Upper-bound of Reduction Operators

and Computation of Syzygies

Cyrille Chenavier Université Paris-Diderot - Paris 7. INRIA, équipe πr^2 .

1 Introduction

Several constructive methods in algebra are based on the computation of syzygies. For instance, a generating set of syzygies offers criteria to detect useless critical pairs during Buchberger's algorithm, that is critical pairs whose corresponding S-polynomials reduces into zero [8]. Such criteria improve the complexity of Buchberger's algorithm since most of the time is spent in computing into zero. Another application scope is homological/homotopical algebra where syzygies enable us to construct resolutions of monoids or algebras [1, 6, 7]. Several methods for computing syzygies were introduced: Squier's theorem states that the module of syzygies can be computed by a completion-reduction procedure [5]. Moreover, the syzygies of a regular sequence are spanned by principal syzygies [4]. In [2], a general method for computing syzygies of a set of polynomials equations is given.

In this work, we are interested in the computation of syzygies of linear rewriting systems. Our motivation is to develop a general framework which can be specialised to various structures whose underlying sets of terms are vector spaces: polynomials algebras, tensor algebras, Lie algebras, operads... We fix a vector space V and a basis G of V: when V is a polynomial algebra, G is the set of monomials, for tensor algebras, G is the set of words, for instance. We consider linear rewriting systems described by *reduction operators*. Given a well-order < on G, a reduction operator is an idempotent endomorphism of V such that for every $g \notin im(T)$, T(g) is a linear combination of elements of G strictly smaller than g for <. Such an operator encodes the reductions

$$v \longrightarrow T(v),$$

for every vector $v \notin \operatorname{im}(T)$.

Given a set $F = \{T_1, \cdots, T_n\}$ of reduction operators, the syzygies of F are the elements of the kernel of the map

$$\pi_F : \ker (T_1) \oplus \cdots \oplus \ker (T_n) \longrightarrow V.$$
$$(v_1, \cdots, v_n) \longmapsto \sum_{i=1}^n v_i$$

In [3, Proposition 2.1.14], it is shown that the set of reduction operators admits a lattice structure. Our method for constructing a linear basis of $\mathbf{Syz}(F)$ works as follows: $\mathbf{Syz}(f_1, f_2)$ is isomorphic to the kernel of the upper bound $T_1 \vee T_2$ of T_1 and T_2 . Moreover, for every integer $2 \le k \le n-1$, we have onto morphisms:

$$\begin{aligned} \mathbf{Syz} \left(T_1, \ \cdots, \ T_{k+1} \right) &\longrightarrow \ \mathbf{Syz} \left(T_1 \wedge \cdots \wedge T_k, \ T_{k+1} \right) \\ \left(v_1, \ \cdots, \ v_{k+1} \right) &\longmapsto \left(\sum_{i=1}^k \ v_i, \ v_{k+1} \right) \end{aligned}$$

where $T_1 \wedge \cdots \wedge T_k$ is the lower bound of $\{T_1, \dots, T_k\}$. Hence, if a linear basis \mathscr{B}_k of $\mathbf{Syz}(T_1, \dots, T_k)$ is known, we construct a linear basis of $\mathbf{Syz}(f_1, \dots, f_{k+1})$ by taking the union of \mathscr{B}_k with pre-images of elements of a linear basis of $\mathbf{Syz}(T_1 \wedge \cdots \wedge T_k, T_{k+1})$. This method provides successively linear bases of $\mathbf{Syz}(T_1, T_2)$, $\mathbf{Syz}(T_1, T_2, T_3), \dots, \mathbf{Syz}(T_1, \dots, T_n) = \mathbf{Syz}(F)$.

2 Reduction Operators

2.1. Notations. We fix a well-ordered set (G, <) and a commutative field \mathbb{K} . Every vector v of the vector space $\mathbb{K}G$ spanned by G admits a greatest element, written $\lg(v)$, in its decomposition with respect to G. We extend the order < on G into an order on $\mathbb{K}G$ defined by $v_1 < v_2$ if $v_1 = 0$ and $v_2 \neq 0$ or if $\lg(v_1) < \lg(v_2)$.

2.2. Definition. A linear endomorphism T of $\mathbb{K}G$ is called a *reduction operator* if it is a projector and if for every $g \in G$, we have $T(g) \leq g$. We write $\mathbf{RO}(G, <)$ the set of reduction operators and for every $T \in \mathbf{RO}(G, <)$, we write

$$\operatorname{Red}\left(T\right) \;=\; \Big\{g\in G \;\mid\; T(g) \;\neq\; g\Big\}.$$

2.3. *T*-decompositions. A reduction operator being a projector, the kernel of *T* admits as a basis the set of g - T(g), where *g* belongs to Red (*T*), that is every $v \in \text{ker}(T)$ admits a unique decomposition

$$v = \sum_{g \in \operatorname{Red}(T)} \lambda_g \left(g - T(g)\right).$$
(1)

The decomposition (1) is called the *T*-decomposition of v.

2.4. Lattice Structure. Recall from [3, Proposition 2.1.14] that the map

$$\ker : \mathbf{RO}(G, <) \longrightarrow \left\{ \text{subspaces of } \mathbb{K}G \right\},$$
$$T \longmapsto \ker(T)$$

is a bijection. Given a subspace V of $\mathbb{K}G$, we write ker⁻¹(V) the unique reduction operator with kernel V. Then, (**RO** (G, <), \leq , \land , \lor) is a lattice where

i. $T_1 \leq T_2$ if $\ker(T_2) \subseteq \ker(T_1)$, ii. $T_1 \wedge T_2 = \ker^{-1}(\ker(T_1) + \ker(T_2))$, iii. $T_1 \vee T_2 = \ker^{-1}(\ker(T_1) \cap \ker(T_2))$.

3 Syzygies

We fix a subset $F = \{T_1, \dots, T_n\}$ of **RO** (G, <) and we let

$$\ker(F) = \ker(T_1) \oplus \cdots \oplus \ker(T_n).$$

An element of ker(F) is written (v_1, \dots, v_n) , where each v_i belongs to ker (T_i) .

3.1. Notation. For every integer $1 \leq i \leq n$ and for every $g \in \text{Red}(T_i)$, we let

$$b_{i,q} = (0, \cdots, 0, g - T_i(g), 0, \cdots, 0).$$

The set

$$\mathscr{B} = \left\{ b_{i,g} \mid 1 \leq i \leq n \text{ and } g \in \operatorname{Red}(T_i) \right\},$$

is a linear basis of $\ker(F)$.

3.2. Definition. Consider the linear map

$$\pi_F : \ker(F) \longrightarrow \ker(\wedge F).$$
$$(v_1, \cdots, v_n) \longmapsto \sum_{i=1}^n v_i$$

We write

$$\mathbf{Syz}(F) = \ker(\pi_F).$$

The elements of $\mathbf{Syz}(F)$ are called the *syzygies* of F.

3.3. Canonical Decompositions. By definition of syzygies, we have a linear isomorphism

$$\overline{\pi_F}$$
: ker (F) /Syz $(F) \xrightarrow{\sim}$ ker $(\wedge F)$.

Moreover, ker (F) / **Syz** (F) admits as a basis a subset $\mathscr{B}(F)$ of \mathscr{B} , so that

$$\left\{g - T_i(g) \mid b_{i,g} \in \mathscr{B}(F)\right\},\tag{2}$$

is a basis of ker $(\wedge F)$. The decomposition of an element v of ker $(\wedge F)$ with respect to (2) is called a *canonical* decomposition of v with respect to F.

3.4. Remark. Following the terminology of [3, Section 2.1.9], $\mathscr{B}(F)$ can be chosen in such a way that it is also *reduced* and this choice is unique, which motivates the terminology of "canonical basis". In the sequel, we do not assume that $\mathscr{B}(F)$ is reduced.

3.5. Purpose. Our purpose is to introduce an algorithm for computing Syz(F). This algorithm is based on the fact that for every family U_1, \dots, U_k of reduction operators, we have a linear map:

$$\begin{aligned} \mathbf{Syz} \left(U_1, \ \cdots, \ U_k \right) & \longrightarrow \ \mathbf{Syz} \left(U_1 \wedge \cdots \wedge U_{k-1}, \ U_k \right) \\ \left(v_1, \ \cdots, \ v_k \right) & \longmapsto \ \left(\sum_{i=1}^{k-1} \ v_i, \ v_k \right) \end{aligned}$$

We also need the following:

3.6. Proposition. Let $P = (T_1, T_2)$ be a pair of reduction operators. We have a linear isomorphism

$$\ker (T_1 \lor T_2) \xrightarrow{\sim} \mathbf{Syz} (P) .$$
$$v \longmapsto (-v, v)$$

3.7. The Algorithm. The algorithm takes as input a finite subset $F = \{T_1, \dots, T_n\}$ of **RO** (G, <) and returns a basis of **Syz** (F).

Algorithm 1 Computation of a Basis of Syzygies

Initialisation:

- $T := \operatorname{Id}_{\mathbb{K}G};$
- v := 0;
- $B := \emptyset$.

1: for i = 2 to n do

- 2: $T = T_1 \wedge \cdots \wedge T_{i-1};$
- 3: for $g_0 \in \operatorname{Red}(T \vee T_i)$ do
- 4: $v = g_0 (T \vee T_i)(g_0);$
- 5: $\sum \lambda_g (g T_i(g))$: the T_i -decomposition of v;
- 6: $\sum \lambda_{j,g'}(g' T_j(g'))$: a canonical decomposition of v with respect to (T_1, \cdots, T_{i-1}) ;

7:
$$B = B \cup \left\{ \sum (\lambda_g b_{i,g}) - \sum (\lambda_{j,g'} b_{j,g'}) \right\};$$

- 8: **end for**
- 9: **end for**
- 10: return B

4 Example

We consider $G = (g_1 < g_2 < g_3 < g_4 < g_5 < g_6)$. We let $F = \{T_1, T_2, T_3, T_4\}$, where the operators T_i are defined by their matrices with respect to the basis G:

The vector space $\ker(F)$ is spanned by the following eight vectors:

 $b_1 = (g_4 - g_3, 0, 0, 0), \quad b_2 = (g_5 - g_3, 0, 0, 0), \quad b_3 = (g_6 - g_1, 0, 0, 0), \quad b_4 = (0, g_4 - g_2, 0, 0)$ $b_5 = (0, g_5 - g_2, 0, 0), \quad b_6 = (0, g_6 - g_2, 0, 0), \quad b_7 = (0, 0, g_4 - g_1, 0), \quad b_8 = (0, 0, 0, g_5 - g_1).$

We describe the algorithm of the previous section to compute a linear basis B of $\mathbf{Syz}(F)$. We begin with $B = \emptyset$.

4.1. Step 1. We have

The set Red $(T_1 \vee T_2)$ is reduced to $\{g_5\}$ and $g_5 - (T_1 \vee T_2)(g_5)$ is equal to $g_5 - g_4$. We have

$$g_5 - g_4 = (g_5 - g_3) - (g_4 - g_3)$$

= $(g_5 - T_1(g_5)) - (g_4 - T_1(g_4)),$

 and

$$g_5 - g_4 = (g_5 - g_2) - (g_4 - g_2) \\ = (g_5 - T_2(g_5)) - (g_4 - T_2(g_4)).$$

We have

$$B = \Big\{ b_5 - b_4 - b_2 + b_1 \Big\}.$$

4.2. Step 2. We have

We need to determine the T_3 -decomposition of $g_4 - g_1$ and well as a canonical decomposition of $g_4 - g_1$ with respect to (T_1, T_2) . These two decompositions are given by

$$g_4 - g_1 = g_4 - T_3(g_4)$$

= $-(g_6 - g_2) + (g_4 - g_2) + (g_6 - g_1)$
= $-(g_6 - T_2(g_6)) + (g_4 - T_2(g_4)) + (g_4 - T_1(g_4)),$

so that, we have

$$B = \Big\{b_5 - b_4 - b_2 + b_1, b_7 + b_6 - b_4 - b_3\Big\}.$$

4.3. Step 3. We have

The T_4 -decomposition of $g_5 - g_1$ and a canonical decomposition of $g_5 - g_1$ with respect to (T_1, T_2, T_3) are given by

$$g_{5} - g_{1} = g_{5} - T_{4}(g_{5})$$

$$= -(g_{6} - g_{2}) + (g_{4} - g_{2}) + (g_{6} - g_{1}) + (g_{5} - g_{3}) - (g_{4} - g_{3})$$

$$= -(g_{6} - T_{2}(g_{6})) + (g_{4} - T_{2}(g_{4})) + (g_{6} - T_{1}(g_{6})) + (g_{5} - T_{1}(g_{5})) - (g_{4} - T_{1}(g_{4})),$$

so that, we have

$$B = \Big\{b_5 - b_4 - b_2 + b_1, b_7 + b_6 - b_4 - b_3, b_8 + b_6 - b_4 - b_3 - b_2 + b_1\Big\}.$$

4.4. Remark. The syzygies $Syz_1 = b_5 - b_4 - b_2 + b_1$, $Syz_2 = b_7 + b_6 - b_4 - b_3$ and $Syz_3 = b_8 + b_6 - b_4 - b_3 - b_2 + b_1$ have the following geometric interpretations:

References

- [1] David J. Anick. On the homology of associative algebras. Trans. Amer. Math. Soc., 296(2):641–659, 1986.
- [2] Alberto Arri and John Perry. The F5 criterion revised. J. Symbolic Comput., 46(9):1017-1029, 2011.
- [3] Cyrille Chenavier. Reduction Operators and Completion of Rewriting Systems. J. Symbolic Comput., 2017.
- [4] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F₅). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 75-83 (electronic). ACM, New York, 2002.
- [5] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos. Math., 151(5):957-998, 2015.

- [6] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math., 231(3-4):2294-2351, 2012.
- [7] Yuji Kobayashi. Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra, 65(3):263-275, 1990.
- [8] Hans-Michael Möller, Teo Mora, and Carlo Traverso. Gröbner bases computation using syzygies. In *Papers from the international symposium on Symbolic and algebraic computation*, pages 320–328. ACM, 1992.
- [9] Craig C. Squier. Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra, 49(1-2):201-217, 1987.
- [10] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoret. Comput. Sci., 131(2):271–294, 1994.