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1 Introduction

Several constructive methods in algebra are based on the computation of syzygies. For instance, a generating
set of syzygies offers criteria to detect useless critical pairs during Buchberger’s algorithm, that is critical pairs
whose corresponding S-polynomials reduces into zero [§]. Such criteria improve the complexity of Buchberger’s
algorithm since most of the time is spent in computing into zero. Another application scope is homological /ho-
motopical algebra where syzygies enable us to construct resolutions of monoids or algebras [T}, [6] [7]. Several
methods for computing syzygies were introduced: Squier’s theorem states that the module of syzygies of a
convergent string rewriting system is spanned by confluence diagrams [9] [10], which imply that syzygies can be
computed by a completion-reduction procedure [5]. Moreover, the syzygies of a regular sequence are spanned
by principal syzygies [4]. In [2], a general method for computing syzygies of a set of polynomials equations is
given.

In this work, we are interested in the computation of syzygies of linear rewriting systems. Our motivation
is to develop a general framework which can be specialised to various structures whose underlying sets of terms
are vector spaces: polynomials algebras, tensor algebras, Lie algebras, operads... We fix a vector space V and
a basis G of V: when V is a polynomial algebra, G is the set of monomials, for tensor algebras, G is the set of
words, for instance. We consider linear rewriting systems described by reduction operators. Given a well-order
< on G, a reduction operator is an idempotent endomorphism of V' such that for every ¢ ¢ im (T), T'(g) is a
linear combination of elements of G strictly smaller than g for <. Such an operator encodes the reductions

v T(v),

for every vector v ¢ im (7).
Given a set F' = {T3,---, T,} of reduction operators, the syzygies of F are the elements of the kernel of
the map

mp : ker(Ty) @ --- @ ker(T},) — V.

(v1, =+, vn) Z Vi

In [3| Proposition 2.1.14], it is shown that the set of reduction operators admits a lattice structure. Our method
for constructing a linear basis of Syz (F') works as follows: Syz (f1, f2) is isomorphic to the kernel of the upper
bound 77 V T, of T} and T,. Moreover, for every integer 2 < k < n — 1, we have onto morphisms:

SyZ (T’l7 HRILN Tk+1) — SyZ (Tl Ao A Tk-,, Tk+1) s
k
(v, = Vepr) — (Z vi, ’Uk+1>
i=1
where T7 A --- A T}, is the lower bound of {T17 cee Tk}. Hence, if a linear basis %y, of Syz (11, ---, Tj) is
known, we construct a linear basis of Syz (f1, -+, fx+1) by taking the union of %, with pre-images of elements

of a linear basis of Syz (T4 A --- ATy, Tg+1)- This method provides successively linear bases of Syz (71, T»),
SyZ (T17 T27 T3)7 e SyZ (Tla Ty Tn) = SyZ (F)



2 Reduction Operators

2.1. Notations. We fix a well-ordered set (G, <) and a commutative field K. Every vector v of the vector
space KG spanned by G admits a greatest element, written 1g (v), in its decomposition with respect to G. We
extend the order < on G into an order on KG defined by v1 < vy ifv; = 0andve # Ooriflg(vy) < lg(va).

2.2. Definition. A linear endomorphism T of KG is called a reduction operator if it is a projector and if
for every ¢ € G, we have T(g) < g. We write RO (G, <) the set of reduction operators and for every
T € RO (G, <), we write

Red(T) = {g€ G | T(g) # 9.

2.3. T-decompositions. A reduction operator being a projector, the kernel of 7" admits as a basis the set of
g — T(g), where g belongs to Red (T'), that is every v € ker (T') admits a unique decomposition

v= Y Ay — Tl (1)

g € Red(T)

The decomposition is called the T-decomposition of v.
2.4. Lattice Structure. Recall from [3], Proposition 2.1.14] that the map

ker : RO (G,<) — {subspaces of KG},
T — ker (T)

is a bijection. Given a subspace V of KG, we write ker (V') the unique reduction operator with kernel V.
Then, (RO (G, <), =, A, V) is a lattice where

i. T1 j T2 if ker (TQ) Q ker (Tl),
ii. Ty ATy = ker ' (ker (T1) 4 ker (T3)),
iii. 7y VT, = ker ! (ker (1) Nker (T3)).

3 Syzygies
We fix a subset F' = {T3,---,T,} of RO (G, <) and we let
ker(F) = ker(Ty) @ --- @ ker(T,).

An element of ker(F) is written (vy, ---, vy,), where each v; belongs to ker (T;).

3.1. Notation. For every integer 1 < ¢ < n and for every g € Red (T}), we let
b’i,g = (Oa ) 07 g — Tl(g)a 0) Tty O)

The set
B = {bi_,g | 1< i<n and g € Red(ﬂ)},

is a linear basis of ker(F).

3.2. Definition. Consider the linear map

7w ¢ ker (F) — ker (AF).
n

o, s ) — 30w
i=1

We write
Syz (F) = ker(np).

The elements of Syz (F') are called the syzygies of F.



3.3. Canonical Decompositions. By definition of syzygies, we have a linear isomorphism
7r . ker (F)/Syz(F) — ker (AF).

Moreover, ker (F') /Syz (F') admits as a basis a subset % (F) of %, so that

{9 - T | by € 2(1) }, 2)

is a basis of ker (AF). The decomposition of an element v of ker (AF') with respect to (2) is called a canonical
decomposition of v with respect to F.

3.4. Remark. Following the terminology of [3, Section 2.1.9], Z(F) can be chosen in such a way that it is
also reduced and this choice is unique, which motivates the terminology of "canonical basis". In the sequel, we
do not assume that B(F) is reduced.

3.5. Purpose. Our purpose is to introduce an algorithm for computing Syz (F'). This algorithm is based on
the fact that for every family Uy, ---, Uy of reduction operators, we have a linear map:

SyZ(Ul, ceey Uk) — Syz(Ul/\~~~/\Uk,1, Uk)
k—1
(v1, =+ o) <Z Vi, Uk:)
i=1
We also need the following:

3.6. Proposition. Let P = (T1, T3) be a pair of reduction operators. We have a linear isomorphism

ker (Ty VTy) —+ Syz(P).
v— (—v, v)

3.7. The Algorithm. The algorithm takes as input a finite subset FF = {7y, ---, T,,} of RO (G, <) and
returns a basis of Syz (F).

Algorithm 1 Computation of a Basis of Syzygies

Initialisation:
o T = Idgg;
o v = 0
e B =10

1: for i = 2tondo

2 T = TiA- ATy

3: for go € Red(TVT;) do

4 v = g0 = (TVT)(9);

5: > Ag(g — Ti(g)) : the T;-decomposition of v;

6: > N (g8 — Tj(¢")) : acanonical decomposition of v with respect to (T%,---, T;—1);
n B =BU{Z0by) — X Ngbig) |

8: end for

9: end for

10: return B




4 Example

We consider G = (g1 < g2 < g3 < ga < g5 < gg). Welet F = {T3, Ty, T3, T4)}, where the operators
T; are defined by their matrices with respect to the basis G:

1 0000 1 1 0000 0
01 0000 010 1 11
001110 001000
L=d000000l"™=|0o0000 0l
000000 00 0O0O0O
000000 0000000
100100 100010
01 0000 01 0000
001000 001000
=10 0000o0|] ®™Ta=100010 0
00 0O0T10 000000
00000 1 00000 1

The vector space ker(F') is spanned by the following eight vectors:
bl = (94 - 93 07 07 O)v b2 = (95 - 93 07 Ov 0)’ b3 = (96 - 91, Oa Oa O)a b4 = (Oa ga — g2, 07 0)
b5 = (07 gs — g2, 07 0) ) b6 = (Oa 96 — G2, 07 0) ) b7 = (0, 0, 94 — 91, 0) ) b8 = (07 07 07 95 — gl) .

We describe the algorithm of the previous section to compute a linear basis B of Syz (F). We begin with
B = (.

4.1. Step 1. We have

100000
010000
001000

LVT: =14 0011 0
000000
00000 1

The set Red (T1 V Tb) is reduced to {gs} and g5 — (T1 V T») (g5) is equal to g5 — ga. We have
95 — g4 = (95 - 93) - (94 - 93)
= (o - Tilew) = (o0 — Tilow),
and
95 — 94 = <g5 - 92) - (94 - 92)
= (95 - T2(95)) - (94 - T2(94))-

We have
B:{b5—b4—b2+b1}.

4.2. Step 2. We have

(i NTR) VT3 =

[N elNoNoNaol S
SO OO~ O
S oo~ OO
[N eloNoNaoll S
O = OO OO
_— o0 O o OO



We need to determine the T5-decomposition of g4 — g1 and well as a canonical decomposition of g4 — g1 with
respect to (71, T»). These two decompositions are given by

912 — g1 = g1 — Ts(g4)
“ (o) ¢ (o) + (oo o)
= (96 — Blgo)) + (90 — Tolow)) + (91 — Tilgw)),
so that, we have

B:{b5—b4—b2+b1,b7+b6—b4—b3}.

4.3. Step 3. We have

1000 10
01 00 O0O
001 0O0O0
(T NToNT3) VT, = 00010 0
00 0 0 O0TO
00 0 0 01
The Ty-decomposition of g5 — g1 and a canonical decomposition of g5 — g¢; with respect to (11, To, T3) are

given by
95 — 91 = g5 — Tu(gs)
) ) o) (o) - ()
*(96 - T2(96)) + (94 - T2(94)) + (96 - T1(96)> + (95 - Tl(gs)) - (94 - T1(94)>,

so that, we have

B:{b57b4fb2+b1,b7+b67b4fb3,b8+b6fb4fb37b2+b1}.

4.4. Remark. The syzygies Syz;, = b5 — by — b2 + b1, Syzy = br + bg — by — b3 and
Syz; = bs + bg —bs — bs — by + by have the following geometric interpretations:

T T1

g4 ge 94 g3 95
T1 TS
g3 Syz, g2 92 Syz, g1 92 Syzs g1
X / T T3 Ty T
95 g4 Je
References

[1] David J. Anick. On the homology of associative algebras. Trans. Amer. Math. Soc., 296(2):641-659, 1986.
[2] Alberto Arri and John Perry. The F5 criterion revised. J. Symbolic Comput., 46(9):1017-1029, 2011.
[3] Cpyrille Chenavier. Reduction Operators and Completion of Rewriting Systems. J. Symbolic Comput., 2017.

[4] Jean-Charles Faugére. A new efficient algorithm for computing Grobner bases without reduction to zero
(F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages
75-83 (electronic). ACM, New York, 2002.

[5] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos.
Math., 151(5):957-998, 2015.

5



[6] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math.,
231(3-4):2294-2351, 2012.

[7] Yuji Kobayashi. Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra,
65(3):263-275, 1990.

[8] Hans-Michael Moller, Teo Mora, and Carlo Traverso. Grobner bases computation using syzygies. In Papers
from the international symposium on Symbolic and algebraic computation, pages 320-328. ACM, 1992.

[9] Craig C. Squier. Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra,
49(1-2):201-217, 1987.

[10] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoret.
Comput. Sci., 131(2):271-294, 1994.



	Introduction
	Reduction Operators
	Notations
	Definition
	T-decompositions
	Lattice Structure

	Syzygies
	Notation
	Definition
	Canonical Decompositions
	Remark
	Purpose
	Proposition
	The Algorithm

	Example
	Step 1
	Step 2
	Step 3
	Remark


