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Why: Important Problems

I Autonomous robotics
I Financial applications
I Energy management
I Recommender systems
I Social applications
I And many more...
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What: Decision-Making under Uncertainty

Agent

Environment

state /
actuation
action /

perception
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How: Reinforcement Learning

Reinforcement learning is learning what to do – how to
map situations to actions – so as to maximize a numerical

reward signal. The learner is not told which actions to
take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by

trying them (trial–and–error). In the most interesting
and challenging cases, actions may affect not only the

immediate reward but also the next situation and,
through that, all subsequent rewards (delayed reward).

“An introduction to reinforcement learning”,
Sutton and Barto (1998).
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How: the Course

Agent

Environment

state /
actuation
action /

perception

Formal and rigorous approach to
the RL’s way to decision-making under uncertainty
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What: the Highlights of the Course
How do we formalize the agent-environment interaction?

Markov Decision Process and Policy
A Markov decision process (MDP) is represented by the tuple
M = 〈X ,A, r , p〉 where X is the state space, A is the action space,
r : X × A→ [0,B] is the reward function, p is the dynamics.
At time t ∈ N a decision rule πt : X → A is a mapping from states to
actions and a policy (strategy, plan) is a sequence of decision rules
π = (π0, π1, π2, . . . ).

The Bellman equations

V π(x) = r(x , π(x)) + γ
∑

y
p(y |x , π(x))V π(y),

V ∗(x) = max
a∈A

[
r(x , a) + γ

∑
y

p(y |x , a)V ∗(y)
]
.
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What: the Highlights of the Course

How do we solve an MDP?

Dynamic Programming
Value Iteration

Vk+1 = T Vk

Policy Iteration
I Evaluate: given πk compute V πk .
I Improve: given V πk compute πk+1 = greedy(V πk )
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What: the Highlights of the Course

How do we solve an MDP “online”?

Q-learning
Given a observed transition x , a, x ′, r update

Qk+1(x , a) = (1− α)Qk(x , a) + α
(
r + max

a′
Qk(x ′, a′)

)
.
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What: the Highlights of the Course

How do we effectively trade-off exploration and exploitation?

Multi-arm Bandit
Given K arms we define the regret over n rounds of a bandit strategy as

Rn =
n∑

t=1
Xi∗,t −

n∑
t=1

XIt ,t .

For the UCB strategy we can prove

Rn ≤
∑
i 6=i∗

b2

∆i
log(n).
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What: the Highlights of the Course

How do we solve a “huge” MDP?

Approximate Dynamic Programming
Approximate Value Iteration

V̂k+1 = T̂ V̂k

Approximate Policy Iteration
I Evaluate: given πk compute V̂ πk .
I Improve: given V̂ πk compute π̂k+1 ≈ greedy(V̂ πk )
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What: the Highlights of the Course

How “sample-efficient” are these algorithms?

Sample Complexity of LSPI

||V πK − V ∗||2,ρ ≤ inf
f∈F
||V ∗ − f ||2,ρ +

Cρ
1− γ

√
log(1/δ)

n .
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Who

Lectures and Practical Sessions

Alessandro LAZARIC

SequeL Team
INRIA-Lille Nord Europe

alessandro.lazaric@inria.fr
researchers.lille.inria.fr/˜lazaric/
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When/What/Where

See planning on the website.
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Evaluation

I To be defined (probably homework+review project at the end
of the course)
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Reinforcement Learning

Alessandro Lazaric
alessandro.lazaric@inria.fr
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