iy [V - V]

Vg =arg min |77V -V
BR =2 “VefH I

Let i be a distribution over X, Vgg is the minimum Bellman
residual w.r.t. T™

Ver = arg min | T™V — V]2,
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Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

The mapping a — T™V,, — V, is affine
The function a — || T™ Vo, — V4|2 is quadratic

= The minimum is obtained by computing the gradient and
setting it to zero

(r" + (yP™ — qujaj, (vP™ — 1), =0,

j=1
which can be rewritten as Ao = b, with

{ Ai,j = <¢I _/Y'Dﬂ—(bivgbj _/ypﬂgbjhh
bi = (¢i =P i, ™)y,
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Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features ¢; are
linearly independent w.r.t.

. brezia~
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Approximate Policy Iteration Bellman Residual Minimization

Bellman Residual Minimization (BRM): the idea

Remark: the system admits a solution whenever the features ¢; are
linearly independent w.r.t.

Remark: let {¢; = ¢; — yP™¢;}i=1..4, then the previous system
can be interpreted as a linear regression problem

”Oé'w—ﬂr“u

-
brzia—
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Approximate Policy Iteration Bellman Residual Minimization

BRM: the approximation error

We have

IV™ = Vel < [[(1 = PT) (1 +A11PT(I) inf [V = VII.
eF

If p1r is the stationary policy of m, then ||P™||,. =1 and
(1 =~+P™) Hlur = 125, thus

1+ .
||V7T - VBRH)U/TF S 1 — \}gg__nvw - VHHﬂ"

. brezia~
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Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Assumption. A generative model is available.

> Drawn n states X; ~ p

» Call generative model on (X;, A¢) (with Ay = 7(X;)) and
obtain Ry = r(X¢, At), Ye ~ p(:| X, At)

» Compute

n

Bv)= =3 [V(X) — (Re+V(Y) |2
=t TV(X:)
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Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Problem: this estimator is biased and not consistent! In fact,
E[l’;’(V)] = E[[V(Xt) —T"V(Xe) +TTV(X:) — 7A'V(Xt)}2}
= |77V = VIZ+E[[T"V(X) - Tv(X))’]

= minimizing B(V) does not correspond to minimizing B(V)
(even when n — o0).
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Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

Solution. In each state X;, generate two independent samples Y
et Y{ ~ p(:|Xe, Ar)
Define

n

BV) == [V(X) = (Re+7 V(YD) ] [V(Xe) — (Re+7V(YD)].

t=1

= B — B for n — .
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Approximate Policy Iteration Bellman Residual Minimization

BRM: the implementation

The function v — B(V,) is quadratic and we obtain the linear
system

Ay = o300 — 26V [50%) — 26V,
t=1

RS S P EILAES LA
t=1
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Approximate Policy Iteration Bellman Residual Minimization

LSTD vs BRM

» Different assumptions: BRM requires a generative model,
LSTD requires a single trajectory.

» The performance is evaluated differently: BRM any
distribution, LSTD stationary distribution u™.

-
breia—
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