1 Parametrized problems and FPT Algorithms

Flum and Grohe, *Parametrized Complexity Theory*.

1.1 Preliminaries

Definition 1. • A parametrisation is a ptime computable function \(k : \Sigma^* \rightarrow \mathbb{N} \).

• A parametrised problem is a pair \((L, k)\) of \(L \subseteq \Sigma^*\) and \(k\) a parametrisation.

Example 1. • SAT and the number of variables

• Clique \((G, k)\) and \(k\)

• SAT and the number of variable per clauses...

Definition 2. • FPT-time algorithm wrt \(k\) is an algorithm that decides on input \(x\) if \(x \in L\) and runs in time \(f(k(x))\text{poly}(|x|)\) for a computable function \(f\).

• \((L, k)\) is fixed parameter tractable (FPT) if there exists an FPT-time algorithm wrt \(k\) for \((L, k)\)

Example 2.

SAT and number of variables
co-example : colorability

1.2 Example : vertex covers

Definition 3. Let \(G = (V, E)\) be a graph. A vertex cover is a set \(S \subseteq V\) such that for every \(e \in E\), \(S \cap e \neq \emptyset\).

Deciding given \(G\) and \(k\) if there exists a vertex cover of size \(\leq k\) if a well-known NP-complete problem. However, it is FPT in \(k\):

• If \(|E| = 0\), return true.

• If \(k = 0\), return false.

• Otherwise, choose \(e = \{u, v\} \in E\). Return \(VC(G \setminus \{u\}, k - 1) \lor VC(G \setminus \{v\}, k - 1)\).

At most \(2^k\) calls of the function. And each call is polynomial in \(|G|\).
Independent sets. Can we use this idea to detect independent sets in FPT time?

Definition 4. Let \(G = (V, E) \) be a graph. An independent set is a set \(S \subseteq V \) such that for every \(u, v \in S \), \(\{u, v\} \notin E \).

Lemma 5. Let \(G = (V, E) \) be a graph and \(S \subseteq V \). \(S \) is a vertex cover iff \(V \setminus S \) is an independent set.

Previous algorithm gives an algorithm with runtime \(2^{n-k} \) for Independent Sets. It is not FPT. But IS parametrized by \(n-k \) is FPT.

2 Treewidth

Give intuition: how to measure the “distance between a graph and a tree”.

2.1 Definition and examples

Definition 6. A tree decomposition of a graph \(G = (V, E) \) is a tree \(T \) and a labelling \(B_t \subseteq V \) for every \(t \in V(T) \) such that:

- for every \(x \in V \), \(\{t \mid x \in B_t\} \) is connected,
- for every \(e \in E \), there exists \(t \) such that \(e \subseteq B_t \).

2.2 Treewidth of well-known graphs

Treewidth of trees.

Theorem 7. A graph is a forest if and only if it has treewidth 1.

Proof of the other way relies on:

Lemma 8. If \(H \subseteq G \) then \(tw(H) \leq tw(G) \).

Proof. Remove vertices of \(V(G) \) from a decomposition of \(G \).

Treewidth of cycle. Cycle have treewidth 2.

Treewidth of clique. \(K_k \) is of treewidth \(k - 1 \).

Project examples. Proof of the lower bounds:

Lemma 9. Let \(G \) be a graph and \(d \) be the minimal degree of its vertices. Then \(tw(G) \geq d \).

Proof. Let \(T \) be a tree decomposition of \(G \) of treewidth \(k \). We claim that there exists a vertex \(v \in V \) of degree \(k \). Indeed, let \(t \) be a leaf of \(T \) with father \(t' \). If \(B_t \subseteq B_{t'} \) then we can remove \(t \) from \(T \) and still have a tree decomposition of \(G \) of treewidth \(k \). Do this until you cannot any more to compute a new tree decomposition \(T' \) of \(G \) of treewidth \(k \).

Now let \(t \) be a leaf of \(T' \) and father \(t' \). By definition, there exists \(x \in B_t \setminus B_{t'} \). Since \(t \) is a leaf, \(x \) only appear in \(B_t \) by connectivity. Thus, every edge \(\{x, y\} \subseteq B_t \), ie the degree of \(x \) is \(\leq k \). □
Treewidth of grids.

Theorem 10. Let G be a $n \times m$ grid with $n \leq m$. Then $tw(G) \leq m$. And $tw(G) \geq m/3$.

3 Formulas of bounded treewidth

3.1 Graphs and formulas

Primal/Incidence graphs. On slides.

3.2 Primal treewidth

Solve $\#SAT$ for bounded primal treewidth.

Theorem 11. $\#SAT$ parametrised by ptw can be solved in FPT time. More precisely, we can count the number of solution of F in time $2^{O(k)} \cdot poly(|F|)$ where $k = ptw(F)$.

Proof. Start from a tree decomposition T of the primal graph of F, root it in a node r. The bags of T are denoted by B_t. Remember that $|B_t| \leq k + 1$.

Given $t \in T$, define T_t to be the tree rooted in t, V_t to be the variables of F appearing in T_t and F_t to be CNF formula whose clauses are clauses C of F such that $var(C) \subseteq V_t$. Observe that $F_r = F$.

We will compute $\#F$ by dynamic programming. For every t and $\tau : B_t \rightarrow \{0, 1\}$, we will compute $\#F_t[\tau]$. Observe that there is $|T| \cdot 2^{k+1}$ such values to compute.

We now explain how the dynamic programming works. If t is a leaf of the tree, then $\tau : B_t \rightarrow \{0, 1\}$ assigns all variables of F_t. Thus $\#F_t[\tau]$ is either 0 or 1.

Now let t be a vertex of T and t_1, t_2 its children. Observe that $V_{t_1} \cap V_{t_2} \subseteq B_t$. We thus have $\#F_t[\tau] = \#F_{t_1}[\tau_1] \cdot \#F_{t_2}[\tau_2]$ where $\tau_1 = \tau|_{V_{t_1}}$ and $\tau_2 = \tau|_{V_{t_2}}$.

We conclude by observing that $\#F[\tau_1] = \sum_{\mu : B_{t_1} \setminus B_t \rightarrow \{0, 1\}} \#F_{t_1}[\tau_1 \cup \mu]$ (symmetrically for t_2) which all have been precomputed. \qed

Change the proof to construct a d-DNNF:

- $F_t[\tau] = F_{t_1}[\tau_1] \land F_{t_2}[\tau_2]$ and this \land is decomposable,
- $F[\tau_1] = \lor_{\mu : B_{t_1} \setminus B_t \rightarrow \{0, 1\}} F_{t_1}[\tau_1 \cup \mu]$ and this \lor is deterministic.

We can actually construct a dec-DNNF from this. Add decision tree for $\mu : B_{t_1} \setminus B_t \rightarrow \{0, 1\}$.

Relation with c2d and d4.

- 3-splitting: syntactic decompositions (what Pierre was presenting)
- c2d starts from a tree decomposition of the formula and compile it (not exactly the same algorithm).
3.3 Incidence treewidth

Compile formulas of bounded incidence treewidth toward d-DNNF.

Theorem 12. Given F of itw k, we can construct in FPT time a d-DNNF of size $2^{O(k)} \cdot |F|$.

Proof. Start from a tree decomposition T of the primal graph of F, root it in a node r. The bags of T are denoted by B_t. Remember that $|B_t| \leq k + 1$. We denote by $\text{var}(B_t) = \text{var}(F) \cap B_t$ and $\text{cla}(B_t) = F \cap B_t$.

Given $t \in T$, define T_t to be the tree rooted in t, V_t to be the variables of F appearing in T_t and F_t to be CNF formula whose clauses are clauses of F appearing in T_t.

We will compute our d-DNNF for F by dynamic programming. For every t and $\tau : \text{var}(B_t) \rightarrow \{0,1\}$ and $C \subseteq \text{cla}(F_t)$, we will compute a d-DNNF with a gate computing $(F_t \setminus C)[\tau] \land \bigwedge_{C \in C} \neg C$.

4 Toward more general parameters

Slide with the parameters zoo!