On Definability for Model Counting

$$
\text { Jean-Marie Lagniez }{ }^{1} \text {, Emmanuel Lonca }{ }^{1} \text { and Pierre Marquis }{ }^{1,2}
$$

${ }^{1}$ CRIL, U. Artois \& CNRS
${ }^{2}$ Institut Universitaire de France

Meeting GT ALGA, GdR IM, Lille, October $15^{\text {th }}, 2018$

The Beyond NP Era

- Key idea: Leveraging the power of modern SAT solvers to tackle other intractable problems
- Objective: Enlarging the sets of instances which can be solved in practice using "reasonable" resources
- Knowledge compilers
- MUS/MCS enumerators
- QBF solvers
- Model counters
- ...
- beyondnp.org

Model Counting

- $\Sigma \mapsto\|\Sigma\|=$?

Model Counting

- $\Sigma \mapsto\|\Sigma\|=$?
- $\Sigma=(x \vee y) \wedge(\neg y \vee z)$

Model Counting

- $\Sigma \mapsto\|\Sigma\|=$?
- $\Sigma=(x \vee y) \wedge(\neg y \vee z)$
- The models of Σ over $\{x, y, z\}$ are :

011
100
101
111

Model Counting

- $\Sigma \mapsto\|\Sigma\|=$?
- $\Sigma=(x \vee y) \wedge(\neg y \vee z)$
- The models of Σ over $\{x, y, z\}$ are :

011
100
101
111

- $\|\Sigma\|=4$

Model Counting

- Counting the models of a propositional formula is a key task for a number of problems (especially in Al):
- probabilistic inference
- stochastic planning
- ...

Model Counting

- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
- probabilistic inference
- stochastic planning
- However \#SAT is a computationally hard task: \#P-complete

Model Counting

- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
- probabilistic inference
- stochastic planning
- However \#sAT is a computationally hard task: \#P-complete
- Even for subsets of formulae for which SAT is easy (e.g., monotone Krom formulae)!

Model Counting

- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
- probabilistic inference
- stochastic planning
- However \#sat is a computationally hard task: \#P-complete
- Even for subsets of formulae for which SAT is easy (e.g., monotone Krom formulae)!
- The "power" of counting and its complexity are reflected by Toda's theorem:

$$
\begin{gathered}
\text { Seinosuke Toda (Gödel Prize 1998): } \\
\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}
\end{gathered}
$$

Model Counting

- Many model counters have been developed:
- Exact model counters:
- search-based: Cachet, SharpSAT, DMC, etc.,
- compilation-based: C2D, Dsharp, D4, etc.
- Approximate model counters (SampleCount, etc.)

Model Counting

- Many model counters have been developed:
- Exact model counters:
- search-based: Cachet, SharpSAT, DMC, etc.,
- compilation-based: C2D, Dsharp, D4, etc.
- Approximate model counters (SampleCount, etc.)
- In this talk: improving exact model counters by preprocessing the input

$$
\mathrm{CNF} \rightarrow \mathrm{CNF}
$$

Preprocessings

- Objective: simplifying the input so that the task at hand can be achieved more efficiently from the input once preprocessed
- Simplifying = "reducing something"
- Trade-off preprocessing cost / rest of the computation to be looked for
- Using aggressive, computationally demanding preprocessing techniques can make sense when dealing with highly complex problems (like \#sat)
- P-preprocessing vs. NP-preprocessing

Knowledge Compilation vs. Preprocessing for \#SAT

- Similarities: two off-line approaches for improving the model counting task

Knowledge Compilation vs. Preprocessing for \#SAT

- Similarities: two off-line approaches for improving the model counting task
- Differences:
- computing a new representation in the same vs. a distinct language
- "hard part" vs. "easy part"

Knowledge Compilation vs. Preprocessing for \#SAT

- Similarities: two off-line approaches for improving the model counting task
- Differences:
- computing a new representation in the same vs. a distinct language
- "hard part" vs. "easy part"
- knowledge compilation CNF $\Sigma \longrightarrow$ compilation \longrightarrow d-DNNF $\Psi-$ model counting $\longrightarrow\|\|$

Knowledge Compilation vs. Preprocessing for \#SAT

- Similarities: two off-line approaches for improving the model counting task
- Differences:
- computing a new representation in the same vs. a distinct language
- "hard part" vs. "easy part"
- knowledge compilation CNF $\Sigma \longrightarrow$ compilation \longrightarrow d-DNNF $\Psi-$ model counting $\longrightarrow\|\|$
- preprocessing

CNF $\Sigma \longrightarrow$ preprocessing \longrightarrow CNF $\Phi \longrightarrow$ model counting $\longrightarrow \Sigma \|$

Knowledge Compilation vs. Preprocessing for \#SAT

- Similarities: two off-line approaches for improving the model counting task
- Differences:
- computing a new representation in the same vs. a distinct language
- "hard part" vs. "easy part"
- knowledge compilation CNF $\Sigma \longrightarrow$ compilation \rightarrow d-DNNF $\Psi-$ model counting $\longrightarrow \Sigma \|$
- preprocessing

- The two approaches can be combined

Dozens of P-Preprocessings

- Vivification (VI) and a light form of it, called Occurrence Elimination (OE),
- Gate Detection and Replacement (GDR)
- Pure Literal Elimination (PLE)
- Variable Elimination (VE)
- Blocked Clause Elimination (BCE)
- Covered Clause Elimination (CCE)
- Failed Literal Elimination (FLE)
- Self-Subsuming Resolution (SSR)
- Hidden Literal Elimination (HLE)
- Subsumption Elimination (SE)
- Hidden Subsumption Elimination (HSE)
- Asymmetric Subsumption Elimination (ASE)
- Tautology Elimination (TE)
- Hidden Tautology Elimination (HTE)
- Asymmetric Tautology Elimination (ATE)
- ...

Use in State-of-the-Art SAT Solvers

- Glucose (exploits the SatELite preprocessor)
- Lingeling (has an internal preprocessor)
- Riss (use of the Coprocessor preprocessor)

Reducing What?

CNF $\Sigma \mapsto \operatorname{CNF} p(\Sigma)$

- What are the connections between Σ and $p(\Sigma)$?
- Removing clauses from Σ
- Removing literals in the clauses of Σ

Looking for IES or Minimal CNF is often too Expensive

- A clause δ of a CNF Σ is redundant if and only if $\Sigma \backslash\{\delta\} \models \delta$
- A CNF Σ is irredundant if and only if it does not contain any redundant clause
- A subset Σ^{\prime} of a CNF Σ is an irredundant equivalent subset (IES) of Σ if and only if Σ^{\prime} is irredundant and $\Sigma^{\prime} \equiv \Sigma$
- Deciding whether a CNF Σ is irredundant is NP-complete
- Deciding whether a CNF Σ^{\prime} is an irredundant equivalent subset (IES) of a CNF Σ is D^{p}-complete
- Given an integer k, deciding whether a CNF Σ has an IES of size at most k is \sum_{2}^{p}-complete
- Given an integer k, deciding whether there exists a CNF formula Σ^{\prime} with at most k literals (or with at most k clauses) equivalent to a given $\operatorname{CNF} \Sigma$ is Σ_{2}^{p}-complete

Preserving What?

- Logical equivalence
- Queries over the input alphabet
- Number of models
- Satisfiability
- ...

Measuring the Impact of a Preprocessing

Several measures for the reduction achieved can be considered:

- The number of variables in the input CNF Σ
- The size of Σ (the number of literals or the number of clauses in it)
- The value of some structural parameters for Σ
- ...

Example: Subsumption Elimination

A clause δ_{1} subsumes a clause δ_{2}
if every literal of δ_{1} is a literal of δ_{2}
$S E:\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \mapsto x_{1} \vee x_{2}$

- P-preprocessing
- Preserves logical equivalence
- Hence preserves the number of models of the input (over the original alphabet), its queries and its satisfiability
- \#var $(\Sigma) \geq \# \operatorname{var}(\operatorname{SE}(\Sigma))$
- $\# \operatorname{lit}(\Sigma) \geq \# \operatorname{lit}(\operatorname{SE}(\Sigma))$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\Sigma=\quad \begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& x \vee \bar{u} \\
& y \vee z \vee \bar{u}
\end{aligned}
$$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\Sigma=\begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& \\
& x \vee \bar{u} \\
& \\
& y \vee z \vee \bar{u}
\end{aligned} \quad u \leftrightarrow(x \wedge(y \vee z))
$$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \Sigma=\bar{x} \vee \bar{z} \vee u \quad u \leftrightarrow(x \wedge(y \vee z)) \\
& x \vee \bar{u} \\
& y \vee z \vee \bar{u} \\
& \Sigma \equiv \\
& (\bar{x} \vee u \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) \\
& \text { detection }
\end{aligned}
$$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\begin{array}{lll}
& \bar{x} \vee u \vee v & \\
\\
\bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& x \vee \bar{u} & \\
& y \vee z \vee \bar{u} & \\
\\
\Sigma \equiv & \\
& (\bar{x} \vee u \vee(x \wedge(y \vee z)) & \\
(\bar{x} \vee(x \wedge(y \vee z)) \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { replacement }
\end{array}
$$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\begin{array}{lll}
& \bar{x} \vee u \vee v & \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u & u \leftrightarrow(x \wedge(y \vee z)) \\
& x \vee \bar{u} & \\
& y \vee z \vee \bar{u} & \\
\Sigma \equiv & & \\
& (\bar{x} \vee u \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { detection } \\
& (\bar{x} \vee(x \wedge(y \vee z)) \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \\
& \text { replacement } \\
(\bar{x} \vee y \vee z \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { normalization }
\end{array}
$$

The Gate Detection and Replacement Family

A gate of Σ is a circuit $\ell \Leftrightarrow \beta$ such that $\Sigma \models \ell \Leftrightarrow \beta$
Σ and $\Sigma[\ell \leftarrow \beta]$ have the same number of models (but are not logically equivalent in general)

$$
\begin{array}{lll}
& \bar{x} \vee u \vee v & \\
\bar{x} \vee \bar{y} \vee u & \\
\bar{x} \vee \bar{z} \vee u & \\
& x \vee \bar{u} & \\
& y \vee z \vee \bar{u} & \\
\Sigma & =(x \wedge(y \vee z)) & \\
& (\bar{x} \vee u \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { detection } \\
& (\bar{x} \vee(x \wedge(y \vee z)) \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { replacement } \\
& (\bar{x} \vee y \vee z \vee v) \wedge(u \leftrightarrow(x \wedge(y \vee z))) & \text { normalization }
\end{array}
$$

$\|\Sigma\|=\|\Sigma[u \leftarrow(x \wedge(y \vee z))]\|=\|\bar{x} \vee y \vee z \vee v\|=15$

The Gate Detection and Replacement Family

- Gate detection and replacement proves to be a valuable preprocessing
- Specific gates are typically sought for (literal equivalence, AND/OR gates, XOR gates) for complexity reasons
- The replacement $\Sigma[\ell \leftarrow \beta$] requires to turn the resulting formula into CNF
- It is implemented only if it it does not lead to increase the size of the input (a "small" increase can also be accepted)
- BCP (instead of a "full" SAT solver) is often used for efficiency reasons (P-preprocessing)

Literal Equivalence (LE)

- Literal equivalence aims to detect equivalences between literals using BCP
- P-preprocessing
- For each literal ℓ, all the literals ℓ^{\prime} which can be found equivalent to ℓ using BCP are replaced by ℓ in Σ
- Taking advantage of BCP makes it more efficient than a "syntactic detection" (if two binary clauses stating an equivalence between two literals ℓ and ℓ^{\prime} occur in Σ, then those literals are found equivalent using BCP, but the converse does not hold)

Literal Equivalence (LE)

```
Algorithm 1: LE
input : a CNF formula \(\Sigma\)
output: a CNF formula \(\Phi\) such that \(\|\Phi\|=\|\Sigma\|\)
\(1 \Phi \leftarrow \Sigma\); Unmark all variables of \(\Phi\);
2 while \(\exists \ell \in \operatorname{Lit}(\Phi)\) s.t. \(\operatorname{var}(\ell)\) is not marked do
        // detection
        mark var \((\ell)\);
        \(\mathcal{P}_{\ell} \leftarrow \mathrm{BCP}(\Phi \cup\{\ell\}) ;\)
        \(\mathcal{N}_{\ell} \leftarrow \operatorname{BCP}(\Phi \cup\{\sim \ell\}) ;\)
        \(\Gamma \leftarrow\left\{\ell \leftrightarrow \ell^{\prime} \mid \ell^{\prime} \neq \ell\right.\) and \(\ell^{\prime} \in \mathcal{P}_{\ell}\) and \(\left.\sim \ell^{\prime} \in \mathcal{N}_{\ell}\right\} ;\)
        // replacement
        foreach \(\ell \leftrightarrow \ell^{\prime} \in \Gamma\) do
            replace \(\ell\) by \(\ell^{\prime}\) in \(\Phi\);
9 return \(\Phi\)
```


Literal Equivalence (LE): Example

$$
\begin{array}{rlrl}
\Sigma= & & \\
& a \vee b \vee c \vee \neg d & & \neg a \vee \neg b \vee \neg c \vee d \\
& a \vee b \vee \neg c & & \neg \vee \vee \neg b \vee c \\
& \neg a \vee b & & a \vee \neg b \\
& \neg e \vee \neg f \vee h & & e \vee f \vee g \\
& e \vee \neg g & & \neg e \vee \neg h
\end{array}
$$

Assume that the variables of Σ are considered in the following ordering: $a<b<c<d<e<f<g<h$

The equivalences $(a \Leftrightarrow b) \wedge(b \Leftrightarrow c) \wedge(c \Leftrightarrow d) \wedge(e \Leftrightarrow \neg f)$ are detected
$\operatorname{LE}(\Sigma)=$

$$
\neg f \vee \neg g \quad f \vee \neg h
$$

Properties of LE

- Preserves the number of models (but not logical equivalence)
- \#var $(\Sigma) \geq \# \operatorname{var}(\operatorname{LE}(\Sigma))$
- \#lit $(\Sigma) \geq \# \operatorname{lit}(\operatorname{LE}(\Sigma))$

LE: Reduction of the Number of Variables

Figure - Comparing $\# \operatorname{var}(\Sigma)$ with $\# \operatorname{var}(\operatorname{LE}(\Sigma))$.

LE: Reduction of the Size

Figure - Comparing \#lit(Σ) with \# $\operatorname{lit}(\operatorname{LE}(\Sigma))$.

Backbone Identification (BI)

- The backbone of a CNF formula Σ is the set of all literals which are implied by Σ when Σ is satisfiable, and is the empty set otherwise
- The purpose of the $B I$ preprocessing is to make the backbone B of the input CNF formula Σ explicit, to conjoin it to Σ, and to use BCP (Boolean Constraint Propagation) on the resulting set of clauses
- NP-preprocessing

Backbone Identification (BI)

```
Algorithm 2: BI Backbone Identification
input : a CNF formula \(\Sigma\)
output: the \(\operatorname{CNF} \operatorname{BCP}(\Sigma \cup B)\), where \(\mathcal{B}\) is the backbone of \(\Sigma\)
\(1 \mathcal{B} \leftarrow \emptyset\);
\(2 \mathcal{I} \leftarrow \operatorname{solve}(\Sigma)\);
3 while \(\exists \ell \in \mathcal{I}\) s.t. \(\ell \notin \mathcal{B}\) do
\(4 \quad \mathcal{I}^{\prime} \leftarrow \operatorname{solve}(\Sigma \cup\{\sim \ell\})\);
\(5 \quad\) if \(\mathcal{I}^{\prime}=\emptyset\) then \(\mathcal{B} \leftarrow \mathcal{B} \cup\{\ell\}\) else \(\mathcal{I} \leftarrow \mathcal{I} \cap \mathcal{I}^{\prime}\);
6 return \(\operatorname{BCP}(\Sigma \cup \mathcal{B})\)
```


Backbone Identification (BI): Example

$$
\begin{aligned}
\Sigma= & \\
& a \vee b \\
& \neg a \vee b \\
& \neg b \vee c \\
& c \vee d \\
& \neg c \vee e \vee f \\
& f \vee \neg g
\end{aligned}
$$

The backbone of Σ is equal to $B=\{b, c\}$

$$
\begin{gathered}
\mathrm{BI}(\Sigma)= \\
b \\
c \\
e \vee f \\
f \vee \neg g
\end{gathered}
$$

Properties of BI

- Preserves logical equivalence
- \#var $(\Sigma) \geq \# \operatorname{var}(\mathrm{BI}(\Sigma))$
- \#lit $(\Sigma) \geq \# \operatorname{lit}(\operatorname{BI}(\Sigma))$

BI: Reduction of the Number of Variables

Figure - Comparing \#var(Σ) with $\# \operatorname{var}(\operatorname{BI}(\Sigma))$.

BI: Reduction of the Size

Figure - Comparing \#lit(Σ) with $\# \operatorname{lit}(\operatorname{BI}(\Sigma))$.

Limitations of the Basic Gate Detection and Replacement Preprocessings

- The replacement phase requires gates to be detected
- The search space for gates is huge
- The size of a gate can be huge as well

Limitations of the Basic Gate Detection and Replacement Preprocessings

- The replacement phase requires gates to be detected
- The search space for gates is huge
- The size of a gate can be huge as well
- Identifying "complex gates" is incompatible with the efficiency expected for a preprocessing: only "simple" gates are targeted literal equivalences $\quad y \leftrightarrow x_{1}$
AND/OR gates $\quad y \leftrightarrow\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right)$
XOR gates $\quad y \leftrightarrow\left(x_{1} \oplus \overline{x_{2}}\right)$

Overcoming the Limitations (1)

- The (explicit) identification phase can be replaced by an implicit identification phase
- Stated otherwise, there is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ

Overcoming the Limitations (1)

- The (explicit) identification phase can be replaced by an implicit identification phase
- Stated otherwise, there is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Let us ask Evert and Alessandro for some help ...

Evert Willem Beth (1908-1964)

Evert Willem Beth (1908-1964)

- Σ explicitly defines y in terms of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ iff there exists a formula $f\left(x_{1}, \ldots, x_{n}\right)$ over X such that

$$
\Sigma \models y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)
$$

Evert Willem Beth (1908-1964)

- Σ explicitly defines y in terms of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ iff there exists a formula $f\left(x_{1}, \ldots, x_{n}\right)$ over X such that

$$
\Sigma \models y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)
$$

- Σ implicitly defines y in terms of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ iff for every canonical term γ_{X} over X, we have $\Sigma \wedge \gamma_{X} \vDash y$ or $\Sigma \wedge \gamma_{X} \vDash \bar{y}$

Evert Willem Beth (1908-1964)

- Σ explicitly defines y in terms of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ iff there exists a
 formula $f\left(x_{1}, \ldots, x_{n}\right)$ over X such that

$$
\Sigma \models y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)
$$

- Σ implicitly defines y in terms of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ iff for every canonical term γ_{X} over X, we have $\Sigma \wedge \gamma_{X} \vDash y$ or $\Sigma \wedge \gamma_{X} \vDash \bar{y}$
- Beth's theorem: Σ explicitly defines y in terms of X iff Σ implicitly defines y in terms of X

Alessandro Padoa (1868-1937)

Padoa's theorem:

Let Σ_{X}^{\prime} be equal to Σ where each variable but those of X have been renamed in a uniform way
If $y \notin X$, then Σ (implicitly) defines y in terms of X iff $\Sigma \wedge \Sigma_{X}^{\prime} \wedge y \wedge \overline{y^{\prime}}$ is inconsistent

Alessandro Padoa (1868-1937)

Padoa's theorem:

Let Σ_{X}^{\prime} be equal to Σ where each variable but those of X have been renamed in a uniform way
If $y \notin X$, then Σ (implicitly) defines y in terms of X iff $\Sigma \wedge \Sigma_{X}^{\prime} \wedge y \wedge \overline{y^{\prime}}$ is inconsistent

Deciding whether Σ (implicitly) defines y in terms of X is "only" coNP-complete

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Gate identification $=$ Explicit definability

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Gate identification $=$ Explicit definability
- Explicit definability = Implicit definability (Beth's theorem)

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Gate identification $=$ Explicit definability
- Explicit definability = Implicit definability (Beth's theorem)
- One call to a SAT solver is enough to decide whether Σ defines y in terms of $\left\{x_{1}, \ldots, x_{n}\right\}$ (thanks to Padoa's theorem)

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Gate identification $=$ Explicit definability
- Explicit definability = Implicit definability (Beth's theorem)
- One call to a SAT solver is enough to decide whether Σ defines y in terms of $\left\{x_{1}, \ldots, x_{n}\right\}$ (thanks to Padoa's theorem)
- There is no need to identify f to compute $\Sigma\left[y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)\right]$

Overcoming the Limitations (2)

- There is no need to identify f to determine that a gate of the form $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ exists in Σ
- Gate identification $=$ Explicit definability
- Explicit definability = Implicit definability (Beth's theorem)
- One call to a SAT solver is enough to decide whether Σ defines y in terms of $\left\{x_{1}, \ldots, x_{n}\right\}$ (thanks to Padoa's theorem)
- There is no need to identify f to compute $\Sigma\left[y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)\right]$
- The replacement phase can be replaced by an output variable elimination phase: if $y \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)$ is a gate of Σ, then

$$
\Sigma\left[y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)\right] \equiv \exists y . \Sigma
$$

The B + E Preprocessing

A two-step preprocessing

- "Identification = Bipartition":
compute a definability bipartition $\langle I, O\rangle$ of Σ such that $I \cup O=\operatorname{Var}(\Sigma), I \cap O=\emptyset$, and Σ defines every variable $o \in O$ in terms of I

The B + E Preprocessing

A two-step preprocessing

- "Identification = Bipartition":
compute a definability bipartition $\langle I, O\rangle$ of Σ such that $I \cup O=\operatorname{Var}(\Sigma), I \cap O=\emptyset$, and Σ defines every variable $o \in O$ in terms of I
- "Replacement = Elimination":
compute $\exists E . \Sigma$ for $E \subseteq O$

The B + E Preprocessing

A two-step preprocessing

- "Identification = Bipartition": compute a definability bipartition $\langle I, O\rangle$ of Σ such that $I \cup O=\operatorname{Var}(\Sigma), I \cap O=\emptyset$, and Σ defines every variable $o \in O$ in terms of I
- "Replacement = Elimination":
compute $\exists E . \Sigma$ for $E \subseteq O$
- Steps B and E of B $+E$ can be tuned in order to keep the preprocessing phase light from a computational standpoint (NP-preprocessing)

Identifying u as an Output Variable and Eliminating it

Identification:

$\Sigma \wedge \Sigma_{\{x, y, z\}}^{\prime} \wedge u \wedge \overline{u^{\prime}}$ is inconsistent

$$
\begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& x \vee \bar{u} \\
& y \vee z \vee \bar{u} \\
& \bar{x} \vee u^{\prime} \vee v^{\prime} \\
& \bar{x} \vee \bar{y} \vee u^{\prime} \\
& \bar{x} \vee \bar{z} \vee u^{\prime} \\
& x \vee \overline{u^{\prime}} \\
& y \vee z \vee \overline{u^{\prime}} \\
& \frac{u}{u^{\prime}}
\end{aligned}
$$

Identifying u as an Output Variable and Eliminating it

Identification:

$\Sigma \wedge \Sigma_{\{x, y, z\}}^{\prime} \wedge u \wedge \overline{u^{\prime}}$ is inconsistent

$$
\begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& x \vee \bar{u} \\
& y \vee z \vee \bar{u} \\
& \bar{x} \vee u^{\prime} \vee v^{\prime} \\
& \bar{x} \vee \bar{y} \vee u^{\prime} \\
& \bar{x} \vee \bar{z} \vee u^{\prime} \\
& x \vee \overline{u^{\prime}} \\
& y \vee z \vee \overline{u^{\prime}} \\
& u \\
& \overline{u^{\prime}}
\end{aligned}
$$

Elimination:

computing resolvents over u

$\bar{x} \vee v \vee x$	valid
$\bar{x} \vee v \vee y \vee z$	
$\bar{x} \vee \bar{y} \vee x$	valid
$\bar{x} \vee \bar{y} \vee y \vee z$	valid
$\bar{x} \vee \bar{z} \vee x$	valid
$\bar{x} \vee \bar{z} \vee y \vee z$	valid

Identifying u as an Output Variable and Eliminating it

Identification:

$\Sigma \wedge \Sigma_{\{x, y, z\}}^{\prime} \wedge u \wedge \overline{u^{\prime}}$ is inconsistent

$$
\begin{aligned}
& \bar{x} \vee u \vee v \\
& \bar{x} \vee \bar{y} \vee u \\
& \bar{x} \vee \bar{z} \vee u \\
& x \vee \bar{u} \\
& y \vee z \vee \bar{u} \\
& \bar{x} \vee u^{\prime} \vee v^{\prime} \\
& \bar{x} \vee \bar{y} \vee u^{\prime} \\
& \bar{x} \vee \bar{z} \vee u^{\prime} \\
& x \vee \overline{u^{\prime}} \\
& y \vee z \vee \overline{u^{\prime}} \\
& u \\
& \overline{u^{\prime}}
\end{aligned}
$$

Elimination:

computing resolvents over u

$\bar{x} \vee v \vee x$	valid
$\bar{x} \vee v \vee y \vee z$	
$\bar{x} \vee \bar{y} \vee x$	valid
$\bar{x} \vee \bar{y} \vee y \vee z$	valid
$\bar{x} \vee \bar{z} \vee x$	valid
$\bar{x} \vee \bar{z} \vee y \vee z$	valid

$$
\|\Sigma\|=\|\bar{x} \vee v \vee y \vee z\|=15
$$

Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the preprocessing phase light from a computational standpoint

- It is not necessary to determine a definability bipartition $\langle I, O\rangle$ with |I| minimal
$\Rightarrow B$ is a greedy algorithm (one definability test per variable)
\Rightarrow Only the minimality of I for \subseteq is guaranteed

Tuning the Computational Effort

Both steps B and E of $B+E$ can be tuned in order to keep the preprocessing phase light from a computational standpoint

- It is not necessary to determine a definability bipartition $\langle I, O\rangle$ with |I| minimal
$\Rightarrow B$ is a greedy algorithm (one definability test per variable)
\Rightarrow Only the minimality of I for \subseteq is guaranteed
- It is not necessary to eliminate in Σ every variable of O but focusing on a subset $E \subseteq O$ is enough
\Rightarrow Eliminating every output variable could lead to an exponential blow up
\Rightarrow The elimination of $y \in O$ is committed only if $|\Sigma|$ after the elimination step and some additional preprocessing techniques (occurrence simplification and vivification) remains small enough

Experiments

Objectives:

- Evaluating the computational benefits offered by B + E when used upstream to state-of-the-art model counters:
- the search-based model counter Cachet
- the search-based model counter SharpSAT
- the compilation-based model counter C2D (used with -count -in memory -smooth_all)
- the compilation-based model counter D4

Experiments

Objectives:

- Evaluating the computational benefits offered by $B+E$ when used upstream to state-of-the-art model counters:
- the search-based model counter Cachet
- the search-based model counter SharpSAT
- the compilation-based model counter C2D (used with -count -in_memory -smooth_all)
- the compilation-based model counter D4
- Comparing the benefits offered by $B+E$ with those offered by our previous preprocessor pmc (based on gate identification and replacement) or with no preprocessing

Empirical Setting

- 703 CNF instances from the SAT LIBrary
- 8 data sets: BN (Bayesian networks) (192), BMC (Bounded Model Checking) (18), Circuit (41), Configuration (35), Handmade (58), Planning (248), Random (104), Qif (7) (Quantitative Information Flow analysis - security)
- Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM on Linux CentOS
- Time-out $=1 \mathrm{~h}$
- Memory-out $=7.6 \mathrm{GiB}$

Empirical Results: Reduction Achieved

Figure - Reduction achieved by B+E

Empirical Results: Time Saving

Figure - Time saved by using $B+E$ upstream

Empirical Results: Time Saving

Figure - Time saved by using B + E upstream

Empirical Results

Figure - Cachet depending on the preprocessing used

Empirical Results

Figure - SharpSAT depending on the preprocessing used

Empirical Results

Figure - C2D depending on the preprocessing used

Empirical Results

Figure - D4 depending on the preprocessing used

Conclusion and Perspectives

Conclusion

- Design and implementation of the $B+E$ preprocessor
- Empirical evaluation of $B+E$: for several model counters mc, $\mathrm{mc}(\mathrm{B}+\mathrm{E}()$.$) proves computationally more efficient than \mathrm{mc}($.
- "Real" instances are structured ones

Conclusion and Perspectives

Conclusion

- Design and implementation of the $B+E$ preprocessor
- Empirical evaluation of $B+E$: for several model counters mc, $\mathrm{mc}(\mathrm{B}+\mathrm{E}()$.$) proves computationally more efficient than \mathrm{mc}($.
- "Real" instances are structured ones

Perspectives

- Developing other ordering heuristics for B
- Investigating the connections to projected model counting: computing $\|\exists E . \Sigma\|$ given a set E of variables and a formula Σ

