Learning Schemas for Unordered XML

Radu Ciucanu Sławek Staworko

University of Lille & INRIA, France

DBPL’13
August 30, 2013
Table of contents

1 Introduction

2 Preliminaries

3 Learning from positive examples

4 Impact of negative examples

5 Conclusions and future work
Unordered XML - the relative order of elements is not relevant.

XML is used for data-centric applications (as a semi-structured database).

Real world DTD.

\[\text{book} \rightarrow (\text{title} \mid \text{year} \mid \text{author} \mid \text{editor})^*. \]

Drawback: over-permissiveness.

- a book with many title’s or without a title.
- a book having at the same time author’s and editor’s...
Unordered XML - the relative order of elements is not relevant.

XML is used for data-centric applications (as a semi-structured database).

A schema (DMS) satisfied by the three documents.

\[\text{book} \rightarrow \text{title} \parallel \text{year}^? \parallel (\text{author}^+ \mid \text{editor}^+).\]
Why learning unordered schemas?

- If the schema of a XML collection is incorrect or missing, an inferred schema would allow:
 - **Query** or **modify** the collection by the users,
 - Twig query **minimization** – given a query and a schema, find a smaller yet equivalent query in the presence of the schema,
 - **Learn** better twig queries.

- **Data integration** – needs inferred unordered schemas.

- **Schema evolution** – previous valid documents become invalid (negative examples).

“We need to **extract good-quality schemas** automatically from existing data and perform **incremental maintenance** of the generated schemas to fulfill the goal of achieving **schema and data independence**.” [Florescu ’05]
Related work

- Learning DTDs reduces to learning regular expressions,
- [Bex et al. ’10] proposed learning algorithms for practical subclasses of regular expressions:
 - SOREs – single occurrence regular expressions,
 - CHAREs – chain regular expressions,
 - k-ores – each alphabet symbol occurs at most k times.
- DMS can be seen as restricted SOREs under commutative closure,
- The algorithms for learning SOREs take ordered input, therefore an additional input that the DMS do not have (the order among labels),
- Learning DMS cannot be reduced to learning SOREs.
Contributions

- Previously, only ordered XML schemas have been investigated for learning (typically restricted classes of regular expressions). We focus on learning unordered schemas.
- Previously, only positive examples have been considered. We also study settings with positive and negative examples.

<table>
<thead>
<tr>
<th>Schema formalism</th>
<th>+ examples only</th>
<th>+ and - examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table: Summary of learnability results.
Preliminaries
Unordered words

We define **languages of unordered words** (no order on symbols).

\[aab \equiv aba \equiv baa. \]

An unordered word is a **multiset of symbols**.

\[\{a, a, b\}. \]
Multiplicity expressions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a^+</td>
<td>a, aa, ...</td>
</tr>
<tr>
<td>b^*</td>
<td>ε, b, bb, ...</td>
</tr>
<tr>
<td>$c^?$</td>
<td>ε, c</td>
</tr>
<tr>
<td>d^1</td>
<td>d</td>
</tr>
<tr>
<td>f^0</td>
<td>ε</td>
</tr>
</tbody>
</table>

Multiplicities

Disjunction-free multiplicity expressions use multiplicities and unordered concatenation (\(\parallel\)).

\[E_1 = a^+ \parallel b^* \parallel c^? \parallel d^1 \]

Disjunctive multiplicity expressions additionally use disjunction (\(|\)).

\[E_2 = (a | b)^+ \parallel (c^? | d^*) \]

Radu Ciucanu, Sławek Staworko

Learning Schemas for Unordered XML

DBPL'13
Multiplicity expressions

Multiplicities

- a^+: a, aa, \ldots
- b^*: $\varepsilon, b, bb, \ldots$
- $c^?$: ε, c
- d^1: d
- f^0: ε

- **Disjunction-free multiplicity expressions** use multiplicities and unordered concatenation ("\|").

$$E_1 = a^+ \parallel b^* \parallel c^? \parallel d$$

<table>
<thead>
<tr>
<th>b d a</th>
<th>a b c</th>
<th>d d</th>
<th>X</th>
</tr>
</thead>
</table>

Radu Ciucanu, Sławek Staworko

Learning Schemas for Unordered XML DBPL’13 10 / 27
Multiplicity expressions

Multiplicities

<table>
<thead>
<tr>
<th>Expression</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^+</td>
<td>a, aa, \ldots</td>
</tr>
<tr>
<td>b^*</td>
<td>$\varepsilon, b, bb, \ldots$</td>
</tr>
<tr>
<td>$c?$</td>
<td>ε, c</td>
</tr>
<tr>
<td>d^1</td>
<td>d</td>
</tr>
<tr>
<td>f^0</td>
<td>ε</td>
</tr>
</tbody>
</table>

- **Disjunction-free multiplicity expressions** use multiplicities and unordered concatenation ("\|").

\[
E_1 = a^+ \| b^* \| c? \| d
\]

- **Disjunctive multiplicity expressions** additionally use disjunction ("\|").

\[
E_2 = (a \mid b)^+ \| (c? \mid d^*)
\]
Multic平ity schemas

MS Disjunction-free multiplicity schema
A set of disjunction-free multiplicity expressions

\[r \rightarrow a^+ \parallel b^* \parallel c^? \]
\[a \rightarrow b^? \parallel c^* \]
\[b \rightarrow a^? \parallel d \]

\[r \]
\[a \]
\[a \]
\[a \]
\[r \]
\[a \]
\[b \]
\[c \]
\[b \]
\[c \]
Multiplicity schemas

MS Disjunction-free multiplicity schema
A set of disjunction-free multiplicity expressions

\[
\begin{align*}
 r & \rightarrow a^+ \parallel b^* \parallel c^* \\
 a & \rightarrow b^? \parallel c^* \\
 b & \rightarrow a^? \parallel d
\end{align*}
\]

DMS Disjunctive multiplicity schema
A set of disjunctive multiplicity expressions

\[
\begin{align*}
 r & \rightarrow a^* \parallel (b \mid c)^+ \\
 a & \rightarrow b^? \parallel c^* \\
 b & \rightarrow (c^? \mid d^?)
\end{align*}
\]
Learning framework

- **Identification in the limit** [Gold ’67] – a good learning algorithm is able to infer any concept from a sufficiently rich set of examples.

- A class of schemas is learnable from positive examples if there is an algorithm *learner* that takes a set of examples, returns a schema, and
 1. *learner* is polynomial,
 2. *learner* is sound i.e., returns a schema consistent with the examples.
 3. *learner* is complete i.e., for every schema S there is a set of examples CS_S s.t. for every D that extends CS_S consistently with S, $learner(D)$ returns S. CS_S is called the characteristic sample for S w.r.t. *learner*. The cardinality of CS_S is polynomial in the size of the alphabet.
Size vs cardinality

Take \(n > 1, \Sigma = \{ r, a_1, b_1, \ldots, a_n, b_n \} \), and the DMS \(S \):

\[
\begin{align*}
 r & \rightarrow a_1 \parallel b_1, \\
 a_i, b_i & \rightarrow a_{i+1} \parallel b_{i+1} \quad (\text{for } 1 \leq i < n), \\
 a_n, b_n & \rightarrow \epsilon.
\end{align*}
\]

Figure: The unique tree satisfying the schema \(S \).
Minimality

Our algorithms return minimal schemas consistent with the examples.

The minimal (i.e., most specific) consistent schema

\[\text{book} \rightarrow \text{title} \parallel \text{year}^? \parallel (\text{author}^+ \mid \text{editor}^+) \].

Another possible solution (not minimal)

\[\text{book} \rightarrow \text{title} \parallel \text{year}^? \parallel \text{author}^* \parallel \text{editor}^*. \]

Minimality is perceived as a better fitted learning solution.
Learning from positive examples
Learning DMS reduces to learning DME

- Learning a DTD reduces to learning for each label the corresponding regular expression,
- Similarly, learning a DMS reduces to learning the DME for each label.

Example

Consider $\Sigma = \{a, b, c, d, e\}$, the sample $D = \{aab\bar{c}, ab\bar{d}, be\}$, and:

$$E_1 = (a^+ \mid e) \parallel b \parallel (c^? \mid d^?),$$
$$E_2 = a^* \parallel b \parallel (c \mid d \mid e).$$

- $D \subseteq L(E_1)$,
- $D \subseteq L(E_2)$,
- $L(E_1) \not\subseteq L(E_2)$ (because of bce),
- $L(E_2) \not\subseteq L(E_1)$ (because of abe),
- Both E_1 and E_2 are minimal DMEs with languages including D.

Radu Ciucanu, Sławek Staworko Learning Schemas for Unordered XML DBPL’13 16 / 27
Normal form of the DME (1)

Any DME E can be captured by its **characterizing triple** (C_E, N_E, P_E). Take $E_0 = a^+ \| (b \mid c) \| d^?$:

C_E **Conflicting pairs of siblings** - pairs of symbols which cannot be present in a word at the same time. $C_{E_0} = \{(b, c), (c, b)\}$

N_E **Cardinality map** - all the numbers of occurrences for every symbol. $N_{E_0} = \{(b, 0), (b, 1), (c, 0), (c, 1), (d, 0), (d, 1), (a, 1), (a, 2), \ldots\}$

P_E **Sets of required symbols** - at least one of them should be present in any word. $P_{E_0} = \{\{a\}, \{b, c\}, \ldots\}$
Normal form of the DME (1)

Any DME E can be captured by its **characterizing triple** (C_E, N_E, P_E). Take $E_0 = a^+ \parallel (b \mid c) \parallel d^?$:

C_E **Conflicting pairs of siblings** - pairs of symbols which cannot be present in a word at the same time. $C_{E_0} = \{(b, c), (c, b)\}$

N_E **Cardinality map** - all the numbers of occurrences for every symbol. $N_{E_0} = \{(b, 0), (b, 1), (c, 0), (c, 1), (d, 0), (d, 1), (a, 1), (a, 2), \ldots\}$

P_E **Sets of required symbols** - at least one of them should be present in any word. $P_{E_0} = \{\{a\}, \{b, c\}, \ldots\}$

A normal form has polynomial representation:

$C_E^* = C_{E_0}^* = \{\{b, c\}\}$

$N_E^* \left(a \right) = +, \quad N_E^* \left(b \right) = N_E^* \left(c \right) = N_E^* \left(d \right) = ?$

$P_E^* = P_{E_0}^* = \{\{a\}, \{b, c\}\}$
Normal form of the DME (2)

We can easily construct a DME from its characterizing triple. For example:

\[
\begin{align*}
C_{E_1}^* &= \{\{a, e\}, \{c, d\}\}, \\
P_{E_1}^* &= \{\{a, e\}, \{b\}\}, \\
N_{E_1}^*(a) &= *, \quad N_{E_1}^*(b) = 1, \quad N_{E_1}^*(c) = N_{E_1}^*(d) = N_{E_1}^*(e) = ?.
\end{align*}
\]

Note that they characterize the expression:

\[
E_1 = (a^+ \mid e) \parallel b \parallel (c^? \mid d^?).
\]
Algorithm for learning a DME from positive examples

We illustrate on the following sample over $\Sigma = \{a, b, c, d, e\}$:

$$D = \{aabc, abd, be\}.$$

1. Infer cardinality map: $N_E^*(a) = \ast$, $N_E^*(b) = 1$, $N_E^*(c/d/e) = \ast$
Algorithm for learning a DME from positive examples

We illustrate on the following sample over $\Sigma = \{a, b, c, d, e\}$:

$$D = \{aabc, abd, be\}.$$

1. Infer cardinality map: $N^*_E(a) = *, N^*_E(b) = 1, N^*_E(c/d/e) = ?$

2. Infer conflicting siblings (max-clique partition): $C^*_E = \{\{a, e\}, \{c, d\}\}$

\[a \quad e \]
\[b \]
\[c \quad d \]
Algorithm for learning a DME from positive examples

We illustrate on the following sample over $\Sigma = \{a, b, c, d, e\}$:

$$D = \{aabc, abd, be\}.$$

1. Infer cardinality map: $N_E^*(a) = \ast$, $N_E^*(b) = 1$, $N_E^*(c/d/e) = ?$

2. Infer conflicting siblings (max-clique partition): $C_E^* = \{\{a, e\}, \{c, d\}\}$

3. Infer sets of required symbols: $P_E^* = \{\{a, e\}, \{b\}\}$
Algorithm for learning a DME from positive examples

We illustrate on the following sample over $\Sigma = \{a, b, c, d, e\}$:

$$D = \{aabc, abd, be\}.$$

1. Infer cardinality map: $N_E^*(a) = *$, $N_E^*(b) = 1$, $N_E^*(c/d/e) = ?$

2. Infer conflicting siblings (max-clique partition): $C_E^* = \{\{a, e\}, \{c, d\}\}$

3. Infer sets of required symbols: $P_E^* = \{\{a, e\}, \{b\}\}$

4. Construct the corresponding DME: $E = (a^+ \mid e) \parallel b \parallel (c? \mid d?)$

Theorem

DMS and MS are learnable from positive examples.
Characteristic sample for learning DMS

Take the following schema S over $\Sigma = \{a, b, c, d, e\}$:

$$r \rightarrow a^* \parallel (b \mid c), \quad a \rightarrow d^?, \quad b, c \rightarrow e^+, \quad d, e \rightarrow \epsilon.$$

We construct the characteristic sample for each DME from the rules of S:

- $CS_{RS}(r) = \{aab, ab, ac, b, c\}$,
- $CS_{RS}(a) = \{\epsilon, d\}$,
- $CS_{RS}(b) = CS_{RS}(c) = \{e, ee\}$,
- $CS_{RS}(d) = CS_{RS}(e) = \{\epsilon\}$.

We construct the characteristic sample for S:

```
(a)  (b)  (c)  (d)  (e)  (f)  (g)  (h)
```

Radu Ciucanu, Sławek Staworko Learning Schemas for Unordered XML DBPL'13
Impact of negative examples
Consistency checking

A sound algorithm needs to return null iff there is no concept consistent with the input.

Consistency checking

Given a set of positive and negative examples, decide whether there exists a concept consistent with the input sample.
Consistency checking

A sound algorithm needs to return *null* iff there is no concept consistent with the input.

Consistency checking

Given a set of positive and negative examples, decide whether there exists a concept consistent with the input sample.

Given a set of positive examples, there is an unique minimal consistent MS.

Example: \(D^+ = \{aabc, abd, be\} \)

- The minimal ME consistent with \(D^+ \) is \(E = a^* \parallel b \parallel c? \parallel d? \parallel e? \),
- If \(D^- = \{abbe\} \), the sample is consistent,
- If \(D^- = \{abe\} \), the sample is **not** consistent.
Consistency checking

A sound algorithm needs to return \textit{null} iff there is no concept consistent with the input.

Consistency checking

Given a set of positive and negative examples, decide whether there exists a concept consistent with the input sample.

Given a set of positive examples, there is an unique minimal consistent MS.

Example: \(D^+ = \{aabc, abd, be\}\)

- The minimal ME consistent with \(D^+\) is \(E = a^* \parallel b \parallel c^? \parallel d^? \parallel e^?\),
- If \(D^- = \{abbe\}\), the sample is consistent,
- If \(D^- = \{abe\}\), the sample is not consistent.

Theorem

1. Consistency checking for MS is in PTIME,
2. MS are learnable from both positive and negative examples.
Consistency checking

A sound algorithm needs to return *null* iff there is no concept consistent with the input.

Consistency checking

Given a set of positive and negative examples, decide whether there exists a concept consistent with the input sample.

Given a set of positive examples, there may be many minimal consistent DMS.

Example: $D^+ = \{aabc, abd, be\}$ and $D^- = \{abe\}$

There are two minimal DME consistent with D^+:

- $E_1 = a^* \parallel b \parallel (c \mid d \mid e)$, but $abe \in L(E_1)$,
- $E_2 = (a^+ \mid e) \parallel b \parallel (c^? \mid d^?)$, $abe \notin L(E_2)$, so the sample is consistent.

In fact, there may exist exponentially many minimal consistent DMS.
Consistency checking for DME is NP-complete

For $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4)$, take the sample:

$$(t_1 f_1 t_2 f_2 t_3 f_3 t_4 f_4, +), \quad (\varepsilon, -),$$

$$(t_1 f_1, +), \quad (t_1 t_1 f_1 f_1, -),$$

$$(t_2 f_2, +), \quad (t_2 t_2 f_2 f_2, -),$$

$$(t_3 f_3, +), \quad (t_3 t_3 f_3 f_3, -),$$

$$(t_4 f_4, +), \quad (t_4 t_4 f_4 f_4, -),$$

$$(f_1 f_1 t_2 t_2 f_3 f_3, -),$$

$$(t_1 t_1 f_3 f_3 t_4 t_4, -).$$

A consistent DME is $E_V = (t_1 \mid f_2 \mid t_3 \mid f_4)^+ \parallel f_1? \parallel t_2? \parallel f_3? \parallel t_4?$. Note that a valuation $V \models \varphi$ iff E_V is consistent with the sample.
Consistency checking for DME is NP-complete

For $\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4)$, take the sample:

\[
\begin{align*}
(t_1 f_1 t_2 f_2 t_3 f_3 t_4 f_4, +), & \quad (\varepsilon, -), \\
(t_1 f_1, +), & \quad (t_1 t_1 f_1 f_1, -), \\
(t_2 f_2, +), & \quad (t_2 t_2 f_2 f_2, -), \\
(t_3 f_3, +), & \quad (t_3 t_3 f_3 f_3, -), \\
(t_4 f_4, +), & \quad (t_4 t_4 f_4 f_4, -), \\
(f_1 f_1 t_2 t_2 f_3 f_3, -), & \quad (t_1 t_1 f_3 f_3 t_4 t_4, -).
\end{align*}
\]

A consistent DME is $E_V = (t_1 | f_2 | t_3 | f_4)^+ \parallel f_1^? \parallel t_2^? \parallel f_3^? \parallel t_4^?$. Note that a valuation $V \models \varphi$ iff E_V is consistent with the sample.

Theorem

1. *Consistency checking for DMS is NP-complete,*
2. *DMS are not learnable from both positive and negative examples.*
Conclusions and future work
Conclusions

- We have studied the problem of learning unordered XML schemas from examples given by the user,
- We have investigated the impact of negative examples.

<table>
<thead>
<tr>
<th>Schema formalism</th>
<th>+ examples only</th>
<th>+ and - examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table: Summary of learnability results.

- For the learnable cases, we have proposed learning algorithms that return a minimal schema consistent with the examples,
- We have shown the intractable case by proving the intractability of the consistency checking.
Future work

- Characteristic sample of polynomial size (instead of cardinality):
 - Use compressed representation of the XML documents with DAGs.

- Boost the existing learning algorithms for twig queries:
 - Investigate the problem of query minimization in the presence of DMS,
 - Propose a twig learning algorithm which takes into account the schema.

- Extend the learning algorithms for more expressive unordered schemas e.g., which allow numeric occurrences of the form $a^{[n,m]}$.